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Broadband Point Source Green’s Function in a One-Dimensional
Infinite Periodic Lossless Medium Based on BBGFL

with Modal Method

Leung Tsang1, *, Kung-Hau Ding2, and Shurun Tan1

Abstract—In this paper we calculate Green’s function of a single point source in a one-dimensional
infinite periodic lossless medium. The method is based on Broadband Green’s Functions with Low
Wavenumber Extractions (BBGFL) that express the Green’s functions in terms of band solutions
that are wavenumber independent. The converegnce of the band expansions are accelerated by a
low wavenumber extraction with the wavenumber chosen at the mid-bandgap. The choice of mid-
bandgap means that the extracted low wavenumber Green’s function can be calculated with very few
number of layers. The broadband Green’s functions are illustrated for stopband, passband and close
to the bandedge. For the case of passband and close to band edge, a modal method is used with first
order and second order pole extractions, respectively. The modal terms are extracted and integrated
analytically. The calculated solutions of single point source Green’s functions are compared with the
scattering solutions of multilayers using as many as 200, 000 layers for the case of passband and near
bandedge. The BBGFL computed solutions are in good agreement with those of scattering solutions
for stopband, passband, and close to the bandedge.

1. INTRODUCTION

The subject of Green’s function is basic knowledge in electromagnetics and is treated in graduate
texts [1–5]. The free space Green’s functions have been extensively used in the formulation of integral
equations which are solved by the method of moments (MoM). For the case of periodic structures,
the periodic Green’s functions have periodic sources. However, they are that of empty lattice without
scatterers. Neither the free space Green’s function nor the empty lattice periodic Green’s functions
satisfy boundary conditions on the scatterers. For the Green’s functions that satisfy boundary
conditions, there are only a few such as rectangular waveguides, cylindrical waveguides, infinitely long
cylinders, spheres, layered media, etc. [1–5].

Recently, we have been developing the broadband Green’s functions with low wavenumber
extractions (BBGFL) for problems in waveguides and periodic structures [6–17]. We label the usual
techniques as the “scattering method”. In the scattering method, such as the Multiple Scattering
Theory [18], Fast Multipole Method [19], the free space Green’s function is used to formulate the
scattering problem, using vector spherical waves or MoM [20]. To satisfy boundary conditions on all
the scatterers, the multiple scattering solution is calculated. The multiple scattering solution must be
calculated every time. The Broadband Green’s Method is based on band theory. It is recognized that
the band solutions are the multiple scattering solutions and satisfy boundary conditions. A distinct
feature of BBGFL is that the Green’s functions are expressed in terms of the band solutions. The band
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solutions are calculated once. The solution of the Green’s function at every frequency is obtained by
merely changing the denominator. For the BBGFL technique to work efficiently, three set-up steps are
essential. (i) The band solutions, eigenvalues and eigenvectors, are cast in a linear eigenvalue problem
of relative small matrix size compared to plane wave expansions. The eigenvalues and the modal field
solutions are solved simultaneously. The band field wavenumbers and the band field solutions have
to be accurate. (ii) The modal/band field solutions must be normalized efficiently without requiring
extensive volumetric integrations, and (iii) the modal summation for Green’s function is not convergent
and acceleration technique with low wavenumber extraction is to be exercised. It is noted that the setup
is only performed once, and then the BBGFL works for all frequencies (up to a maximum frequency),
by merely changing the denominator.

For the case of periodic structures, we previously derived the single point source Green’s
functions [11, 12, 16, 17]. Solutions are computed for the case when the low/small wavenumbers are
in the stopband. For the passband, losses are needed to obtain the solutions. The cases when there are
only small losses in the passband were not considered.

In this paper, we calculate the Broadband Green’s Function of a single point source in a one-
dimensional (1D) infinite periodic lossless medium. For the case of a single point source in a 1D medium,
the usual method is using scattering solutions. For the case of lossless medium with Im(k0) = 0, where
Im is imaginary part and k0 is the wavenumber, the numerical solutions do not converge. For the ideal
lossless case in free space, with field point at z and source point at z′, the free space Green’s function is
eik0|z−z′|

2ik0
which assumes radiation boundary condition. An alternative of getting the free space solution

is to assume artificial infinitesimal loss. For the case of 1D periodic structure with infinitesimal loss, if
the scattering method is used, a very large number of layers is required to obtain the physical solution
of infinitesimal loss.

In this paper, we consider the case when the band starting at k0 = 0 is in the passband. Thus
it is not feasible to use a small wavenumber extraction as it is not practical to calculate the Green’s
function for the small wavenumber. In this paper, the wavenumber extraction is chosen at the mid-
bandgap kg. The choice of mid-bandgap does not need to be precise. This choice of mid-bandgap means
that the extracted solution can be calculated with very few number of layers with the fewest when the
wavenumber is in the mid-bandgap. The extraction mid-bandgap wavenumber can be higher than k0

which is in the passband. We still call it the low wavenumber (in the bandgap), as kg is still lower than
the highest wavenumber in the truncated band expansions.

In this paper, the single point source Broadband Green’s Functions with Low Wavenumber
Extractions (BBGFL) are illustrated for stopband, passband, and close to the band edge, for the lossless
(infinitesimal loss) case. We take the liberty to define the lossless case. By lossless case, we first define a
maximum distance of interest. Then, 1) within the maximum distance of interest, the Green’s function
behaves as the medium is lossless (infinitesimal loss), and 2) within the maximum distance, the Green’s
function is independent of the artificial loss put in the simulations. The calculated solutions of point
source Green’s functions of lossless media are compared with the scattering solutions for the case of
passband and bandedges. The advantage of 1D case is that we can take a large number of layers, such
as 200, 000 layers, for the scattering solutions to converge when the wavenumber is near the bandedge.
The BBGFL computed solutions are in good agreement with those of scattering solutions for stopband,
passband, and close to the bandedge. For the case of passband, we use a modal approach with a first
order pole extraction. For the case close to the bandedge, we also apply a modal approach using a
second order pole extraction.

The new contributions in this paper are as follows: (i) an improvement of methodology is the
choice of a single low wavenumber extraction for the case of point source Green’s function rather
than low wavenumber extraction for the periodic Green’s functions of each Bloch vector, (ii) choice of
mid-bandgap solution as the low wavenumber extraction, (iii) use of a modal approach with first and
second order pole extractions for the point source Green’s functions at passband/bandedge, and (iv)
an improvement in normalization showing the accuracies of the band field solutions that are in good
agreement with benchmark ABCD method [21]. This paper is a review and making new improvements.

The organization of the paper is as follows. In Section 2, we use BBGFL to compute the band
solutions and the normalizations of the band solutions. In Section 3, we describe the computations
of the single point source broadband Green’s functions for the cases of passband and stopband. In
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Section 3, we also describe the second order modal approach for close to the bandedge. In Section 4,
numerical results are illustrated.

2. BAND EIGENVALUES AND NORMALIZED BAND MODE SOLUTIONS BASED
ON BBGFL

In this section, we apply the BBGFL method for the eigenvalue problem of band solutions. Methods
used to compute band structures include the plane wave method [22] and the finite element method [23].
The advantages of BBGFL are (i) few terms of plane wave expansions are needed because boundary
contributions are added from the low wavenumber extraction, (ii) the eigenvalue problem is linear
meaning that the matrix is independent of eigenvalues, and (iii) the normalization of modes require
only surface fields rather than volumetric integration.

Figure 1. An infinite periodic one-dimension medium. Calculation of single point source Green’s
function gS

j1(k0, x, x
′) with single point source at x′ = b

2 .

Consider a one-dimensional periodic structure in Figure 1 with region 1 as the scatterer and region
2 as the background. The period is a. The thickness of region 1 is b. In the 0-th cell, for 0 ≤ x ≤ b, the
permittivity and wavenumber are ε1 and k1, respectively, with k1 = ω

√
μ0ε1, where ω is the angular

frequency and μ0 is the permeability. We use ε0 as the free space permittivity and k0 = ω
√
μ0ε0 as

the free space wavenumber. In region 2, b ≤ x ≤ a, the permittivity and wavenumber are ε2 = ε, and
k2 = k, respectively, with k = ω

√
μ0ε. The wave solutions ψ, representing the tangential components

of electric fields, are

ψ =
{
ψ1 for 0 ≤ x ≤ b

ψ2 for b ≤ x ≤ a
(1)

The band solutions are ψ1 and ψ2, respectively, obey the wave equations
d2ψ1

dx2
+ k2

1ψ1 = 0 (2)

in region 1, and
d2ψ2

dx2
+ k2ψ2 = 0 (3)

in region 2. The boundary conditions are the continuities of wave functions and their derivatives at the
interface x = 0 and at x = b. At x = 0 and x = b,

ψ1 = ψ2 (4)
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dψ1

dx
=
dψ2

dx
(5)

Let ki be the Bloch wave vector, then the wave functions satisfy the Bloch wave condition.

ψ(x+ a) = eikiaψ(x) (6)
The Bloch wave functions can be written as

ψ(x) = eikixu(x) (7)
where u(x) is a periodic function of period a.

The band solutions can be obtained by the ABCD method [21] and plane wave method [22, 24].
We apply the BBGFL method using surface integral equations and periodic Green’s functions of empty
lattice of period a. For the case of empty lattice with wavenumber k1 and the periodic source at x′,
0 ≤ x′ ≤ b, the periodic sources are at x′ + na and n is an integer. In spectral domain, the periodic
Green’s functions of empty lattice g0

jP (k0, ki;x, x′), j = 1 or 2, can be expressed as

g0
jP

(
k0, ki;x, x′

)
=

1
a

∑
α

1
k2

iα − k2
j

eikiα(x−x′) (8)

In Equation (8), the subscript “P” stands for periodic, and the superscript “0” stands for empty space,
k2

j = k2
0

εj

ε0
, and

kiα = ki + α
2π
a

(9)

with α being an integer, α = 0,±1,±2, . . .. Note that g0
jP depends on x − x′. In spatial domain,

g0
jP (k0, ki;x), j = 1 or 2, becomes

g0
jP (k0, ki;x) =

∑
n

i

2kj
eikinaeikj |x−na| (10)

The geometric series can be summed so that, for 0 ≤ x < a,

g0
jP (k0, ki;x) =

i

2kj

[
eikjx 1

1 − ei(kj−ki)a
+ e−ikjx ei(kj+ki)a

1 − ei(kj+ki)a

]
(11)

The g0
jP obeys the Bloch condition so that

g0
jP (k0, ki;x+ a) = eikiag0

jP (k0, ki;x) (12)

Using the periodic conditions, we can calculate g0
jP (k0, ki; 0−) and g0′

jP (k0, ki; 0−) etc., where prime
stands for derivative with respect to x.

For the case of empty lattice with wavenumber kj and with periodic sources at x′, the empty lattice
periodic Green’s function is

g0
jP

(
k0, ki;x, x′

)
=
∑
n

i

2kj
eikinaeikj |x−(x′+na)| (13)

Note that the Green’s functions derivatives have discontinuities at x = x′ + na.

2.1. Band Eigenvalue Problem

The eigenvalue problem is derived in a manner similar to the two-dimensional (2D) case in [9]. Applying
Green’s theorem and using both Green’s functions of wavenumbers k1 and k yields the extinction
theorem. The derivations of Eqs. (14) and (15) are given in Appendix A.

−
[
ψ1

(
x′
) d

dx′
g0
1P

(
k0, ki;x, x′

)− dψ1 (x′)
dx′

g0
1P

(
k0, ki;x, x′

)]∣∣∣∣x′=b−

x′=0+

=
{
ψ1 (x)

0
0 < x < b
b < x < a

(14)

[
ψ1

(
x′
) d

dx′
g0
2P

(
k0, ki;x, x′

)− dψ1 (x′)
dx

g0
2P

(
k0, ki;x, x′

)]∣∣∣∣x′=b+

x′=0−
=
{

0
ψ2 (x)

0 < x < b
b < x < a

(15)
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The surface integral equations are obtained by taking x → 0− and b+ in Eq. (14), and taking x → 0+

and b− in Eq. (15), where the superscripts + and − represent approaching a point from its right and
left, respectively. The surface integral equations can be readily put in matrix form as[

¯̄S1 (k0) − ¯̄L1 (k0)
¯̄S2 (k0) − ¯̄L2 (k0)

][
p̄

q̄

]
= 0 (16)

where the unknowns p̄ and q̄ are the boundary values of ψ1 and ψ′
1 at x = 0 and x = b,

p̄ =
[ −ψ1 (0)

ψ1 (b)

]
(17)

q̄ =
[ −ψ′

1 (0)
ψ′

1 (b)

]
(18)

and ¯̄S1 (k0), ¯̄L1 (k0), ¯̄S2 (k0), and ¯̄L2 (k0) are the impedance matrices.

¯̄S1 (k0) =

⎡⎢⎣ d

dx′
g0
1P

(
k0, ki; 0−, 0+

) d

dx′
g0
1P

(
k0, ki; 0−, b−

)
d

dx′
g0
1P

(
k0, ki; b+, 0+

) d

dx′
g0
1P

(
k0, ki; b+, b−

)
⎤⎥⎦ (19)

¯̄L1 (k0) =
[
g0
1P (k0, ki; 0−, 0+) g0

1P (k0, ki; 0−, b−)
g0
1P (k0, ki; b+, 0+) g0

1P (k0, ki; b+, b−)

]
(20)

¯̄S2 (k0) =

⎡⎢⎣ d

dx′
g0
2P

(
k0, ki; 0+, 0−

) d

dx′
g0
2P

(
k0, ki; 0+, b+

)
d

dx′
g0
2P

(
k0, ki; b−, 0−

) d

dx′
g0
2P

(
k0, ki; b−, b+

)
⎤⎥⎦ (21)

¯̄L2 (k0) =
[
g0
2P (k0, ki; 0+, 0−) g0

2P (k0, ki; 0+, b+)
g0
2P (k0, ki; b−, 0−) g0

2P (k0, ki; b−, b+)

]
(22)

Setting the determinant of Eq. (16) equal to zero gives a nonlinear eigenvalue problem for k0,
the band solution. The nonlinear eigenvalue refers to the fact that the matrix on the left hand side
of Eq. (16) is dependent on k0. To convert it to a linear eigenvalue problem, we use low wavenumber
extractions on the periodic Green’s functions. Let g0

jP (k0L, ki;x, x′) be a single low wavenumber solution
at k0 = k0L. Then the extracted form gives

g0
jP

(
k0, ki;x, x′

)− g0
jP

(
k0L, ki;x, x′

)
=

1
a

∑
α

εj
ε0

(
k2
0 − k2

0L

)
(
k2

iα − εj
ε0
k2
0

)(
k2

iα − εj
ε0
k2
0L

)eikiα(x−x′)

=
1
a

∑
α

⎡⎢⎢⎢⎢⎢⎣
1

1
εj
ε0

(
k2
0 − k2

0L

) − 1

(kiα)2 − εj
ε0
k2
0L

⎤⎥⎥⎥⎥⎥⎦
eikiα(x−x′)[

(kiα)2 − εj
ε0
k2
0L

]2
(23)

Note that after extraction, the plane wave expansion converges as 1/k4
iα which has a higher order

convergence than 1/k2
iα of the original spectral summation in Eq. (8). Eq. (23) can be put in the

following form,

g0
jP

(
k0, ki;x, x′

)
= g0

jP

(
k0L, ki;x, x′

)
+
∑
α

R(j)
α (k0L, x)W (j)

α R(j)
α

(
k0L,−x′

)
(24)

where

R(j)
α (k0L, x) =

1√
a

eikiαx

k2
iα − εj

ε0
k2
0L

= D(j)
α ψ0

α (x) (25)



56 Tsang, Ding, and Tan

and

ψ0
α (x) =

1√
a
eikiαx (26)

λ (k0, k0L) =
1

k2
0 − k2

0L

(27)

D(j)
α (k0L) =

1

k2
iα − εj

ε0
k2
0L

(28)

W (j)
α (k0, k0L) =

1
ε0
εj
λ−D(j)

α

(29)

Note that after the singularity is extracted in the low wavenumber term, g0
jP (k0L, ki;x, x′), the

plane wave summation term of
∑

α does not have singularity at any x. We put the eigen-equations
in matrix form. Let there be M plane waves used in Eq. (24) with M being an odd number. Then,
N = M−1

2 is an integer. Thus the plane wave index α has M values with α = 0 ± 1,±2, . . . ,±N .
Because of the low wavenumber extraction, using Eq. (24) in impedance matrices ¯̄S and ¯̄L, we have

¯̄S1 (k0) = ¯̄S1 (k0L) + ¯̄R1 (k0L) ¯̄W1 (k0, k0L) ¯̄Q1 (k0L) (30)
¯̄L1 (k0) = ¯̄L1 (k0L) + ¯̄R1 (k0L) ¯̄W1 (k0, k0L) ¯̄T1 (k0L) (31)
¯̄S2 (k0) = ¯̄S2 (k0L) + ¯̄R2 (k0L) ¯̄W2 (k0, k0L) ¯̄Q2 (k0L) (32)
¯̄L2 (k0) = ¯̄L2 (k0L) + ¯̄R2 (k0L) ¯̄W2 (k0, k0L) ¯̄T2 (k0L) (33)

where ¯̄R, 2×M , ¯̄D, M ×M , ¯̄W , M ×M , ¯̄Q, M × 2, and ¯̄T , M × 2 are matrices defined in Appendix B.
Notice that the dimensions of matrices ¯̄S1, ¯̄L1, ¯̄S2, and ¯̄L2 are 2 × 2. Then the governing matrix

Eq. (16) becomes
¯̄S1 (k0L) − ¯̄L1 (k0L) q̄ + ¯̄R1 (k0L) ¯̄W1 (k0, k0L) ¯̄Q1 (k0L) p̄− ¯̄R1 (k0L) ¯̄W1 (k0, k0L) ¯̄T1 (k0L) q̄ = 0 (34)
¯̄S2 (k0L) − ¯̄L2 (k0L) q̄ + ¯̄R2 (k0L) ¯̄W2 (k0, k0L) ¯̄Q2 (k0L) p̄− ¯̄R2 (k0L) ¯̄W2 (k0, k0L) ¯̄T2 (k0L) q̄ = 0 (35)

which are analogous to Eqs. (14a) and (14b) of reference [8]. Let

c̄j = ¯̄Wj (k0, k0L) ¯̄Qj (k0L) p̄− ¯̄Wj (k0, k0L) ¯̄Tj (k0L) q̄ (36)
where c̄j are vectors of dimension M × 1. Using[

¯̄Wj (k0, k0L)
]−1

=
ε0
εj
λ ¯̄IM − ¯̄Dj (37)

we have
λc̄j =

εj
ε0

[
¯̄Dj c̄j + ¯̄Qj (k0L) p̄− ¯̄Tj (k0L) q̄

]
(38)

where ¯̄IM is an M ×M unit matrix.
Substituting Eq. (36) into Eqs. (34) and (35), and expressing p̄ and q̄ in terms of c̄j , we readily

obtain [
p̄
q̄

]
= ¯̄A (k0L)

[
c̄1
c̄2

]
(39)

where
¯̄A (k0L) = −

[ ¯̄S1 (k0L) − ¯̄L1 (k0L)
¯̄S2 (k0L) − ¯̄L2 (k0L)

]−1 [ ¯̄R1 (k0L) ¯̄02M
¯̄02M

¯̄R2 (k0L)

]
(40)

with ¯̄02M being a zero matrix of dimension 2 ×M . Substitution of Eq. (39) into Eq. (36) gives the
eigenvalue equation

¯̄P
[
c̄1
c̄2

]
= λ

[
c̄1
c̄2

]
(41)
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where

¯̄P =

⎡⎢⎣
ε1
ε0

¯̄D1
¯̄0M

¯̄0M
ε

ε0
¯̄D2

⎤⎥⎦+

⎡⎢⎣
ε1
ε0

¯̄Q1 −ε1
ε0

¯̄T1

ε2
ε0

¯̄Q2 −ε2
ε0

¯̄T2

⎤⎥⎦ ¯̄A (42)

with ¯̄0M being a zero matrix of dimension M ×M . The eigenvalues λ’s are as defined in Eq. (27).
The eigenvalue problem is linear because the matrix ¯̄P is independent of wavenumber k0. The matrix
¯̄P depends on the low wavenumber k0L and kiα. The eigenvalue problem is of dimension 2M , much
smaller than using purely plane wave bases.

2.2. Band Field Solution and Normalization

We describe the band field solution and its normalization. Note that the band field solution from
BBGFL is a “hybrid” representation consisting of a sum of surface terms and plane wave terms. In the
numerical results section, we show that the surface terms eliminate the Gibbs phenomena which exist
when only plane waves basis are used.

The extinction theorems in Eqs. (14) and (15) imply that we can extend the domain of definition
of ψ1 and ψ2 to the entire period with 0 < x < a. The advantages of extinction theorem are that ψ1

and ψ2 vanishes outside its validity domain, respectively. Then the modal field ψ(x) can be expressed
as

ψ (x) = ψ1 (x) + ψ2 (x) (43)

The modal band solutions are related to the band eigenvectors, c̄1 and c̄2, and the band solutions
of surface currents, p̄ and q̄, where Eq. (39) represents the surface currents in terms of the eigenvectors.
Using the BBGFL representation of g1P and g2P , we obtain band field eigensolutions from the extinction
theorems. Let

¯̄S(1)
0 (k0L, x) =

[
d

dx′
g1P

(
k0L;x, 0+

)
d

dx′ g1P (k0L;x, b−)
]

(44)

¯̄L(1)
0 (k0L, x) =

[
g1P (k0L;x, 0+) g1P (k0L;x, b−)

]
(45)

¯̄S(2)
0 (k0L, x) =

[
d

dx′
g2P

(
k0L;x, 0−

)
d

dx′ g2P (k0L;x, b+)
]

(46)

¯̄L(2)
0 (k0L, x) =

[
g2P (k0L;x, 0−) g2P (k0L;x, b+)

]
(47)

and ψ0
α (x) = 1√

a
eikiαx are the normalized Floquet plane waves as defined in Eq. (26). The unnormalized

band field solutions are

ψ1 (x) = −
[

¯̄S(1)
0 (k0L, x) − ¯̄L(1)

0 (k0L, x)
] [

p̄
q̄

]
−
∑

|α|≤N

ψ0
α (x)D(1)

α c(1)α (48)

ψ̄2 (x) =
[

¯̄S(2)
0 (k0L, x) − ¯̄L(2)

0 (k0L, x)
] [

p̄
q̄

]
+
∑

|α|≤N

ψ0
α (x)D(2)

α c(2)α (49)

Note that the band field solutions in Eqs. (48) and (49) above have two contributions: one from the
boundary terms and one from the plane wave summations. The plane wave summation is N = M−1

2
which is a relatively small number of plane wave modes as the surface terms have been extracted to
accelerate convergence. The boundary contributions are evaluated at a single k0L to accurately account
for the low wavenumber contributions. As shown in the numerical results section, this term removes the
Gibbs oscillations arising from truncating the series in Eq. (53) and significantly improves the accuracy
in evaluating the modal fields. In the following, we describe the improvement that is made in the
accuracy of band normalization in this paper.

Note that we only have c(j)α , for |α| ≤ N , in the linear eigenvalue problem. We set c(j)α = 0 for
|α| > N . We define the normalized field as ψ̃(x) which is related to ψ(x) through a normalization
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coefficient E.
ψ̃ (x) = Eψ (x) (50)

The normalization condition of the band field solution can be derived using differential equations,
Eqs. (2)–(3), and boundary conditions, Eqs. (4)–(5).

ε1
ε0

∫ b

0
dxψ̃1 (x) ψ̃∗

1 (x) +
ε

ε0

∫ a

b
dxψ̃2 (x) ψ̃∗

2 (x) = 1 (51)

Using the extended domain of definitions of ψ1 and ψ2 from the extinction theorem, we extend the
domain of integration to 0 to a, and readily obtain

|E|2 =
1

ε1
ε0

∫ a

0
dxψ1 (x)ψ∗

1 (x) +
ε

ε0

∫ a

0
dxψ2 (x)ψ∗

2 (x)
(52)

In order to evaluate the integrals without computing ψ1(x) and ψ2(x) everywhere, we expand ψ1(x)
and ψ2(x) into plane waves,

ψj (x) =
∑
α

ψ0
α (x) b(j)α (53)

with j = 1, 2. We then truncate the plane wave expansion series using the same number of terms as
used in the BBGFL and a remainder.

ψj (x) =
∑

|α|≤N

ψ0
α (x) b(j)α + h(j) (x) (54)

where h(j)(x) is the remainder of using a truncated plane wave series to approximate ψj(x).

h(j) (x) =
∑

|α|>N

ψ0
α (x) b(j)α (55)

Note that b(j)α are not the same as D(j)
α c

(j)
α because the boundary terms have been included. Truncating

the series creates Gibbs oscillations, while the remainder h(j)(x) eliminates the Gibbs oscillations.
From the orthogonality of ψ0

α(x), we have〈
h(j) (x) ,

∑
|α|≤N

ψ0
α (x) b(j)α

〉
=
∫ a

0
dxh(j)∗ (x)

∑
|α|≤N

ψ0
α (x) b(j)α = 0 (56)

and ∫ a

0
dxψj (x)ψ∗

j (x) =
∑

|α|≤N

∣∣∣b(j)α

∣∣∣2 +
∫ a

0
dx
∣∣∣h(j) (x)

∣∣∣2 (57)

The orthogonality of ψ0
α(x) also indicates

b(j)α =
∫ a

0
dxψ0∗

α (x)ψ(j) (x) (58)

To evaluate the coefficients bα’s, we make use of plane wave expansion of g1P and g2P in Eqs. (48)
and (49)

gjP

(
k0L.k̄i;x, x′

)
=
∑
α

ψ0
α (x)ψ0

α

(−x′)D(j)
α (59)

d

dx′
gjP

(
k0L.k̄i;x, x′

)
=
∑
α

ψ0
α (x) (−ikiα)ψ0

α

(−x′)D(j)
α (60)

and readily obtain, from the orthogonality of ψ0
α(x),

b(1)α = −D(1)
α

[
c̃α + c(1)α

]
(61)

b(2)α = D(2)
α

[
c̃α + c(2)α

]
(62)
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where

c̃α =
[

(−ikiα)ψ0
α (0) (−ikiα)ψ0

α (−b) −ψ0
α (0) −ψ0

α (−b) ] [ p̄
q̄

]
(63)

Thus c̃α represents the addition from the boundary terms to the plane wave expansions. To evaluate∫ a
0 dx|h(j)(x)|2, the second term in Eq. (57), we first derive h(j)(x) from the following equation.

h(j) (x) = ψj (x) −
∑

|α|≤N

ψ0
α (x) b(j)α (64)

Substitution of ψj(x) in Eqs. (48) and (49), and the expression of b(j)α in Eqs. (61) and (62), leads to

h(1) (x) = −
[

d

dx′
g1P

(
k0L;x, 0+

) d

dx′
g1P

(
k0L;x, b−

) −g1P (k0L;x, 0+) −g1P (k0L;x, b−)
] [

p̄
q̄

]
+
∑

|α|≤N

ψ0
α (x)D(1)

α c̃α (65)

and

h(2) (x) =
[
dg

(0)
2P (k0L, ki, x, 0−)

dx′
dg

(0)
2P (k0L, ki, x, b

+)
dx′

−g(0)
2P (k0L, ki;x, 0−) −g(0)

2P (k0L, ki;x, b+)

][
p̄
q̄

]
−
∑

|α|≤N

ψ0
α (x)D(2)

α c̃α (66)

Thus h(1)(x) and h(2)(x) are the remainders after subtracting, from the boundary terms, contributions
from

∑
|α|≤N .

Using the above we can numerically evaluate
∫ a
0 dx|h(j)(x)|2. The normalization is then

|E|2 =
1∑

j

εj
ε0

⎡⎣ ∑
|α|≤N

∣∣∣b(j)α

∣∣∣2 +
∫ a

0
dx
∣∣∣h(j) (x)

∣∣∣2
⎤⎦ (67)

Eqs. (65)–(66) can be expressed more explicitly using Eq. (63).

h(1) (x) = −
[
h

(1)
1 (x) h

(1)
2 (x) −h(1)

3 (x) −h(1)
4 (x)

] [
p̄
q̄

]
(68)

h(2) (x) =
[
h

(2)
1 (x) h

(2)
2 (x) −h(2)

3 (x) −h(2)
4 (x)

] [
p̄
q̄

]
(69)

where

h
(j)
1 (x) =

d

dx′
gjP (k0L;x, 0) −

∑
|α|≤N

ψ0
α (x)D(j)

α (−ikiα)ψ0
α (0) (70)

h
(j)
2 (x) =

d

dx′
gjP (k0L;x, b) −

∑
|α|≤N

ψ0
α (x)D(j)

α (−ikiα)ψ0
α (−b) (71)

h
(j)
3 (x) = gjP (k0L;x, 0) −

∑
|α|≤N

ψ0
α (x)D(j)

α ψ0
α (0) (72)

h
(j)
4 (x) = gjP (k0L;x, b) −

∑
|α|≤N

ψ0
α (x)D(j)

α ψ0
α (−b) (73)

We can put the reminder in plane wave expansions. Eqs. (70)–(73) become, respectively,

h
(j)
1 (x) =

∑
|α|>N

ψ0
α (x)D(j)

α (−ikiα)ψ0
α (0) =

∑
|α|>N

ψ0
α (x)h(j)

1α (74)
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h
(j)
2 (x) =

∑
|α|>N

ψ0
α (x)D(j)

α (−ikiα)ψ0
α (−b) =

∑
|α|>N

ψ0
α (x)h(j)

2α (75)

h
(j)
3 (x) =

∑
|α|>N

ψ0
α (x)D(j)

α ψ0
α (0) =

∑
|α|>N

ψ0
α (x)h(j)

3α (76)

h
(j)
4 (x) =

∑
|α|>N

ψ0
α (x)D(j)

α ψ0
α (−b) =

∑
|α|>N

ψ0
α (x)h(j)

4α (77)

where h(j)
1α , h(j)

2α , h(j)
3α , and h(j)

4α are the plane wave expansion coefficients defined accordingly.
Using Eqs. (68) and (69) in

∫ a
0 dx|h(j)(x)|2 leads to∫ a

0
dx
∣∣∣h(j) (x)

∣∣∣2 =
[
p̄
q̄

]†
¯̄H(j)

[
p̄
q̄

]
(78)

where ¯̄H(j) is a 4 by 4 matrix, and its component, H(j)
st , is related to

∫ a
0 dxh

(j)∗
s (x)h(j)

t (x) with the
proper sign. Putting together yields

|E|2 =
1∑

j

εj
ε0

⎡⎣ ∑
|α|≤N

∣∣∣b(j)α

∣∣∣2 +
[
p̄
q̄

]†
¯̄H(j)

[
p̄
q̄

]⎤⎦ (79)

Volumetric integrations are not required in Eq. (79). After the normalization coefficient E is
computed from Eq. (79), we go back to Eqs. (48) and (49) to evaluate the band fields. Both set of
Eqs. (70)–(73) and (74)–(77) work for the 1D case. This continues to be a subject of investigation for
the 2D and 3D case. The goal is to avoid volumetric integration for normalization of band solutions
which can be computational intensive if one needs to do volumetric integration for every band solution.

3. SINGLE POINT SOURCE GREEN’S FUNCTION gS(k0,x,x
′)

In this section, we derive the Green’s function for a single point source gS(k, x, x′) in the infinite periodic
medium. We consider the single point source at x′, 0 < x′ < b, which is in the zeroth cell (Figure 2).
We use superscript S to denote that the Green’s functions include scatterers and obey the boundary
conditions on all the scatterers. The single point source Green’s function does not obey Bloch condition.
The single point source Green’s functions can be expressed in terms of the Green’s functions of periodic
sources gS

P11(k, ki, z, z
′) and gS

P21(k, ki, z, z
′), where gS

P11(k, ki, x, x
′) is the periodic Green’s function with

field point in region 1 and source point in region 1, while gS
P21(k, ki, x, x

′) is the periodic Green’s function
with field point in region 2 and source point in region 1.

Consider the periodic Green’s function equation with source in region 1.(∇2 + k2
1

)
gS
P11

(
k, ki, x, x

′) = −
∑
α

δ
(
x− x′ − αa

)
eikiαa (80)(∇2 + k2

)
gS
P21

(
k, ki, x, x

′) = 0 (81)

The periodic Green’s functions gS
P11(k, ki, x, x

′) and gS
P21(k, ki, x, x

′) obey Bloch condition and the
boundary conditions on all the scatterers.

The First Brillouin Zone (FBZ) is −π
a ≤ ki ≤ π

a . Let the eigenfunctions calculated be ψS
1γ(ki, x)

and ψS
2γ(ki, x) for region 1 and 2, respectively, where γ is the band index, and γ = 1, 2, 3, . . .. Let the

eigenvalues be k0γ(ki). Then

gS
P11

(
k, ki, x, x

′) =
∑

γ

1[
k

(m)
0γ (ki)

]2 − k2
0

ψS∗
1γ

(
ki, x

′)ψS
1γ (ki, x) (82)

gS
P21

(
k, ki, x, x

′) =
∑

γ

1[
k

(m)
0γ (ki)

]2
− k2

0

ψS∗
1γ

(
ki, x

′)ψS
2γ (ki, x) (83)
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Figure 2. The single point source is located at x′, 0 < x′ < b, which is in the zeroth cell.

Since we are not calculating the periodic Green’s functions, we do not need low wavenumber extractions
in the above.

The single point source Green’s functions are integrations of the periodic Green’s functions over
the first Brillouin zone.

gS
11

(
k0, x, x

′) =
a

2π

∫ π
a

−π
a

dki

∑
γ

1[
k

(m)
0γ (ki)

]2 − k2
0

ψS∗
1γ

(
ki, x

′)ψS
1γ (ki, x) (84)

gS
21

(
k0, x, x

′) =
a

2π

∫ π
a

−π
a

dki

∑
γ

1[
k

(m)
0γ (ki)

]2
− k2

0

ψS∗
1γ

(
ki, x

′)ψS
2γ (ki, x) (85)

The Bloch band fields can be expressed in terms of the periodic cell functions uS
1γ (ki, x) and uS

2γ (ki, x).

ψS
1γ (ki, x) = eikixuS

1γ (ki, x) (86)

ψS
2γ (ki, x) = eikixuS

2γ (ki, x) (87)

Then the single point source Green’s function gS
j1(k0, x, x

′) can be expressed as, j = 1, 2,

gS
j1

(
k0, x, x

′) =
a

2π

∫ π
a

−π
a

dki

∑
γ

eiki(x−x′)[
k

(m)
0γ (ki)

]2 − k2
0

uS∗
1γ

(
ki, x

′)uS
jγ (ki, x) ; (88)

Note that the single point source is located in 0 < x′ < b. However, x can be from negative infinity to
positive infinity. To calculate the Green’s function gS

j1(k0, x, x
′) for x in other cells, we use

gS
j1

(
k0, x+ na, x′

)
=

a

2π

∫ π
a

−π
a

dki

∑
γ

eiki(x+na−x′)[
k

(m)
0γ (ki)

]2 − k2
0

uS∗
1γ

(
ki, x

′)uS
jγ (ki, x) (89)

where x is in the zeroth cell with 0 < x < a.

3.1. Extended Zone Representation

A band diagram is shown in Figure 3. The eigenvalues k0 are plotting as a function of ki in the
first Brillouin zone. In the FBZ, all the bands are found. An alternative is to use the extended zone
representation [25] with −∞ < ki < ∞ where the higher bands are translated to their respective
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Figure 3. Band diagram in the first Brioullin
zone (FBZ).
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Figure 4. Band diagram in the extended zone
representation.

zone. An extended zone representation of band diagram is shown in Figure 4. In the extended zone
representation, there is only one band for each ki. Then there is no γ index. In the extended zone, then

gS
j1

(
k0, x, x

′) =
a

2π

∫ ∞

−∞
dki

eiki(x−x′)[
k

(m)
0 (ki)

]2 − k2
0

uS∗
1

(
ki, x

′)uS
j (ki, x) (90)

We add superscript “m” to denote “mode” eigenvalue. Using this representation, the point source
Green’s function resembles that of free space Green’s function except the unity terms are replaced by
cell functions uS

1 (ki, x) and uS
2 (ki, x). An advantage of using extended zone representation is that when

k0 is in the passband, then there is a pole due to the term 1

[k
(m)
0 (ki)]2−k2

0

corresponding to the passband

mode and, by performing contour integration, the residue of the mode can be calculated.

3.2. Low Wavenumber Mid-Bandgap Extraction

The convergence of the expansion
∑

γ
1

k2
0γ(ki)−k2

0
is slow and decreases as

∑
γ

1
k2
0γ(ki)

. This is due to

near field effects and evanescent waves. In the past we use a low wavenumber extraction with k0 = kL

close to zero. However, for this case of periodic structure, the k0 close to zero can be in the passband.
For passband, the fields are extended to infinity. On the other hand, for k0 in the bandgap, the fields
are confined to a few cells. Thus for convenience, we choose the low wavenumber to be in the lowest
mid-bandgap so that the mode field decays with distance. Let kL = kg, where the single kg is in the
bandgap, and roughly in the mid bandgap. Thus the kL may not be low compared with operating
wavenumber k0. It is actually higher than passband. Nevertheless, kL is low compared with the highest
mode wavenumber when the summation or integration is truncated. Then we have

gS
j1

(
k0, x, x

′) = gS
j1

(
kg, x, x

′)+
a

2π

∫ π
a

−π
a

dkie
iki(x−x′)

×
∑

γ

⎧⎪⎨⎪⎩ 1[
k

(m)
0γ (ki)

]2
− k2

0

− 1[
k

(m)
0γ (ki)

]2
− k2

g

⎫⎪⎬⎪⎭uS∗
1γ

(
ki, x

′)uS
jγ (ki, x) (91)

The above summation has accelerated convergence and decreases as
∑

γ
1

k4
0γ(ki)

. Another advantage

is that the bandgap point source wave function at kg is relatively easy to compute as it requires few
number of layers to compute the Green’s function.
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Our computational procedures of point source Green’s functions proceed as follows.

3.3. Case of k0 in Bandgap

Since both k0 and kg are in the bandgap, we compute using the original expressions given above.

3.4. Case of k0 in Bandpass

For simplicity, we are studying the lowest passband γ = 1. Then there is a pole on the path of
integration. The pole is

k
(m)
0γ (ki0) = k0 (92)

We introduce an artificial small loss of ε in k0. As stated in the Introduction, by lossless case,
we first define a maximum distance of interest. Then, 1) within the maximum distance of interest,
the Green’s function behaves as in the lossless (infinitesimal loss) case, and 2) within the maximum
distance, the Green’s function is independent of the artificial loss ε put in the simulations. We use two
procedures and the computed results are compared with each other to ensure accuracy.

Procedure 1: Introducing A Small Loss ε

Equation (91) becomes with an artificial small loss ε. Then integration is carried out in the FBZ.
Because of the pole singularity, the integrands are sharply peaked at ki = ki0.

gS
j1

(
k0, x, x

′) = gS
j1

(
kg, x, x

′)+
a

2π

∫ π
a

−π
a

dkie
iki(x−x′)

×
∑

γ

{
1

k2
0γ (ki) − [k0 (1 + iε)]2

− 1
k2
0γ (ki) − k2

g

}
uS∗

1γ

(
ki, x

′)uS
jγ (ki, x) (93)

We assume that, in real practice, the maximum separation |x − x′| is at most 50 cells. The choice of
ε is small enough that the solution is close to the lossless case for maximum distance of 50 cells. The
integral is calculated numerically.

Procedure 2: Modal Approach with First Order Pole Extractions for Passband

Without loss of generality, let k0 be in the first passband. Then we have, using extended zone,

gS
j1

(
k0, x, x

′) = gS
j1

(
kg, x, x

′)+
a

2π

∫ ∞

−∞
dkie

iki(x−x′)

×

⎧⎪⎨⎪⎩ 1[
k

(m)
0 (ki)

]2
− [k0 (1 + iε)]2

− 1
k2
0 (ki) − k2

g

⎫⎪⎬⎪⎭uS∗
1

(
ki, x

′)uS
j (ki, x) (94)

There are 2 poles that are near ki = ±ki0. The actual poles are in the complex ki-plane. The values of
ki0 are such that

k
(m)
0 (±ki0) = k0 (95)

Let the first derivative of k(m)
0 (ki) at ki0 be[

d

dki
k

(m)
0 (ki)

]
ki=ki0

= k
(m)′
0 (ki0) (96)

Because of symmetry for positive and negative ki, we have

k
(m)′
0 (−ki0) = −k(m)′

0 (ki0) (97)
The residue at ki = ki0 is given by

Residj

(
ki0, x, x

′) =
uS∗

1 (ki0, x
′) uS

j (ki0, x)

2k0k
(m)′
0 (ki0)

(98)
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and the residue at ki = −ki0 is
Resid

(−ki0, x, x
′) = − [Resid

(
ki0, x, x

′)]∗ (99)

1) Positive ki axis: In the vicinity of ki0,

k
(m)
0 (ki) = k0 + k

(m)′
0 (ki0) (ki − ki0) (100)

Then we can write
uS∗

1 (ki, x
′)uS

j (ki, x)[
k

(m)
0 (ki)

]2
− [k0 (1 + iε)]2

� uS∗
1 (ki0, x

′) uS
j (ki0, x)[

k
(m)′
0 (ki0) (ki − ki0) − iεk0

]
2k0

=
Residj (ki0, x, x

′)

(ki − ki0) − iεk0

k
(m)′
0 (ki0)

(101)

The pole is in the complex plane off the real ki axis.

ki = ki0 +
iεk0

k
(m)′
0 (ki0)

(102)

2) Negative ki axis: In the vicinity of −ki0,

k
(m)
0 (ki) = k0 + k

(m)′
0 (−ki0) (ki + ki0) = k0 − k

(m)′
0 (ki0) (ki + ki0) (103)

Then we have
uS∗

1 (ki, x
′)uS

j (ki, x)[
k

(m)
0 (ki)

]2 − [k0 (1 + iε)]2
� Resid (−ki0, x, x

′)

ki + ki0 +
iεk0

k
(m)′
0 (ki0)

(104)

Using the residues in Eqs. (98) and (99), Eq. (94) can be rewritten as

gS
j1

(
k0, x, x

′) = gS
j1

(
kg, x, x

′)+
a

2π

∫ ∞

−∞
dkie

iki(x−x′)

⎧⎪⎨⎪⎩ uS∗
1 (ki, x

′) uS
j (ki, x)[

k
(m)
0 (ki)

]2
− [k0 (1 + iε)]2

−u
S∗
1 (ki, x

′)uS
j (ki, x)

k2
0 (ki) − k2

g

− Residj (ki0, x, x
′)

ki − ki0 − iεk0

k
(m)′
0 (ki0)

− Resid (−ki0, x, x
′)

ki + ki0 +
iεk0

k
(m)′
0 (ki0)

⎫⎪⎪⎪⎬⎪⎪⎪⎭+ Im (105)

where Im is the modal solution.

Im =
a

2π

∫ ∞

−∞
dkie

iki(x−x′)

⎡⎢⎢⎢⎣ Residj (ki0, x, x
′)

(ki − ki0) − iεk0

k
(m)′
0 (ki0)

+
Resid (−ki0, x, x

′)

ki + ki0 +
iεk0

k
(m)′
0 (ki0)

⎤⎥⎥⎥⎦ (106)

We further write the second term in Eq. (105) as the sum of two integrals I1 and I2.

gS
j1

(
k0, x, x

′) = gS
j1

(
kg, x, x

′)+ I1 + I2 + Im (107)
with

I1 =
a

2π

∫ π
a

−π
a

dkie
iki(x−x′)

{∑
γ

[
1

k2
0γ (ki) − [k0 (1 + iε)]2

− 1
k2
0γ (ki) − k2

g

]
uS∗

1γ

(
ki, x

′)uS
jβ (ki, x)

−

⎡⎢⎢⎢⎣ Residj (ki0, x, x
′)

ki − ki0 − iεk0

k
(m)′
0 (ki0)

+
Resid (−ki0, x, x

′)

ki + ki0 +
iεk0

k
(m)′
0 (ki0)

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (108)
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and

I2 = − a

2π

(∫ −π
a

−∞
+
∫ ∞

π
a

)
dkie

iki(x−x′)

⎡⎢⎢⎢⎣ Residj (ki0, x, x
′)

ki − ki0 − iεk0

k
(m)′
0 (ki0)

+
Resid (−ki0, x, x

′)

ki + ki0 +
iεk0

k
(m)′
0 (ki0)

⎤⎥⎥⎥⎦ (109)

Note that the above is exact as we only subtract and add terms. The integral I1 is over the FBZ
and is computed numerically as before. The integrand is much smoother because the two poles near
+ki0 and −ki0 have been extracted. The integral I2 can be expressed as exponential integral. Let

J (q, y, b) =
∫ ∞

q
dki

eikiy

ki + b
= eiqye−iy(q+b)E1 (−iy (q + b)) (110)

where E1(x) is the exponential integral function defined as

E1(x) =
∫ ∞

x
dt
e−t

t
(111)

Then I2 becomes

I2 = − a

2π

{
J

(
π

a
, x− x′,−ki0 − iεk0

k
(m)′
0 (ki0)

)
Residj

(
ki0, x, x

′)
+J

(
π

a
, x′ − x,−ki0 − iεk0

k
(m)′
0 (ki0)

)[
Resid

(
ki0, x, x

′)]∗}

+
a

2π

{
J

(
π

a
, x− x′, ki0 +

iεk0

k
(m)′
0 (ki0)

)[
Resid

(
ki0, x, x

′)]∗
+J

(
π

a
, x′ − x, ki0 +

iεk0

k
(m)′
0 (ki0)

)
Residj

(
ki0, x, x

′)} (112)

The modal solution Im can be calculated by residue calculus. For x > x′, we deform the contour
upward and capture the pole at [ki0 + k0iε

k
(m)′
0 (ki0)

]. For x < x′, we deform downward and capture the pole

at −[ki0 + k0iε

k
(m)′
0 (ki0)

].

Im =

⎧⎪⎪⎨⎪⎪⎩ iaResidj (ki0, x, x
′) e

i

[
ki0+

iεk0

k
(m)′
0 (ki0)

]
(x−x′)

for x > x′

−iaResid (−ki0, x, x
′) e

−i

[
ki0+

iεk0

k
(m)′
0 (ki0)

]
(x−x′)

for x < x′

(113)

3.5. Modal Approach with Second Order Pole Extractions Near Band Edge

Near the bandedge the group velocity represented by the first derivative of the band diagram k
(m)′
0 (ki)

is small. The group velocity is actually zero at the band edge of β = ±0.5. Thus near the bandedge,
we use both first order derivative k(m)′

0 (ki) and second order derivative k(m)′′
0 (ki).

Near the positive edge β = 0.5, the approximation of the singularity near ki0 is
1[

k
(m)
0 (ki)

]2 − [k0 (1 + iε)]2
� 1

2k0k′m (ki0)
[
(ki − ki0) − iεk0

k′m (ki0)
+

1
2
k′′m (ki0)
k′m (ki0)

(ki − ki0)
2

] (114)

Since k(m)
0 (ki) is an even function, the approximation of the singularity near −ki0 is

1[
k

(m)
0 (ki)

]2 − [k0 (1 + iε)]2
� 1

−2k0k′m (ki0)
[
ki + ki0 +

iεk0

k′m (ki0)
− 1

2
k′′m (ki0)
k′m (ki0)

(ki + ki0)
2

] (115)
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We notice that the quadratic terms in the denominator mean that there are two poles, kP1 and kP2.

kP1 = ki0 − k′m (ki0)
k′′m (ki0)

+

√[
k′m (ki0)
k′′m (ki0)

]2
+

2iεk0

k′′m (ki0)
(116)

kP2 = ki0 − k′m (ki0)
k′′m (ki0)

−
√[

k′m (ki0)
k′′m (ki0)

]2
+

2iεk0

k′′m (ki0)
(117)

The pole kP1, has Im (kP1) > 0 and 0 < Re (kP1) < π
a . The pole kP2, has Im (kP2) < 0 and

π
a < Re (kP2) < 2π

a .
We perform the integrations with the following formulas. The extraction, as in Eq. (107), is exact

as we merely subtract and add the same terms. With the second order pole extractions, the integrals
I1 and I2 + Im become, respectively,

I1 =
a

2π

∫ π
a

−π
a

dkie
iki(x−x′)

⎧⎪⎨⎪⎩
∑

γ

⎡⎢⎣ 1[
k

(m)
0γ (ki)

]2 − [k0 (1 + iε)]2
− 1[

k
(m)
0γ (ki)

]2 − k2
g

⎤⎥⎦uS∗
1β

(
ki, x

′)uS
jβ (ki, x)

⎫⎪⎬⎪⎭
− a

2π
2k′m (ki0)
k′′m (ki0)

∫ π
a

−π
a

dkie
iki(x−x′)

{
Residj (ki0, x, x

′)
(ki − kP1) (ki − kP2)

+
[Residj (ki0, x, x

′)]∗

(ki + kP1) (ki + kP2)

}
(118)

and

I2 + Im =
a

2π
2k′m (ki0)
k′′m (ki0)

∫ π
a

−π
a

dkie
iki(x−x′)

{
Residj (ki0, x, x

′)
(ki − kP1) (ki − kP2)

+
[Residj (ki0, x, x

′)]∗

(ki + kP1) (ki + kP2)

}
(119)

Using

1
(ki − kP1) (ki − kP2)

=
1

kP1 − kP2

[
1

ki − kP1
− 1
ki − kP2

]
(120)

1
(ki + kP1) (ki + kP2)

=
1

kP2 − kP1

[
1

ki + kP1
− 1
ki + kP2

]
(121)

the decomposition of the right hand side of Eq. (119) is such that the integral Im is chosen to account
for the modes at ±kP1 with

∫∞
−∞ dkie

iki(x−x′).

Im =
a

2π
2k′m (ki0)
k′′m (ki0)

1
kP1 − kP2

∫ ∞

−∞
dkie

iki(x−x′)
{

Residj (ki0, x, x
′)

ki − kP1
− [Residj (ki0, x, x

′)]∗

ki + kP1

}
(122)

The remainder of the right side of Eq. (119) goes to I2 with

I2 = I21 + I22 (123)

where

I21 =
a

π

k′m (ki0)
k′′m (ki0)

1
kP1 − kP2

∫ ∞

π
a

dki

{
e−iki(x−x′) Residj (ki0, x, x

′)
ki + kP1

− eiki(x−x′) Residj (ki0, x, x
′)

ki − kP1

−e−iki(x−x′) [Residj (ki0, x, x
′)]∗

ki − kP1
+ eiki(x−x′) [Residj (ki0, x, x

′)]∗

ki + kP1

}
(124)

and

I22 =
a

π

k′m (ki0)
k′′m (ki0)

1
kP1 − kP2

∫ π
a

−π
a

dkie
iki(x−x′)

{
−Residj (ki0, x, x

′)
ki − kP2

+
[Residj (ki0, x, x

′)]∗

ki + kP2

}
(125)



Progress In Electromagnetics Research, Vol. 163, 2018 67

For kP2, the pole is to the right of π
a , thus we avoid that region. For −kP2, the pole is to the left

of −π
a , thus we avoid that region. Using the definition of J integral of Eq. (110), it follows that

I21 =
a

2π
2k′m (ki0)
k′′m (ki0)

1
kP1 − kP2

{
Residj

(
ki0, x, x

′) J (π
a
, x′ − x, kP1

)
− Residj

(
ki0, x, x

′) J (π
a
, x− x′,−kP1

)
− [Residj

(
ki0, x, x

′)]∗ J (π
a
, x′ − x,−kP1

)
+
[
Residj

(
ki0, x, x

′)]∗ J (π
a
, x− x′, kP1

)}
(126)

and

I22 =
a

2π
2k′m (ki0)
k′′m (ki0)

1
kP1 − kP2

{
Residj

(
ki0, x, x

′) J (−π
a
, x′ − x, kP2

)
− Residj

(
ki0, x, x

′)J (π
a
, x′ − x, kP2

)
+
[
Residj

(
ki0, x, x

′)]∗ J (−π
a
, x− x′, kP2

)
−[Residj

(
ki0, x, x

′)]∗J (π
a
, x− x′, kP2

)}
(127)

The modal solution Im can be obtained by taking residues.

Im =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i2ak′m (ki0)

k′′m (ki0) (kP1 − kP2)
eikP1(x−x′)Residj

(
ki0, x, x

′) for x > x′

i2ak′m (ki0)
k′′m (ki0) (kP1 − kP2)

e−ikP1(x−x′) [Residj

(
ki0, x, x

′)]∗ for x < x′
(128)

4. NUMERICAL RESULTS

We illustrate numerical results in this section. The parameters are chosen as follows: b = 0.2a, ε1 = 8.9ε0
and ε = ε0. For the case of the single point source, the location of source is at x′ = 0.1a. Let the
normalized Bloch wave vector be β = ki

a
2π . Thus, the first Brillouin zone is −1

2 ≤ β ≤ 1
2 . In the

following, we set the lattice constant a = 1 so that everything is unit-less and ready to scale.

4.1. Band Diagrams

In applying BBGFL to calculate band eigenvalues and band field solutions, we used k0L = 0.001(2π
a ).

In Figure 3, we plot the band structure in the FBZ for band eigenvalue k(m)
0 as a function of β, with m

being the band index. The key numbers for subsequent results are 1) the lowest band is the passband
with the lowest point at β = 0, 2) The bandedge is at β = ±0.5 with band eigenvalue k(m)

0 = 1.51273.
In the illustration of numerical results, we choose mid-bandgap as kL = kg = 2.3. In Figure 4, we show
the band diagram of Figure 2, using the extended zone representation [25].

4.2. Comparison of Band Field Solution between BBGFL and Plane Wave Method

A common method of calculating band solution is the plane wave method [22, 24]. It is noted in
BBGFL that the band mode solution is a sum of the boundary term (low wavenumber contribution)
and the plane wave expansion (fast-converging modal summation). On the other hand, the plane wave
method only contains the plane wave expansion. It is known that the plane wave method gives Gibbs
oscillation because of boundary discontinuities. Various methods have been proposed to smooth out the
discontinuities [24] in the plane wave method. Most of the works focused on the eigenvalues. However,
the point Green’s functions are expressed in terms of band field solutions. Thus accurate band field
solutions are required. In the following, we compare the BBGFL band field solutions with the plane
wave method and the ABCD method [21]. In the ABCD method, the band eigenvalue and band field
solutions are determined by a nonlinear eigenvalue problem.



68 Tsang, Ding, and Tan

0 0.2 0.4 0.6 0.8 1
x

(a)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 0.2 0.4 0.6 0.8 1
x

(b)

-0.5

0

0.5

1

1
 (PWE)

2
 (PWE)

1
 (P+B)

2
 (P+B)

 (PWE)
 (P+B)

Figure 5. Band solution from BBGFL: Contributions from the plane-wave expansions (PWE)
compared with the sum of the plane-wave expansions and the boundary term (P + B). (a) The first
mode at kγ = 0.06212π

a , (b) the second mode at kγ = 0.63862π
a . The Bloch wave vector is chosen at

ki = 0.10012π
a . The Floquet plane-wave series in BBGFL are truncated at N = 20.

In Figure 5, we evaluate the contribution to the band field solution from the boundary term in the
BBGFL formulation. It is clear that without the boundary term, the truncated plane wave expansion
in Eq. (53) calculates ψ1 and ψ2 that suffer Gibbs oscillations and the fields extend out its validity
domain. With the boundary term in Eqs. (48) and (49), however, the Gibbs oscillations in ψ1 and ψ2

disappear and both fields vanish outside its validity domain. The fact that physical modes have ψ1

vanishing in region 2, and ψ2 vanishing in region 1 can be used to reject potential non-physical spurious
modes. Interestingly, the Gibbs oscillations in ψ1 and ψ2 from the truncated plane wave expansion
in Eq. (53) cancel each other so that when they are added up to produce ψ = ψ1 + ψ2, the results
are almost identical to the results when the boundary term contributions are included with Eqs. (48)
and (49). In using BBGFL to determine band eigenvalue and band field solution, we choose the low
wavenumber k0L = 0.0062832.

In Figure 6, we compare the band field solution computed from the BBGFL method and the
plane wave expansion (PWE) method [22]. The results of the ABCD method [21] are also included as
benchmark solutions. In the BBGFL method, we truncate the Floquet plane wave series at N = 20,
while in the plane wave expansion method, we truncate the series at N = 20, 100, and 250, respectively.
It is noted that the BBGFL solutions are in excellent agreement with that of the ABCD method, and the
fields have smooth transitions at the medium boundaries. On the other hand, the plane wave method
produces Gibbs phenomena, and it requires much larger number of Floquet plane waves to converge.
Thus, the BBGFL method is associated with a much smaller linear eigenvalue problem than the plane
wave expansion method, and it also produces much more accurate band mode solutions than the plane
wave expansion method.
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Figure 6. Band solution from BBGFL compared with plane-wave expansion (PWE) method and the
ABCD method: (a) the first mode at kγ = 0.06212π

a , (b) the second mode at kγ = 0.63862π
a . The Bloch

wave vector is chosen at ki = 0.10012π
a . The Floquet plane-wave series in BBGFL are truncated at

N = 20. The plane-wave series in PWE are truncated at N = 20, 100, and 250, respectively.

4.3. Point Source Green’s Function Bench Mark Solution Based on Scattering Method

The usual scattering method consists of solving the wave equation and boundary conditions for each
wavenumber, one at a time. The physics of the solution is the inclusion of all the multiple scattering
solution of all the scatterers. There are extensive multiple scattering in a periodic structure. On the
other hand, the Broadband Green’s function are expressed in band solution with each band solution
already containing all the multiple scattering. The scattering solution serves as a bench mark comparison
with the Broadband Green’s function method.

In computing the scattering solution, the point source is placed at x′ = 0.1. We used a total of
200, 000 layers with 100, 000 layers on each side of the point source. The maximum distance of interest
for the Green’s function is 50 cells. An artificial loss is put in ε1, ε1 = 8.9ε0(1 + iεbm), where “bm”
stands for the benchmark. Two cases are computed with β = 0.1 and 0.49.

1) k0 = 0.38958. This is in the passband with ki0 = 0.62831 and β0 = ki0
a
2π = 0.1. For the mode

method, we also need to compute the slope which is k(m)′
0 (0.62831) = 0.614833.

2) k0 = 1.511473682. This is in the passband very close to the bandedge with ki0 = 3.0787608 and
β0 = 0.49. The computed slope is k(m)′

0 (3.110177) = 0.039935. The slope is quite small near the
bandedge.

The case of β0 = 0.49 is very close to the bandedge β = 0.5. For the case of β0 = 0.1, an artificial loss
of εbm = 0.001 is sufficient. However, the case of β0 = 0.49 requires much smaller loss. In Figures 7(a)
and 7(b), we show the benchmark scattering solution for this case with εbm. The Figures 7(a) and 7(b)
are respectively for 0 ≤ x ≤ 1 and 0 ≤ x ≤ 50. The figure shows that the results for lossless case are
with εbm = 0.00005 and εbm = 0.00002, while εbm = 0.001 gives incorrect results because of coupling to
the bandgap when the wavenumber is very close to the band edge.
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Figure 7. Bench mark Green’s functions for lossless case and β0 = 0.49 are with an artifical loss
εbm = 0.001, εbm = 0.00005, and εbm = 0.00002. (a) 0 ≤ x ≤ 1 and (b) 0 ≤ x ≤ 50.

4.4. Mid-Bandgap Solution in One-Time Setup gS
j1 (kg,x,x

′)

The BBGFL solution requires a one-time setup of calculating the band solutions as described above
and the low wavenumber mid-bandgap solution, gS

j1(kg, x, x
′). The source is in medium 1 at x′ = 0.1,

while the field point x is in j = 1, 2 corresponding to the respective medium 1 and 2. The midband
point source Green’s function is computed quite readily from the benchmark scattering solution using
the scattering method. This is because the solution has a finite extent, since kL = kg = 2.3 is in mid-
bandgap. Figure 8 shows the point source Green’s functions for 0 ≤ x ≤ 5, with x′ = 0.1. The results
shows that the Green’s function is limited in spatial extent. In computing the scattering solution, we
only need to use 30 layers on each side.

With the setup completed, we can compute the broadband point source Green’s function for any
wavenumber k0 by merely varying the k0 in the denominator of Eq. (44). We illustrate 3 cases: 1)
stopband with k0 = 2.0, 2) passband with k0 = 0.38958 (β = 0.1), and 3) very close to the bandedge
with k0 = 1.511473 (β = 0.49).

4.4.1. Stopband k0 = 2

The solution is computed by equation with the mid-bandgap extraction. The computation is performed
over the first Brillouin zone. In Figure 9, we plot the point source Green’s function and compare with
the scattering benchmark solution. The two results are indistinguishable.

4.4.2. Passband k0 = 0.38958

We use the modal approach with first order pole extraction. The integral I1 is performed numerically
over the FBZ. We choose the artificial loss to be ε = 10−5. The integrand has the term without the
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extraction
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γ

[
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− 1
k2
0γ (ki) − k2

g

]
uS∗
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(
ki, x

′)uS
jγ (ki, x) (129)

and the term with the extraction

eiki(x−x′)
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γ

[
1

k2
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− 1
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(
ki, x

′)uS
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⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (130)

In Figures 10(a) and 10(b), we plot respectively the two terms in the first Brillouin zone with
x = 0.07. The effects of the pole are shown in Figure 10(a). In Figure 10(b), after the poles are
subtracted, the integrand is smooth in the first Brillouin zone. The smoothness of the integrand
facilitates the integration of I1 over the FBZ.

In Figures 11(a) and 11(b), we plot the point source Green’s functions respectively for 0 ≤ x ≤ 1
and 0 ≤ x ≤ 50. The BBGFL solution and the benchmark solutions completely overlap.

4.4.3. Passband Very Close to Band Edge k0 = 1.511473682

This case corresponds to β0 = 0.49 and ki0 = 3.0787608. The first and second order derivatives are,
respectively, k(m)′

0 (ki0) = 0.039935 and k(m)′′
0 (ki0) = −0.633387. This is close to the band edge. Because

it is close to the band edge, the first order derivative is small. We use the modal approach with second
order extraction. The integral I1 is performed numerically over the FBZ.

We choose the artificial loss to be ε = 2 × 10−5. For this case, the two poles are at kP1 =
3.0787562 + i0.0007569 and kP2 = 3.2048652 − i0.0007569. The integrand, without the extraction, has
the term ∑

γ

[
1

k2
0γ (ki) − [k0 (1 + iε)]2

− 1
k2
0γ (ki) − k2

g

]
uS∗

1γ

(
ki, x

′)uS
jγ (ki, x) (131)
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Figure 10. The effects of poles on the integrand of I1 in the FBZ. (a) Before the poles are subtracted,
Eq. (129), and (b) after the poles are subtracted, Eq. (130).
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Figure 12. The effects of poles on the integrand in the FBZ. (a) Before the poles are subtracted, and
(b) after the poles are subtracted.
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With the second order pole extraction, the term becomes∑
γ

[
1

k2
0γ (ki) − [k0 (1 + iε)]2

− 1
k2
0γ (ki) − k2

g

]
uS∗

1γ

(
ki, x

′)uS
jγ (ki, x)

− 2k′m (ki0)
k′′m (ki0)

{
Residj (ki0, x, x

′)
(ki − kP1) (ki − kP2)

+
[Resid (ki0, x, x

′)]∗

(ki + kP1) (ki + kP2)

}
(132)

In Figures 12(a) and 12(b), we plot respectively the two terms in the first Brillouin zone for
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Figure 14. Point source Green’s function for k0 = 1.511473682.

the range 0.48 < β < 0.5 with x = 0.07. The effects of the two poles kP1 and kP2 are shown in
Figure 12(a). In Figure 12(b), after the second order extraction, the integrand is much smoother. Note
that the vertical scales between Figures 12(a) and 12(b) are 100 times different. The smoothness of the
integrand facilitates the integration of I1 over the FBZ.

The case of k0 = 1.511473682 is corresponding to β0 = 0.49, which is very close to the band
edge. We use the modal approach with the second order extraction. The integral I1, with the second
order pole extractions, is performed numerically over the FBZ. We choose the artificial loss with
k0 = 1.511473682(1 + iε) where ε = 2 × 10−5. In Figure 13, we plot integrals I1, I2, and Im. The
results show the relative contributions to the point source Green’s function.

In Figures 14(a) and 14(b), we plot the point source Green’s functions, respectively, for 0 ≤ x ≤ 1
and 0 ≤ x ≤ 50. The BBGFL solution and the benchmark solutions are in good agreement with each
other.

5. CONCLUSIONS

In this paper we calculate the broadband Green’s function of a single point source in a one-dimensional
infinite periodic lossless medium using the method of BBGFL. Several improvements are made on the
BBGFL method. In particular, the BBGFL of passband and near the band edge are calculated with
a modal method. The BBGFL computed solutions are in good agreement with those of scattering
solutions for stopband, passband, and close to the band edge.

The point source Green’s functions are system responses of wave phenomena in photonic devices
with periodic structures. Solutions of dielectric periodic structures, in the past, have been limited to
photonic bands without rigorous studies of band field functions. The Green’s function, in terms of
bands, can give a band interpretation of the physical behavior that facilitates the design of photonic
devices based on resonant electromagnetic modes [26]. Since band fields are independent of frequency,
the Green’s functions are readily calculated over a broad range of frequencies.

The single point source Green’s functions in an “infinite” periodic structure is the physical response
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of a single point source. It can be used to formulate integral equations for problems of finite periodic
structures, impurities, etc. [12, 16]. The analogy is the free space Green’s function which is for
“infinite” homogeneous medium, yet one uses it to formulate integral equations for scatterers of finite
size showing that “infinite” can be used for “finite”. For example, in scattering from finite array of
periodic scatterers [12], we formulate dual surface integral equation with the surface being an artificial
boundary enclosing the finite array. When approaching the boundary from outside, the free space
Green’s function of infinite homogenous medium is used. When approaching the boundary from inside,
the single point source Green’s function of infinite periodic structure is used. In the problem of an
impurity in a periodic structure, we formulate dual surface integral equation with the surface being an
artificial boundary enclosing the impurity [16]. When approaching the boundary from inside, the free
space Green’s function of infinite homogenous medium is used. When approaching the boundary from
outside, the single point source Green’s function of infinite periodic structure is used.

This paper is going back from 2D/3D to 1D to clarify and improve key points in the BBGFL
procedure. The improvements are accurate solutions for the hybrid combination of boundary terms and
plane wave summations, accurate normalization, a single low wavenumber extraction, first and second
order modal extractions in integration over the first Brillouin zone. In addition, the results of 1D case
are completely validated by using 200,000 layers in the brute force scattering method. The validation
will be difficult for the brute force methods in 2D/3D.

APPENDIX A. DERIVATION OF EQS. (14) AND (15)

In this Appendix, we derive Eqs. (14) and (15). The free space Green’s function of medium 2 is
g2(k0, x, x

′) which satisfies the following wave equation.

d2g2 (k0, x, x
′)

dx2
+ k2

0

ε2
ε0
g2
(
k0, x, x

′) = −δ (x− x′
)

(A1)

We then have
d

dx

[
ψ2 (x)

dg2 (k0, x, x
′)

dx
− g2

(
k0, x, x

′) dψ2 (x)
dx

]
= −ψ2 (x) δ

(
x− x′

)
Next, we perform summation and integration,

∑
n

∫ (n+1)a
na+b dx, on the above equation.∑

n

∫ (n+1)a

na+b
dx

d

dx

[
ψ2(x)

dg2(k0, x, x
′)

dx
− g2

(
k0, x, x

′) dψ2(x)
dx

]
= −

∑
n

∫ (n+1)a

na+b
dxψ2(x)δ(x − x′) (A2)

Let x = na+ x′′, using the Bloch condition ψ2(na+ x′′) = eikinaψ2(x′′) and changing the variable
x′′ → x, Eq. (A2) can be rewritten as∑

n

[
eikinaψ2 (x)

dg2 (k0, na+ x, x′)
dx

− g2
(
k0, na+ x, x′

) dψ2 (x)
dx

eikina

]x=a

x=b

= −
∑
n

∫ a

b
dxeikinaψ2 (x) δ

(
na+ x− x′

)
Use the symmetry of free space Green’s function g2 and interchange arguments in the free space Green’s
function, the above equation becomes∑

n

[
eikinaψ2 (x)

dg2 (k0, x
′, na+ x)
dx

− g2
(
k0, x

′, na+ x
) dψ2 (x)

dx
eikina

]x=a

x=b

(A3)

=
{

0 for 0 < x < b
−ψ2 (x′) for b < x < a

The periodic Green’s function g2P (k0, x, x
′) is defined by adding na to the second argument of g2,

followed by multiplication of eikina and summation over n.

g2P

(
k0, x, x

′) =
∑
n

eikinag2
(
k0, x, na+ x′

)
(A4)
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Then we have[
ψ2 (x)

dg2P (k0, x
′, x)

dx
− g2P

(
k0, x

′, x
) dψ2 (x)

dx

]x=a

x=b

=
{

0 for 0 < x < b
−ψ2 (x′) for b < x < a

(A5)

We switch x′ ⇐⇒ x and use the following properties to change the limit of x′ from a to 0.

ψ2(a) = eikiaψ2(0) = eikiaψ1(0) (A6a)

g2P (k0, x, a) = e−ikiag2P (k0, x, 0) (A6b)

APPENDIX B. BBGFL FOR BAND SOLUTION DETAILS

In Section 2, the following matrices are used. In matrix ¯̄A, the low wavenumber ¯̄R1(k0L) and ¯̄R2(k0L)
are 2 ×M matrices with, respectively,

¯̄R(j)
1,α (k0L) = R(j)

α (k0L, 0) (B1a)

¯̄R(j)
2,α (k0L) = R(j)

α (k0L, b) (B1b)

The matrices ¯̄Q1 (k0L) and ¯̄Q2 (k0L) are of dimension M × 2 with, respectively,

¯̄Q(j)
α,1 (k0L) = Q(j)

α (k0L, 0) (B2a)

¯̄Q(j)
α,2 (k0L) = Q(j)

α (k0L, b) (B2b)

where
Q(j)

α (k0L, x) = (−ikiα)R(j)
α (k0L,−x)

Also, the matrices ¯̄T1(k0L) and ¯̄T2(k0L) are of dimension M × 2 with, respectively,

¯̄T (j)
α,1 (k0L) = T (j)

α (k0L, 0) (B3a)

¯̄T (j)
α,2 (k0L) = T (j)

α (k0L, b) (B3b)

where
T (j)

α (k0L, x) = R(j)
α (k0L,−x)

The matrices ¯̄D1, ¯̄D2, ¯̄W1 and ¯̄W2 are diagonal of size M with, respectively,
¯̄D(j)

α,β = D(j)
α δαβ (B4)

and
¯̄W (j)

α,β = W (j)
α δαβ (B5)
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