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DROP Algorithm for Super Resolution Scattering Center Extraction

Young-Jae Choi and In-Sik Choi*

Abstract—The scattering center extraction algorithm is a method to estimate the scattering center
from the backscattered field. Superior scattering center extraction algorithms should be robust to
noise, independent of the model order, and automatically and quickly operated. In this paper, we
propose a novel super resolution scattering center extraction algorithm that satisfies the conditions
mentioned above, which has been named the dimension reduced optimization problem (DROP). Using
DROP, we determined a one-dimensional scattering center from a high resolution range profile and a
two-dimensional scattering center from an inverse synthetic aperture radar image.

1. INTRODUCTION

The radar cross section (RCS) is the ratio of the scattered power to the incident power in the farfield [1].
The RCS provides a great deal of information about a target [2]. The scattering center is the point
that radiates the highest energy on the target, and information about it can be obtained from the
RCS. The scattering center is mainly used for target detection and target recognition. It is important
to extract the scattering center from the backscattered field. A scattering center extraction algorithm
is the method used to discern the parameters of the scattering center, such as range, amplitude, and
phase from the backscattered field. The basic strategy for extracting scattering centers is to use the
inverse fast Fourier transform (IFFT) algorithm. It is widely used in many applications due to its fast
operation and robustness to noise. However, there is a resolution limitation caused by the IFFT bin
size.

To overcome this limitation, many super resolution algorithms have been developed. There are
two main strategies to these algorithms. First are model based methods, such as Prony’s method,
matrix pencil (MP), estimation of signal parameters via rotational invariance techniques (ESPRIT),
generalized eigenvalues utilizing signal subspace eigenvectors (GEESE), and multiple signal classification
(MUSIC) [3–9]. Model-based methods can be computed quickly and have high resolutions, but are
sensitive to noise and require the initial value estimation or model order estimation. Unfortunately, it
is difficult to determine model order estimation and initial value estimation for targets with complex
shapes.

The other method is to use optimization techniques for extraction of scattering centers. Li et
al. [10] proposed the scattering center extraction method using a genetic algorithm. This method
overcame the limitations of model based methods. It is completely automatic, robust to noise, and
does not require initial value estimation or model order estimation. However, its computation time
is very long because it must optimize all parameters of all scattering centers on the target [10]. To
overcome this problem, Choi and Kim proposed the evolutionary programming (EP)-based CLEAN
algorithm, improving computational performance [11–13]. The EP-based CLEAN reduces the required
dimensions of the scattering center extraction by employing the CLEAN algorithm [14]. This procedure
allows one scattering center to be extracted at a time instead of all scattering centers at once. However,
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EP-based CLEAN must solve a three-dimensional optimization problem regarding range, amplitude,
and phase [11], which requires lengthy computation time to solve using stochastic search methods such
as EP and particle swarm optimization [15]. There are two strategies to improve the computational
performance of this optimization problem. One is to reduce the dimensions of the optimization problem.
The other is to change the problem to a convex optimization problem. Because there is no local
minimum in a convex optimization problem, it can be solved by quickly-operated algorithms, such as a
backtracking line search method [16].

In previous research, we proposed an algorithm that applied these two strategies [17]. The method
proposed in the article “A novel fast clean algorithm using the gradient descent method” can be operated
more quickly than the EP-based CLEAN [17]. However, the phase of the scattering center had to be re-
optimized at each iteration of the range optimization process, which required too much computational
time [17]. If this process can be solved by using least squares, the computational performance can
be largely improved [18]. In this paper, we propose a new method to improve the previous one, and
we expand the improved algorithm to the two-dimensional scattering center extraction method. To
improve the method, we applied the direct solution of the complex least squares problem [17], and we
have named the new proposed method as the dimension reduced optimization problem (DROP).

2. ONE DIMENSIONAL DROP ALGORITHM

2.1. Parameter Estimation of the Scattering Center

By the undamped exponential model, the backscattered field is given by

Eq =
M∑

m=1

am exp [jθm] exp [−j4πfqRm/c] (1)

where q = 1, 2, . . . , Q; m is the index of scattering center; M is the number of scattering centers,
c = 3 × 108 (m/s) and is the velocity of light; Rm is the range of the mth scattering center; fq is the
sampling frequency; Q is the number of frequency samples; am is the amplitude of the mth scattering
center; and θm is the phase of the mth scattering center [19]. Equation (1) can be represented by

�E = [E1, E2, Eq, . . . , EQ]T (2)

Scattering center extraction is used to estimate the parameters of the scattering center, such as
amplitude, phase, and range. If the range of the scattering center is determined, the associated amplitude
a and phase θ of the determined range R can be calculated by

min
a, θ

∥∥∥�E − �Sa exp [jθ]
∥∥∥ (3)

where ‖�x‖ =

√
K∑

k=1

|xk|2, �x = [x1, x2, xk, . . . , xK ]T and �S is given by

�S = [s1, s2, sq, . . . , sQ]T (4)

where sq = exp[−j4πfqR/c]. The symbols a and θ from Eq. (3) can be calculated by the solution of a
complex least squares problem with constrained phase [18]:

θ =
1
2
∠

(
�SH �E

)T
M+

(
�SH �E

)
(5)

a = M+Re
(

�SH �E exp [−jθ]
)

(6)

where M ≡ Re(�SH �S) is a real part of �SH �S, M+ the pseudo inverse of M , and �SH the conjugate
transpose of �S. The range of scattering center R can be calculated by

min
R

∥∥∥ �E − �S exp [jθR]
∥∥∥ (7)
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where θR is the phase calculated by Eq. (3) depending on R. Because θR depends on R, it should be
recalculated about R for each iteration. Thus, Eq. (7) should be calculated by the iterative method,
where Rinit is obtained by the peak search of the range profile of �E. All of the parameters for the single
scattering center can be obtained by solving Eqs. (3) and (7) using the appropriate initial value of R.
The component of the extracted scattering center can be cancelled from �E by

�Enext = �E − a exp [jθ] �S (8)

where sq = exp[−j4πfqR/c]. If the scattering center requires further extraction, repeat Eqs. (3) to (8)
after �E = �Enext.

2.2. Detailed Implementation of the One-Dimensional DROP Algorithm

The detailed algorithm is as follows:

(Step 1) Set m = 1 where m is an iterator index.
(Step 2) Set variables to initial value as shown in Table 1.

Table 1. Initial values setting in the one-dimensional DROP algorithm.

Variable Initial Value Description

R Rinit initial range value of the scattering center about range profile of �Em

ΔR c
4BW range interval where BW is bandwidth

�Em
�E scattered field

(Step 3) Calculate the parameters of the scattering center as shown in Table 2 where sq =
exp[−j4πfqR/c].

Table 2. Calculate the parameters of the scattering center in the one-dimensional DROP algorithm.

Equation K

θR = min
θ

‖�Em − �Sa exp[jθ]‖ R

θR−ΔR = min
θ

‖�Em − �Sa exp[jθ]‖ R − ΔR

θR+ΔR = min
θ

‖�Em − �Sa exp[jθ]‖ R + ΔR

JR = ‖�Em − �S exp[jθR]‖ R

JR−ΔR = ‖�Em − �S exp[jθR−ΔR]‖ R − ΔR

JR+ΔR = ‖�Em − �S exp[jθR+ΔR]‖ R + ΔR

(Step 4) Repeat the operation for Table 3.
(Step 5) Substitute Rm = R and calculate am and θm using Eqs. (5) and (6) where sq =
exp[−j4πfqRm/c].

(Step 6) Obtain �Em+1 using Eq. (8). If m is the number of scattering centers, terminate algorithm;
otherwise, jump to step 2 after setting m = m + 1.
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Table 3. Loop control condition in the one-dimensional DROP algorithm.

Condition Action Next Step

JR < JR+ΔR & JR < JR−ΔR ΔR = ΔR/2 Step 3

JR > JR+ΔR R = R + ΔR Step 3

JR > JR−ΔR R = R − ΔR Step 3

ΔR < 10−4 Termination Step 5

3. TWO DIMENSIONAL DROP ALGORITHM

3.1. Parameter Estimation of the Scattering Center

By the undamped exponential model, the two-dimensional backscattered field is given by

Ep,q =
M∑

m=1

am exp [jθm] exp
[
−j4π �Dp,q

�Km/c
]

(9)

where �Dp,q = [ fq cos(Φp) fq sin(Φp) ], q = 1, 2, . . . , Q, p = 1, 2, . . . , P , and �Km = [ Xm Ym ]T (the
other parameters are shown in Table 4) [19]. Equation (9) can be represented by

E = [Ep,q] (10)

where E is P × Q matrix. If X and Y are determined, the associated amplitude a and phase θ can be
calculated by

min
a, θ

‖E − Sa exp [jθ]‖ (11)

where ‖x‖ =

√
P∑

p=1

Q∑
q=1

|xp, q|2, x = [xp,q] is a P × Q matrix, and S is given by

S = [sp,q] (12)

where sp,q = exp[−j4π �Dp,q
�K/c], �K = [ X Y ]T , S is P × Q matrix, and a and θ of Eq. (11) can be

calculated by [18]

θ =
1
2
∠

(
�SH �E

)T
M+

(
�SH �E

)
(13)

a = M+Re
(

�SH �E exp [−jθ]
)

(14)

where �S = [ s1,1...Q s2,1...Q sp,1...Q . . . sP,1...Q ]T and �E = [ E1,1...Q E2,1...Q Ep,1...Q . . . EP,1...Q ]T .

Table 4. Parameters of the two-dimensional backscattered field.

Symbol Description
P number of the frequency sampling
Q number of the angle sampling

Xm, Ym location of mth scattering center
fq qth sampled frequency
fc center frequency
Φp pth sampled angle
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The position of the scattering center �K can be calculated by
min
X,Y

‖E − SaK exp [jθK ]‖ (15)

where aK and θK are amplitude and phase calculated by Eq. (11) about �K, and the initial vector of
�K is obtained by searching the minimum point of the cost space image about E. Because θK depends
on �K, it should be recalculated about �K of each iteration. Thus, Eq. (15) should be calculated by the
iterative method. The component of the extracted scattering center can be cancelled from E by

Enext = E − aejθS (16)

where sp,q = exp[−j4π �Dp,q
�K/c]. If the scattering center requires further extraction, repeat Eqs. (11)

to (16) after E = Enext.

3.2. Detailed Algorithm

The detailed algorithm is as follows:
(Step 1) Set m = 1 where m is the iteration index.
(Step 2) Set variables to initial value as shown in Table 5.

Table 5. Initial values setting in the two-dimensional DROP algorithm.

Variable Initial Value Description
�L [ X Y ]T initial location of the scattering center of Em

ΔL c
4BW location interval

∇JL [ ∂J
∂X

∂J
∂Y

]T gradient of the cost function JL

Em E scattered field

(Step 3) Calculate Table 6 where sp,q = exp[−j4π �Dp,q
�K/c].

Table 6. Calculate the parameter of the scattering center in the two-dimensional DROP algorithm.

Equation �K

aL, θL = min
a, θ

‖E − Sa exp[jθ]‖ �L

JL = ‖E − SaL exp[jθL]‖ �L

∇JL = [ ∂JL
∂X

∂JL
∂Y

]T �L

aΔ, θΔ = min
a, θ

‖E − Sa exp[jθ]‖ �L − ∇JL
‖∇JL‖ΔL

JΔ = ‖E − SaΔ exp[jθΔ]‖ �L − ∇JL
‖∇JL‖ΔL

(Step 4) Repeat the operation for Table 7.

(Step 5) Substitute �Km = �L and calculate am and θm solving min
am, θm

‖Em − Sam exp[jθm]‖ where

sp,q = exp[−j4π �Dp,q
�Km/c].

(Step 6) Obtain Em+1 using Eq. (16). If m is the number of scattering centers, terminate
algorithm; otherwise, jump to Step 2 after setting m = m + 1.
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Table 7. Loop control condition in the two-dimensional DROP algorithm.

Condition Action Next Step

JL ≤ JΔL ΔL = ΔL
2 Step 3

JL > JΔL
�L = �L − ∇JL

‖∇JL‖ΔL Step 3

ΔL < 10−4 Termination Step 5

3.3. Initial Value of the Two-Dimensional DROP

In the one-dimensional DROP, the highest value of the range profile was used to the initial value of
the scattering center. In the two-dimensional DROP, we can expect to use the same operation as
the one-dimensional DROP by determining the highest value of the ISAR image as the initial value.
Unfortunately, this often causes failed extraction of the scattering center because the highest location
in the ISAR image is not always the same as the location of the scattering center. For this reason, we
should obtain the image of the cost function space, and we should use the lowest location as the initial
value. The image of the cost function space can be obtained by

V = [vp,q] (17)

where vp,q =
∥∥∥E − Sa �Kp,q

e
jθ �Kp,q

∥∥∥, �Kp,q = [ Xq Yp ]T , and V is P × Q matrix. The range resolution
and cross-range resolution should be determined in the same way as the ISAR image [19].

The two-dimensional DROP is a very stable operation when we use the lowest location of the cost
function space as the initial value. But it requires too much computational work to calculate the cost
function space. Although it is not accurate, the scattering center is located near the highest location in
the ISAR image. Therefore, we can reduce the computation time by calculating only the cost function
space which is near the highest position in the ISAR image. In Fig. 1, the highest location in the ISAR
image and the location of the scattering center are different. However, the 7× 7 image of cost function,
which is near the highest location in the ISAR image, includes the lowest location of the cost function
space. The computational resolution of the cost function space should be determined to be equal to the
resolution of the ISAR image.

(a) (b)

Figure 1. Cost function space for determining the initial value of the 2D DROP. (a) IFFT-based
ISAR, grid for cost function space, and position of scattering center where ∗ is the position of the actual
scattering center, + is the calculation point for cost function space, and o is the highest position in the
IFFT-based ISAR. (b) The cost function space near the highest location in the ISAR image; frequency:
8.3 ∼ 12.3 GHz; aspect angle: −6.8698 ∼ 6.8698◦; X = 0.1 m, Y = −0.1 m; the number of frequency
sampling: 41; the number of angle sampling: 57.
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4. CONVERGENCE ISSUE

DROP algorithm solves optimization problem to estimate parameters of scattering center. It requires
long computation time to solve optimization problem. Three tricks are employed to DROP algorithm
for reducing computation time. The first trick is a CLEAN procedure. The CLEAN procedure converts
the complex problem in which parameters of all scattering center should be estimated at once, to the
simple problem in which parameters of only one scattering center should be estimated at the each
iteration. To apply CLEAN procedure, we had to assume that components of all scattering centers are
orthogonal.

The second trick is an initial value selection for the optimization. Since these cost function spaces
contain many local minima, we cannot use fast optimization technique such as gradient descent. To
overcome the local minimum problem, EP-based CLEAN uses stochastic search method which requires
much computation time. Fig. 2 shows the relation between cost function space and range profile. The
peak point of range profile always exists in concave region of cost function. There are no local minima
in concave region. Thus, DROP algorithm is always converged by the solution of convex optimization
such as gradient descent, if the peak point of range profile is determined as the initial value of R. Two
dimensional DROP is also always converged, if the initial value is in the concave region. However, the
peak point of the ISAR image is not always located in the concave region of the cost function space
because the peak point of the ISAR image depends on the imaging algorithm. For this reason, we
use IFFT and grid of cost function to search the initial value that is in the concave region of the cost
function.

(a) (b)

Figure 2. Cost function space of one dimensional DROP: (a) relation between range profile and cost
function space; (b) concave region of cost function.

The third trick is that the dimension of the optimization problem to extract scattering center
was reduced. The EP-based CLEAN should obtain three parameters such as real part of amplitude,
imaginary part of amplitude, and range of scattering center at once by solving three dimensional
optimization problem. However, we found that the optimization problem about range and the
optimization problem about amplitude and phase can be separated, and the optimization problem
about amplitude and phase can be simply solved by the solution of a complex least squares problem
with constrained phase [18]. Thus three dimensional optimization of EP-based CLEAN can be converted
to one dimensional optimization DROP algorithm. Moreover, the optimization problem of DROP
algorithm can be fast solved by the solution of convex optimization such as gradient descent because
that is free of a local minimum problem.

As a result, the convergence of the DROP algorithm depends on the initial value. If there is the
initial value in the concave region, DROP algorithm is always converged. In the case of one dimensional
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DROP, the resolution of the one Fourier bin in range profile and the width of concave region in cost
function space are same as c/2B. Therefore, one dimensional DROP is always converged. On the other
hand, the shape and position of the one Fourier bin in ISAR image is not matched with the concave
region of cost function space. Thus, the two-dimensional DROP must determine the initial value more
carefully.

5. SIMULATION

5.1. The One-Dimensional DROP

To evaluate the performance of the one-dimensional DROP, we compared the results from DROP with
the previously published method [17]. These simulations were performed using an Intel R© CoreTM

i7-4790 CPU 3.60 GHz processor and three types of data: synthetic, numerical, and measured.
The first case was the synthetic data. It was generated by the ideal point scatter model of Eq. (1).

The sampled frequency was from 8.3 GHz to 12.3 GHz at 256 points. Table 8 shows the parameters of
the scattering centers (amplitude, range, and phase). In Table 8, although the range resolution of the
synthetic data is 0.0375 m, the interval between the second scattering center and third scattering center
was 0.025 m. Fig. 3 shows the scattering centers extracted by DROP and the previously-published
method [17]. Also, Fig. 2 shows the relative error (RE) between the original field and reconstructed
field following the signal to noise ratio (SNR). RE is calculated by

RE =

∥∥∥�Eactual − �Erecon
∥∥∥∥∥∥ �Eactual

∥∥∥ (18)

Table 8. Parameters of the synthetic data for simulation of the one-dimensional scattering center
extraction.

m Amplitude Range (m) Phase (Radian)
1 1.5 5.8 2
2 1.5 6.0150 0.9
3 1.2 6.0400 0.7854
4 1 6.3073 0
5 0.8 6.5939 0.9151

(a) (b)

Figure 3. Simulation results for the synthetic data: (a) range profile and extracted scattering centers;
(b) RE according to SNR.
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where ‖�x‖ =

√
K∑

k=1

|xk|2, �Eactual is the actual backscattered field, and �Erecon is a reconstructed

backscattered field by extracted scattering centers. Since the one-dimensional DROP is an algorithm
to improve upon the computation time of the previously-published method [17], the scattering center
extracted by DROP should be the same as that of the previous method [17]; the result shown in Fig. 2
is what we expected. The computation time of DROP was about 0.03 second, and that of the previous
method was about 0.23 second [17]. Thus, the computation time of DROP was about 7.6 times faster
than the previous method [17].

The second case was the numerical data. We used a 1 : 16 scaled 3D computer aided design (CAD)
model of an F-15 aircraft. The numerical data were calculated using physical optics. The sampling
frequency was from 8.3 GHz to 12.3 GHz at 41 points. The azimuth angle and elevation angle were 0◦.
The five scattering centers were extracted. Fig. 4 shows the results of the simulation for the numerical
data. The computation time of DROP was about 0.027 seconds, and that of the previous method was

(a) (b)

Figure 4. Simulation result for the numerical data: (a) range profile and extracted scattering centers;
(b) RE according to SNR.

(a) (b)

Figure 5. Simulation result for the measured data: (a) range profile and extracted scattering centers;
(b) RE according to SNR.
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about 0.081 seconds [17]. Thus, the computation time of DROP was about 3 times faster than the
previous method [17].

The third case was measured data. The target was the 1 : 16 scaled model of the F-14 Tomcat.
The RCS of the target was measured using the compact range at the Pohang University of Science and
Technology (POSTECH). The measurement frequency was 8.3 to 12.3 GHz with 401 sampling points.
The azimuth and elevation angles were both 0◦ [20]. Five scattering centers were extracted. Fig. 5
shows the result of the simulation for the measured data. The computation time of DROP was about
0.037 seconds compared to 0.325 seconds for the previous method [17]. Thus, the computation time of
DROP was about 8.7 times faster than the previous method [17].

5.2. Two-Dimensional DROP

To verify the performance of the two-dimensional DROP, we performed scattering center extraction
for three types of data: synthetic, numerical, and measured. This simulation was performed using an
Intel R© CoreTM i7-4790 CPU 3.60 GHz processor. In all of the simulations, the sampling frequency was
8.3 to 12.3 GHz; the aspect angle was −11.2 to 11.2◦; the number of sampling frequencies (Q) was 41
points; and the number of sampling angles (P ) was 57 points. The first case was synthetic data. The
signal model was given by Eq. (9). The parameters of the scattering centers are shown in Table 9.
Fig. 6 shows the ISAR image of the synthetic data and scattering center extracted by DROP. In this
simulation, five scattering centers were extracted. The computation time of DROP was about 0.194
seconds, and that of the previous method was about 168.724 seconds [17]. Thus, the computation time
of DROP was about 869 times faster than the previous method [17].

The second case was numerical data. The numerical method used physical optics. It was calculated
by FEKO. The target was a 1 : 16 scale 3D CAD model of an F-15 aircraft. The 3D CAD model of the
target and the ISAR image are shown in Fig. 7. In this simulation, 9 scattering centers were extracted.

Table 9. Parameters of the synthetic data for simulation with two-dimensional scattering centers.

m Amplitude Range (m) Cross Range (m) Phase (Radian)
1 1.5 −0.3333 0 2
2 1.4 0.1667 0.2333 0.9
3 1.3 0.1667 0 0.7854
4 1.4 0.1667 −0.2333 0
5 1.5 0.3333 0 0.9151

(a) (b)

Figure 6. Simulation result for the synthetic data: (a) ISAR image; (b) extracted scattering centers.
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(a) (b)

Figure 7. Simulation result for the numerical data: (a) 3D CAD model; (b) ISAR image and extracted
scattering centers.

 

(a) (b)

Figure 8. Simulation result for the measured data: (a) 1 : 16 scaled model; (b) ISAR image and
extracted scattering centers.

The computation time of DROP was about 3.032 seconds, and that of the previous method was about
159.449 seconds [17]. Thus, the computation time of DROP was about 52 times faster than the previous
method [17].

The third case was measured data. The target was the 1 : 16 scale model of the F-14 Tomcat. It was
measured using the compact range at the POSTECH [20]. The overview of the target and ISAR image
are shown in Fig. 8. In this simulation, 9 scattering centers were extracted. The computation time
of DROP was about 3.152 seconds compared to about 159.457 seconds for the previous method [17].
Thus, the computation time of DROP was about 50 times faster than the previous method [17].

Figure 9 shows the performance of the two-dimensional DROP in a noise environment. We
performed 50 Monte Carlo simulations to determine the reliability of the results. RE is redefined
by

RE =

∥∥Eactual − Erecon
∥∥

‖Eactual‖ (19)
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(a) (b)

(c)

Figure 9. Result of noise simulation: (a) synthetic data; (b) numerical data; (c) measured data.

where ‖x‖ =

√
P∑

p=1

Q∑
q=1

|xp, q|2, Eactual is the actual backscattered field, and Erecon is the reconstructed

backscattered field by extracted scattering centers.

6. CONCLUSIONS

We proposed novel algorithms to extract one-dimensional and two-dimensional scattering centers. These
algorithms can be fully operated automatically, are robust to noise, require no initial estimation, are
not sensitive to model order, and can be computed quickly. Because the high resolution scattering
center extraction algorithm is widely used in the field of radar signal processing, these algorithms are
expected to be used in many applications. We especially expect that these algorithms will be used in
radar target recognition, radar data compression, and denoising of radar receiving signals. The main
idea of our proposed method can be used in other research fields such as extraction of complex natural
resonance and scattering center extraction of synthetic aperture radar image [21, 22]. In future work,
we will conduct research that applies the DROP algorithm to other areas.
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