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Accurate Evaluation of the Conductor Loss in Rectangular
Microstrip Patch Reflectarrays

Sembiam R. Rengarajan1, * and Richard E. Hodges2

Abstract—In the moment method solution of the integral equations for currents of a rectangular
microstrip patch reflectarray, the Leontovich boundary condition is employed to determine the conductor
loss. If the basis functions contain edge conditions that approach infinity, the moment matrix elements
will have diverging integrals in the Galerkin technique. In this paper, we present a criterion to stop the
evaluation of these integrals at a distance before the edge, thereby avoiding the divergence problem.
The stopping distance derived here is found to work for a range of values of permittivity, loss tangent,
and thickness of the substrate, polarization, angles of incidence of the plane wave source, and also for
superstrates. Our computed results are in good agreement with measured results and those computed
by HFSS.

1. INTRODUCTION

The design and analysis of reflectarray antennas generally employ an approximate model of an infinite
array excited by a plane wave based on local periodicity. The induced currents in the unit cell patch
are usually formulated in terms of integral equations and solved by the method of moments (MoM) [1].
A previous work showed that for a rectangular patch, a single basis function with uniform distribution
across the current direction and a half sinusoidal variation with an edge condition approaching zero along
the current direction in MoM, referred to as MoM1 in this paper, yields good results for the reflection
coefficient [2]. For a very accurate evaluation of the phase of the reflection coefficient, especially for
small values of the substrate thickness, a set of basis functions exhibiting even and odd variations and
edge conditions approaching zero in the current direction and infinity across the current direction in
the MoM solution, referred to as MoM2 here, is required [2]. In both cases, the Galerkin procedure was
employed.

The conductor loss in thin microstrip elements is evaluated in the moment method by using the
well-known Leontovich boundary condition wherein one equates the total tangential electric field to the
intrinsic impedance of the metal times the surface current [3, 4]. Application of a Galerkin formulation
then yields moment matrix elements containing the inner product of identical basis and testing functions,
resulting in diverging integrals when edge currents such as those in MOM2 approach infinity. In
prior work, conductor loss could not be incorporated because of these divergent integrals [2]. Lewin
encountered similar integrals in analyzing dissipation in microstrip lines with infinite edge currents and
was able to circumvent the problem by halting the integral at a distance δ from the edge and comparing
the conductor loss of the thin microstrip line (modeled as a zero thickness line) with that of a finite
thickness strip [5]. The procedure for determining the stopping distance δ was generalized to different
edge shapes by Barsotti et al. [6]. Following Lewin, to include the conductor loss in MOM2 for more
accurate analysis of reflectarrays, we derive a stopping distance δ for evaluating the divergent integrals
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by equating the conductor loss calculated in MOM2 to that in MOM1 The stopping distance thus derived
is found to work for a wide range of parameters of reflectarrays, consisting of rectangular patches in
this paper.

2. DIVERGING INTEGRALS

The integral equation for the induced current in a rectangular patch in a unit cell of an infinite array,
using the Leontovich boundary condition, is given by

− �Es
t + Zm

�J = �Ei
t (1)

where �E is the electric field, �J is the surface current, Zm is the intrinsic impedance of the patch
conductor, the subscript t stands for the tangential component and the superscripts s and i stand for
the scattered and the incident fields respectively. The scattered field is determined from an integral
containing the Green’s function and the patch current [1]. MoM expresses the unknown currents in terms
of a set of basis functions and performs the inner product of both sides of (1) with each testing function,
which is the same as the basis function in the Galerkin process, thus yielding a set of simultaneous
equations. Equations containing the inner product of the mth testing function, denoted by the subscript
m, are

〈− �Es
x(Jx), Jxm〉 + 〈− �Es

x(Jy), Jxm〉 + Zm〈Jx, Jxm〉 = 〈Ei
x, Jxm〉 (2)

〈− �Es
y(Jx), Jym〉 + 〈− �Es

y(Jy), Jym〉 + Zm〈Jy , Jym〉 = 〈Ei
y, Jym〉 (3)

The basis function for the x-directed electric current in MoM1 is given by

cos(πx/a)[1 − (2x/a)2]−1/2 (4)

where a is the patch length along x (see Fig. 1). Its width along y is b [2]. The expressions for the
y-directed current has a similar variation with x and a replaced by y and b, respectively. The basis
functions for Jx in MoM2 are in the form(

cos(mπx/a)
sin{(m + 1)πx/a}

)(
cos(nπy/b)
sin{(n + 1)πy/b}

)
· [1 − (2x/a)2]−1/2[1 − (2y/b)2]−1/2 (5)

where m = 1, 3, 5 etc. and n = 0, 2, 4 etc. It is found that two odd and two even variations along each
direction yield excellent accuracy with sixteen unknown coefficients for a non-separable distribution for
Jx. For the y-directed current, the basis functions can be found by replacing x, y, a, and b by y, x, b,
and a respectively. In Eqs. (2) and (3) the last term on the left containing the inner product of basis
functions and testing functions will diverge for MoM2 whereas it converges for MoM1.

Figure 1. A rectangular patch in the unit cell of an infinite reflectarray.

3. COMPUTED AND MEASURED RESULTS

Table 1 shows the parameters of reflectarray antennas discussed in this paper. The stopping distance
δ was varied until the calculated value of the conductor loss at resonance in MoM2 agreed with the
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Table 1. Reflectarray parameters for two cases.

Parameters Case A Case B
Nominal resonant frequency 35.75 GHz 13.285 GHz

Lattice spacing 0.4191 cm 1.1291 cm
Substrate thickness 0.0381 cm 0.08128 cm

Substrate dielectric constant 2.9503 3.58
Loss tangent 0.0012 0.0027

Angles of incidence of the plane wave (θ, φ) (0◦, 0◦) (30◦, 0◦)
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Figure 2. Computed and measured values of
the reflection coefficient phase for δ = w/220 and
δ = w/440 (Case A).
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Figure 3. Computed and measured values of the
reflection coefficient magnitude for δ = w/220 and
δ = w/440 (Case A).

corresponding result in MoM1. Conductor loss computed by MoM1 has previously been shown to be
accurate [1]. Reflectarray parameters shown in Case A of Table 1 with square patches of side 0.2162 cm
were employed in this exercise. The value of δ is found to be w/220, where w, the width is b for Jx

and a for Jy. Figs. 2 and 3 show the computed values of the reflection coefficient phase and magnitude,
respectively, for two different values of δ. The reflection coefficient phase is independent of δ whereas
the magnitude decreases with δ. Excellent agreement between computed and measured values is found
for the phase in Fig. 2. We found that a value of δ = w/440 produces a slightly better agreement with
experimental results for the magnitude of the reflection coefficient over the frequency band of 32 to
40 GHz in Fig. 3. However, a value of δ = w/220 is used in this work, since it exhibits better results
for all cases, including obliquely incident plane waves, discussed later. Theron and Cloete’s calculations
for the conductor loss show that the use of Leontovich boundary condition can introduce error, but
provides a conservative approximation that is useful in engineering practice [7]. Also, the discrepancy
between theory and experiment for the conductor loss is found to be greater than 0.2 dB in [8]. Since the
difference between MoM2 and measured or HFSS [9] values of reflection coefficient magnitude is found
to be within 0.1 dB in this work, the conductor loss computed using δ = w/220 in MoM2 is acceptable
in designs and analyses of reflectarrays. We assumed the ground plane to be a perfect conductor and
doubled the surface impedance of the patch, thereby equating the conductor loss in the rectangular
patch to that of the ground plane. This simplified procedure, proposed in [3], is justified by the cavity
model for a patch antenna [10].

Figure 4 shows the reflection coefficient magnitude at resonance as a function of substrate thickness
for Case A. Square patches of side 0.2162 cm were used in this exercise. The resonant frequency given
in Table 2 is found to decrease as the substrate thickness increases. A value of δ = w/220 is used
in MoM2 in Fig. 4. The magnitude of the reflection coefficient computed by MoM2 is found to be in
very good agreement with that of MoM1 for the substrate thickness down to 0.025 wavelength in the
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Table 2. Resonant frequency in GHz as a function of substrate thickness for two different values of δ
(case A in Table 1).

Substrate
thickness

mm

Resonant
frequency
δ = w/220

Resonant
frequency
δ = w/440

0.1954 37.830 37.825
0.3175 36.592 36.584
0.381 36.026 36.018
0.4396 35.539 35.532
0.4885 35.156 35.149

Figure 4. The reflection coefficient magnitude versus substrate thickness for Ka band.

substrate material [2]. The accuracy of MoM1 is known to be poor for thin substrates that exhibit
high values of losses. Computed values of the resonant frequency shown in Table 2 agree to within
0.02% for δ = w/220 and δ = w/440. Reflection coefficient magnitudes computed using δ = w/220 in
MoM2 for other values of substrate permittivity, not shown here, also showed good agreement with the
corresponding results of MoM1.

Figure 5 shows the reflection coefficient magnitude at resonance versus substrate thickness for a
Ku band reflectarray (Case B in Table 1). The side of each unit cell square patch is 0.542 cm. A TM
to z plane wave is incident at an angle of θ = 30◦ and φ = 0◦.

Experimental results for this reflectarray were used to validate MoM1 and MoM2 for the TE
polarization in a prior work [2]. The value of δ = w/220 used here in MoM2 for oblique incidence
produces very nearly the same values of the reflection coefficient magnitude of MoM1, even though
the stopping distance was determined for normal incidence for the Ka band reflectarray. Figs. 4 and
5 show that the loss increases rapidly as the substrate thickness decreases below approximately 0.066
wavelength in the substrate material since the patches exhibit high quality factor.

Table 3 shows computed results for the resonant frequency and the total loss at resonance for
reflectarrays of square patches of side 0.216 cm. All other parameters are specified in Table 1, case
A. The results show that the resonant frequencies are independent of the dielectric loss tangent. The
total loss computed by the two methods is in good agreement, thereby demonstrating that the stopping
distance δ used in MoM2 works for a wide range of values for the dielectric loss tangent as well.

Figures 6 through 11 show the reflection coefficient magnitude and phase as a function of frequency
for the Ka band reflectarray (Case A in Table 1) with an added 0.0127 cm thick Kapton superstrate
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Figure 5. The reflection coefficient magnitude versus substrate thickness for Ku band.

Figure 6. The reflection coefficient magnitude for a reflectarray with a superstrate at normal incidence.

layer of dielectric constant 3.0 and loss tangent 0.001. The square patch size is adjusted to a side length
of 0.2025 cm in order to match the 35.75 GHz resonant frequency of the patch without substrate in
Fig. 3. MoM2 used with δ = w/220 was also found to provide accurate results in all cases that included
a superstrate. Figs. 6 and 7 show the results for the normal incidence. Figs. 8 and 9 correspond to
θ = 45◦ and φ = 0◦ for TE polarization while Figs. 10 and 11 present the results for θ = 45◦ and
φ = 0◦ for TM polarization. Very good agreement between MoM and HFSS are found for all cases. The

Table 3. Resonant frequency in GHz and total loss in dB as a function of the dielectric loss tangent
for reflectarrays (case A in Table 1 with square patches of side 0.216 cm).

Dielectric
loss

tangent

MoM1 Mom2, δ = w/220
Resonant
Frequency

Total
loss

Resonant
Frequency

Total
loss

0.0012 35.92 −0.61 36.03 −0.61
0.005 35.92 −1.20 36.03 −1.18
0.01 35.92 −1.98 36.03 −1.94
0.02 35.92 −3.56 36.00 −3.48
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Figure 7. The reflection coefficient phase for a reflectarray with a superstrate at normal incidence.

Figure 8. The reflection coefficient magnitude for a reflectarray with a superstrate for TE polarization
at 45◦.

Figure 9. The reflection coefficient phase for a reflectarray with a superstrate for TE polarization at
45◦.
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Figure 10. The reflection coefficient magnitude for a reflectarray with a superstrate for TM polarization
at 45◦.

Figure 11. The reflection coefficient phase for a reflectarray with a superstrate for TM polarization at
45◦.

discrepancy between MoM and HFSS for the reflection coefficient magnitude is typically within 0.1 dB
in all cases. Results computed using MoM2 are in better agreement with those of HFSS, especially for
the reflection phase.

MoM2 exhibits typically smaller than 0.1 dB lower loss than HFSS for all cases. The resonant
frequencies computed by MoM1 for all cases are within about 0.3% of the value computed by HFSS.
MoM2 is in excellent agreement with HFSS for resonant frequencies. Thus, the choice of δ = w/220 is
optimum for all cases of substrate thickness, permittivity, dielectric loss tangent, polarization, angles of
incident plane waves and for superstrates as well.

4. CONCLUSION

For diverging integrals encountered in the Galerkin technique employing basis functions with edge
conditions approaching infinity for reflectarrays consisting of thin rectangular patches, a stopping
distance has been proposed. The use of such a stopping distance does not affect the reflection phase or
the resonant frequency. It is found to work well, yielding reflection coefficient magnitude within 0.1 dB
of measured or HFSS results for a range of values of dielectric constant, substrate thickness and for
superstrates as well. The method of doubling the surface impedance of the patch to account for the loss
in the ground plane has been found to be valid.
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