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An Array Partitioning Scheme of Airborne Phased-MIMO Radar
Based on STAP SINR
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Abstract—An airborne phased-multiple-input-multiple-output (Phased-MIMO) radar with collocated
antenna array is a tradeoff of phased array radar and MIMO radar. Its transmitting array is divided
into multiple subarrays that are allowed to be overlapped. In this letter, we mainly study the array
partitioning scheme of the airborne Phased-MIMO radar with equal uniform linear subarrays that are
fully overlapped on the basis of space-time adaptive processing (STAP). A mathematical formula is
derived to determine the number of subarrays and the elements in each subarray according to the
principle of maximum STAP signal-to-interference-plus-noise ratio (SINR). The SINR performances
corresponding to different partitioning schemes are simulated and discussed to demonstrate the
effectiveness of the proposed mathematical formula for array partitioning in the sense of maximum
STAP SINR.

1. INTRODUCTION

PHASED-MIMO radar is a novel system that combines the coherent processing gain of phased array
radar with the waveform diversity advantage of MIMO radar [1]. The transmitting array of Phased-
MIMO radar is divided into a number of subarrays. Each subarray is employed to coherently transmit
an individual waveform. Those waveforms are set to be orthogonal with one another. Hence, those
subarrays are mutually combined to be a MIMO system while the coherent processing gain can still be
obtained by designing the beamforming weights of each subarray [1].

Space-time adaptive processing (STAP), a two-dimensional space-time adaptive filtering operation,
is an effective and important technique that is widely used in airborne radar for clutter suppression and
moving target detection in the strong clutter environment [2–4]. Since the Phased-MIMO radar is able to
provide a tradeoff between the benefits of phased array radar and the advantages of MIMO radar [1], how
to apply those traditional STAP methods to airborne Phased-MIMO radar for performance improvement
of clutter suppression is valuable to be studied. An orthogonal projection technique on the clutter
subspace and a deterministic direct data domain approach for the STAP of airborne Phased-MIMO
radar in the nonhomogeneous clutter scenario are presented in [5]. An estimation rule for clutter degrees
of freedom (DOFs) is proposed in [6] for further investigation of the STAP on airborne Phased-MIMO
radar. Moreover, in [7], four typical classes of reduced-dimension STAP algorithms are extended to
airborne Phased-MIMO radar, and the corresponding rules of clutter rank estimation are also presented.

On account of the definition of Phased-MIMO radar, it is clear that one of the key points is how
to divide the transmitting array into multiple subarrays. Through MATLAB program, the signal-to-
interference-plus-noise ratio (SINR) performances of the spatial beamforming for the Phased-MIMO
radar are analyzed in the situation of fully overlapped subarrays in [8]. Another partitioning scheme
that is also allowed to be overlapped is proposed in [9] to improve the main-to-sidelobe levels and
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signal-to-noise ratio (SNR) without the reduction of beampattern directivity. The main concept of
this new scheme is to place the transmitting beampattern nulls at the peak sidelobes of the waveform
diversity beampattern and place the waveform diversity beampattern nulls at the peak sidelobes of the
transmitting beampattern [9]. Additionally, a Phased-MIMO radar with unequal overlapped subarrays
is proposed in [10]. The unequal size and greater length of the subarrays can not only provide the
improvements of transmitting and receiving beampatterns but also enhance the output SINR of spatial
beamforming.

Note that those partitioning schemes aforementioned are all discussed according to the performances
of the spatial beamforming. However, we consider that the array partitioning scheme will also influence
the STAP performance of airborne Phased-MIMO radar. Then, we further study the array partitioning
scheme of the airborne phase-MIMO radar with collocated antenna array in the case of equal uniform
linear subarrays that are fully overlapped in this letter. A mathematical formula is derived to determine
the number of subarrays and the elements in each subarray according to the principle of maximum STAP
SINR.

The paper is organized as follows. Section 2 is devoted to the STAP model of airborne Phased-
MIMO radar with equal uniform linear subarrays that are fully overlapped. The mathematical formula
for array partitioning scheme in the sense of maximum STAP SINR is derived in Section 3. In Section 4,
simulations and discussions are given to demonstrate the effectiveness of the proposed mathematical
formula. Conclusions are finally presented in Section 5.

2. STAP MODEL OF AIRBORNE PHASED-MIMO RADAR

Consider a side-looking airborne Phased-MIMO radar with collocated transmitting and receiving
uniform linear arrays (ULAs), which consist of N receiving antenna elements with spacing dR = λ/2 and
M transmitting antenna elements with spacing dT = γdR, where λ is the wavelength and γ = dT /dR

is the sparse coefficient. The transmitting array is divided into K (1 ≤ K ≤ M) equal uniform
linear subarrays that are fully overlapped. Then, each subarray is composed of MK = M − K + 1
omnidirectional antenna elements. It is assumed that the beams of all the transmitting subarrays have
the same direction. The velocity of the radar platform is v. In addition, there are P pulses with pulse
repetition interval (PRI) T in a coherent processing interval (CPI) for each range gate. Note that
M,N,K,P ∈ N

+, where N
+ denotes the set of positive integer.

Firstly, the receiving spatial steering vector vR(fs) and temporal (Doppler) steering vector vD(fd)
for the airborne Phased-MIMO radar are given as follows

vR(fs) =
[
1, ej2πfs , . . . , ej2π(N−1)fs

]T
(1)

vD(fd) =
[
1, ej2πfd , . . . , ej2π(P−1)fd

]T
(2)

where [·]T denotes the transpose operation, and fs and fd denote the spatial frequency and the
normalized Doppler frequency, respectively. Supposing no antenna crabbing, they are given by

fs = dR cos θ/λ (3)
fd = 2vT cos θ/λ = βfs (4)

where θ indicates the angle-of-arrival (AOA) of the source and β = 2vT/dR. Moreover, different from
phased array radar and MIMO radar, the transmitting spatial steering vector of the airborne Phased-
MIMO radar vT (fs) is given by [1]

vT (fs) = b(fs) � d(fs) (5)

where � stands for Hadamard product, and b(fs) and d(fs) can be given by

b(fs) =
[
wH

1 a1(fs), . . . ,wH
KaK(fs)

]T
, (6)

d(fs) =
[
e−jδ1(fs), . . . , e−jδK(fs)

]T
(7)

where [·]H denotes the conjugate transpose operation; wk and ak(fs), k = 1, . . . ,K are the beamforming
weight vector and the spatial steering vector corresponding to the active elements of the kth subarray,
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respectively. δk(fs) is a phase term that indicates the time required for the wave to travel across the
spatial displacement between the first antenna of the transmit array and the first antenna of the kth
subarray [1]. Finally, the space-time steering vector of the airborne Phased-MIMO radar can be given
by

v = vD(fd) ⊗ vT (fs) ⊗ vR(fs) (8)

where ⊗ denotes the Kronecker product. For the equal uniform linear subarrays that are fully
overlapped, we have

a1(fs) = . . . = aK(fs) =
[
1, ej2πγfs , . . . , ej2πγ(MK−1)fs

]T
. (9)

And we only consider non-adaptive beamforming for subarray here due to the space limitation. So the
weight vectors of those subarrays are set as

w1 = . . . = wK = aK(fs). (10)

Then, b(fs) can be particularly rewritten as

b(fs) = aH
K(fs)aK(fs)[1, . . . , 1]T = MK [1, . . . , 1]T . (11)

We assume that Nc clutter patches are uniformly distributed in each iso-range ring and independent
with one another. The spatial frequency and the normalized Doppler frequency of the ith clutter patch
are denoted as fs,i and fd,i, respectively. Ignoring the range ambiguities, the clutter echo c can be
modeled as the summation of these independent clutter patches, which can be expressed as

c =
Nc∑
i=1

σc,ivD(fd,i) ⊗ vT (fs,i) ⊗ vR(fs,i) =
Nc∑
i=1

σc,ivc,i (12)

where σc,i and vc,i denote the complex amplitude and the space-time steering vector of the ith clutter
patch, respectively. The clutter covariance matrix (CCM) Rc can be given as [2]

Rc =
Nc∑
i=1

σ2
c,ivc,ivH

c,i (13)

where σ2
c,i is the power of the ith clutter patch. The noise covariance matrix Rn can be described as

Rn = σ2
nINKP (14)

where σ2
n is the noise power, and INKP is an identity matrix with size of NKP × NKP .

In addition, supposing that the spatial frequency and normalized Doppler frequency of the target
are fs,t and fd,t, respectively, the target signal can be written by

s = σtvD(fd,t) ⊗ vT (fs,t) ⊗ vR(fs,t) = σtvt (15)

where σt and vt denote the complex amplitude and space-time steering vector of target, respectively.
Then, the output SINR can be expressed as

SINR =

∣∣wHs
∣∣2

wHRuw
(16)

where w is the NKP × 1 weight vector for STAP filter, and Ru = Rc + Rn is the clutter plus noise
covariance.

3. DERIVATION OF PARTITIONING SCHEME

Note that when w = κR−1
u s where κ is an arbitrary scalar that does not alter the output SINR,

expression (16) can achieve its optimum that is denoted as SINRopt and given by [4]

SINR ≤ SINRopt = sHR−1
u s. (17)
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Furthermore, according to the perspective of SINR-loss in the STAP application, SINR in the
background of clutter plus noise is less than or equal to the one in the background of only noise [4].
Then, we can see that

SINRopt-n = sHR−1
n s =

sHs
σ2

n

=
σ2

t

σ2
n

NKPM2
K =

σ2
t

σ2
n

NKP (M − K + 1)2 ≥ SINRopt (18)

where SINRopt-n denotes the optimum SINR in the background of only noise. It is clear that
expression (18) has a closed form with respect to the parameter K (i.e., the number of subarrays).
Thus, it is possible to find an optimum value of K that is able to make SINRopt-n achieve its maximum.
That is to say, it is possible to find a deterministic partitioning scheme to achieve the maximum STAP
SINR based on Eq. (18), which can be seen as an optimization problem as follows

max f(K) = NKP (M − K + 1)2

s.t. K ∈ N
+, 1 ≤ K ≤ M

. (19)

In order to solve this optimization problem, we first define a continuous differentiable function f(K ′),
which is given by

f(K ′) = NK ′P (M − K ′ + 1)2

K ′ ∈ R
+, 1 ≤ K ′ ≤ M

(20)

where R
+ denotes the set of positive real number. Then, we can find the extreme points of f(K ′) by

solving the equation
df(K ′)
dK ′ = NP (M + 1 − 3K ′)(M + 1 − K ′) = 0 (21)

where df(K ′)
dK′ means taking the derivative of f(K ′) with respect to K ′. Obviously, the two solutions of

Equation (21) are K ′
1 = (M + 1)/3 and K ′

2 = M + 1. But in view of the constraint in Equation (20),
the solution K ′

2 > M should be discarded since it does not fall into the definition domain of K ′. In
contrast, the solution K ′

1 would be located in the definition domain of K ′ as long as M > 1. Moreover,
we can see that the second-order derivative of f(K ′) with respect to K ′ is existent. We can further
obtain the value of the second-order derivative at point K ′

1, which is given by
d2f(K ′)

dK ′2

∣∣∣∣
K ′=K ′

1

= −2NP (M + 1) < 0. (22)

Based on Eq. (22), it is shown that the value of the second-order derivative at point K ′
1 is less than zero,

which illustrates that K ′
1 is a local maximum point of f(K ′) in the continuous domain 1 < K ′ < M .

Furthermore, it is noted that
f(K ′ = K ′

1) ≥ f(K ′ = 1) > f(K ′ = M) (23)
when M > 1. We can see that the function value at K ′

1 is larger than or equal to the function values at
the boundary points of the definition domain. Hence, K ′

1 can be seen as the global maximum point of
f(K ′) in the whole domain 1 ≤ K ′ ≤ M when M > 1. Furthermore, when M = 1, K ′ = 1 is actually
the only point of f(K ′), which is still reasonable to be seen as the global maximum point.

Note that f(K) has the same formulation with f(K ′) except for the different definition domains of
function variables. Hence, we can derive the global maximum point of f(K) through rounding K ′

1 to
the nearest integer, since K ′

1 may be a decimal number that is not included in the definition domain
of K. In other words, the optimum number of subarrays corresponding to the maximum SINR can be
computed by

Kmax = round(K ′
1) = round

(
M + 1

3

)
(24)

where round(·) denotes the rounding operation. In summary, for achieving a maximum STAP SINR,
an effective array partitioning scheme of the airborne Phased-MIMO radar with collocated ULA is to
divide the transmitting array into Kmax fully overlapped subarrays, each with M −Kmax + 1 elements.
Though the above deduction is carried out in the background of only noise, the derived formula is still
reasonable to be applied in the background of clutter plus noise owing to the aforementioned concept
of SINR-loss in the STAP application, as described in Eq. (18). This result can be verified as follows.
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4. SIMULATIONS

In the simulations, we set γ = 1, λ = 0.23 m, v = 140m/sT = 0.41ms, then β = 1. There are Nc = 180
clutter patches uniformly distributed in the forward area of the antenna array. The noise power is
normalized to 0 dB, and the clutter-to-noise ratio (CNR) is 30 dB. The spatial frequency, normalized
Doppler frequency and power of target are supposed to be fs,t = 0, fd,t = −0.25 and 10 dB, respectively.
The number of pulses in a CPI is P = 8.

The optimum SINR performances versus the normalized Doppler frequencies for different numbers
of subarrays with M = N = 5, M = N = 6 and M = N = 7, which are computed according to Eq. (17),
are shown in Fig. 1, Fig. 2 and Fig. 3, respectively. From Fig. 1, we can observe that the best SINR
performance is obtained at K = 2. Meanwhile, we can see that Kmax = K ′

1 = 2 when M = 5 according
to Eq. (24), which is coincident with the results in Fig. 1. Moreover, the highest SINR level in Fig. 2
is also reached at K = 2 while K ′

1 = 2.33 and Kmax = 2 when M = 6. Note that the highest SINR
in Fig. 2 is just slightly higher than that at K = 3 while the best SINR in Fig. 1 is obviously larger
than the others. It is because Kmax = 2 is not the true solution of Eq. (21) when M = 6 but just a
rounding approximation that is more close to the optimum value of K ′

1 = 2.33 than K = 3. At last,
in Fig. 3, the partitioning scheme for maximum SINR is changed to K = 3 in the condition of M = 7
while K ′

1 = 2.67 and Kmax = 3, since K = 3 is more adjacent to K ′
1 than K = 2. The results in Fig. 3

are still identical with formula (24).

Figure 1. Optimum SINR performances versus
the normalized Doppler frequencies for different
numbers of subarrays with M = N = 5.

Figure 2. Optimum SINR performances versus
the normalized Doppler frequencies for different
numbers of subarrays with M = N = 6.

In addition, seen from Fig. 1 to Fig. 3, the worst SINR performances always appear at K = M . It is
because Phased-MIMO radar would be transformed into MIMO radar when K = M , and the coherent
gain of phased array radar is completely lost. Furthermore, though Phased-MIMO radar would be
transformed into phased array radar and the coherent gain would reach the maximum at K = 1, the
SINR levels do not reach the maximums in this case, as shown in these figures. It is because phased
array radar is unable to combine the transmitting and receiving arrays into a larger virtual array for
SINR improvement due to the lack of waveform diversity property of MIMO radar. Therefore, the
Phased-MIMO radar with the proposed partitioning scheme can provide a significant tradeoff between
the coherent gain and the waveform diversity to maximize the STAP SINR performance.

Furthermore, setting the probability of false alarm (Pfa) to 10−4, we carry out 100 Monte Carlo
simulations to get an average performance for the probability of detection (Pd). Fig. 4, Fig. 5 and
Fig. 6 show Pd curves versus signal-to-clutter-ratio (SCR) for the cases of M = N = 5, M = N = 6
and M = N = 7, respectively. It is clear that the best Pd performance is achieved when the array
is partitioned according to the proposed scheme in Eq. (24). Additionally, compared with the results
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Figure 3. Optimum SINR performances versus
the normalized Doppler frequencies for different
numbers of subarrays with M = N = 7.

Figure 4. Pd performances versus SCR for
different numbers of subarrays with M = N = 5.

Figure 5. Pd performances versus SCR for
different numbers of subarrays with M = N = 6.

Figure 6. Pd performances versus SCR for
different numbers of subarrays with M = N = 7.

depicted in Fig. 1 to Fig. 3, the descending order and spaces for the Pd performance degradation
associated with different values of K are also coincident with the descending order and spaces for the
SINR performance degradation associated with different values of K.

5. CONCLUSION

In this letter, we have considered the issue of array partitioning scheme of airborne Phased-MIMO radar
with collocated ULA for maximum STAP SINR. Particularly, based on STAP application, we mainly
investigate the array partitioning scheme of the airborne Phased-MIMO radar with equal uniform linear
subarrays that are fully overlapped. A mathematical formula is derived to determine the number of
subarrays and the elements in each subarray according to the principle of maximum STAP SINR. The
SINR performances for different numbers of subarrays are simulated and analyzed. The simulations
demonstrate the effectiveness of the proposed mathematical formula for array partitioning in the sense
of maximum STAP SINR. It is also shown that the proposed partitioning scheme provides a remarkable
tradeoff between the coherent gain of phased array radar and the waveform diversity of MIMO radar
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to achieve a maximum STAP SINR. In the future, we could further study the partitioning scheme
using adaptive beamforming for subarrays. Additionally, except for SINR, research on the relationships
between some other STAP performances and the partitioning scheme of airborne Phased-MIMO radar
might be an interesting work too.
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