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Abstract—Chipless RFID with small, printed metal tags have been proposed as a cost-effective
alternative to chip-based technologies. A potentially viable configuration is to image the patches of
different shapes, sizes, and orientations within a tag with a tabletop-scale synthetic aperture radar
(SAR), operating in the V or W band. Information is encoded into, e.g., polarization, resonance
characteristics, and phase of the scattered signal. The effect of electromagnetic coupling and sidelobe
interference between closely spaced metal patches on SAR image has not been addressed in prior studies.
To be specific, we analyze 60 GHz circular SAR (CSAR) imagery of subwavelength patches separated
by distances on the order of wavelength. The scattered field is calculated with the method of moments
(MoM) to account for EM interaction. The field is then used to form CSAR image with the polar
formatting algorithm (PFA). Significant distortion of the CSAR image is found at this scale. Sidelobe
interference causes image distortion and up to 7 dB of intensity modulation with patch separation.
EM coupling produces an “interaction image,” an artifact that extends between the patches. The
source of this effect is traced to induced currents and charges residing on the patches’ inner edges.
Increasing system bandwidth or changing the incidence angle has minimal effect on both classes of
image artifacts, highlighting the importance of accounting for them in practical system design and
subsequent information processing.

1. INTRODUCTION

Automotive and UAV applications are fueling the development of short-range millimeter wave radars
in 24–80 GHz range [1–3]. Synergy between these radars and 5G telecommunication technologies will
undoubtedly lead to higher bandwidth, lower cost, and potential adoption in chipless Radio Frequency
Identification (RFID), wearable technology, or Internet of Things (IoT). This paper focuses on chipless
RFID using a radar to read small, printed metal patches in an RFID tag, as described by several U.S.
patents [4–6]. References [4] and [6], for example, envision using polarization, resonance characteristics,
and signal phase to embed a dense set of information within multiple conducting patches in a tag.
Making such concepts viable involves interesting signal processing challenges.

Printing cost considerations require the patches to be closely packed within a space comparable to
V- or W-band signal wavelength, implying a radar aperture comparable to the several meter readout
range. Synthetic aperture radar (SAR) [7–9] can achieve such a large aperture at reasonable cost. A
variety of SAR configurations may be appropriate for chipless RFID, including SAR or inverse SAR
(ISAR) in both linear and rotational geometries. A recent paper, for example, examines stripmap SAR
performance with MIMO sparse array [10]. The interaction between closely spaced conducting elements,
however, has not been addressed. This study analyzes the sidelobe interference and electromagnetic
(EM) coupling between conducting patches under circular SAR (CSAR) imaging [11].
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Unlike stripmap or spotlight SAR which requires bandwidth to achieve high range resolution,
CSAR can produce bandwidth-independent subwavelength resolution in two dimensions. CSAR also
has favorable speckle suppression properties [12] and allows imaging in 3D [11, 13]. Although the main
lobe width of CSAR’s point response is λ/4, the response has an extended circular sidelobe structure.
Sidelobes of nearby scatterers interfere with each other to produce image artifacts. In addition, EM
scattering is affected by nearby conductors, a coupling effect that becomes important when conductor
separation is on the order of signal wavelength. The extent to which these effects can be mitigated will
limit the achievable tag element density.

An alternative subwavelength imaging method with desirable sidelobe properties is Time Reversal
imaging with Multiple Signal Classification (TR-MUSIC) [14]. TR-MUSIC leverages eigenspace
decomposition used in the traditional MUSIC algorithm [15, 16] for super-resolution. Its performance
has been carefully analyzed in [17–19]. By using multiple transmitters and receivers simultaneously,
TR-MUSIC has intrinsically higher spatial diversity than the single transceiver SAR. In a full-aspect
configuration with sensors surrounding the target area, TR-MUSIC is expected to have better sidelobe
properties than CSAR.

There are practical tradeoffs between TR-MUSIC and CSAR. TR-MUSIC’s resolvable degrees of
freedom is the lesser of the number of transmitters or receivers [14, 20], which dictates the rank of the
multistatic data matrix (MDM), the central quantity that embodies the scene information. An RFID tag
that contains a large quantity of information will require many sensors, even in the absence of clutter.
CSAR minimizes cost with a single transceiver, albeit at the expense of increased mechanical complexity
and elevated sidelobe levels. Since cost is the primary driver toward chipless RFID, it inevitably impacts
algorithm selection. As discussed in Section 4, a hybrid method that combines CSAR with TR-MUSIC
should be considered in the future.

This paper analyzes CSAR imaging of conducting patches via simulation. We use Matlab’s Method
of Moments (MoM) tool to calculate induced currents, charges, and scattered electromagnetic field at
the radar [21–23]. A CSAR processor with the polar-formatting algorithm (PFA) [8] then produced
images of two adjacent square conducting patches. These images are analyzed to delineate the effects
of sidelobes and EM coupling. Both effects are found significant in the regime of interest to chipless
RFID.

Section 2 of this paper describes the system configuration and simulation procedure, including
the MoM calculation, CSAR simulation, and the method for separating sidelobe interference from EM
coupling. Section 3 describes simulation results. Section 4 summarizes the results, discusses potential
mitigation approaches and future work. For completeness, an appendix outlines the CSAR imaging
algorithm and its point response.

Notation Bold Latin letters, e.g., A, J, E, represent three-dimensional vectors. Superscript, e.g.,
Es, Ei, represents scattered or incident field. Subscript, e.g., Etan, denotes vector component. Bold
Greek letters, e.g., κ, represents two-dimensional vectors in the x-y plane. Unit vectors are denoted
with caret, e.g., φ̂ Estimated scalar quantities use plain font with caret, e.g., η̂. Complex conjugate is
denoted by *. Primed coordinates, e.g., (x′, y′, z′), denote target location in the target-fixed reference
frame.

2. SIMULATION PROCEDURE

2.1. Chipless RFID Simulation Configuration

The CSAR system comprises a monostatic pair of radar transmitter and receiver, directed at a
rotating area containing the RFID tag in an inverse SAR (ISAR) configuration. This configuration
is mechanically less complex and has the advantage that clutter from the fixed background is strongly
suppressed by CSAR’s Doppler-dependent matched filter. For analysis purposes, however, it is more
natural to model the problem in the target-fixed coordinate system with the origin at the center
of the rotating platform, as shown in Fig. 1. A scatterer’s location is denoted by r′ = (x′, y′, z′)
with z′ = 0. The radar rotates about the targets in this reference frame with polar angle θ,
azimuthal angle φ, and distance R to the origin. The distance between a scatterer and the radar
is r =

√
(Rh cos φ − x′)2 + (Rh sin φ − y′)2 + (R cos φ − z′)2, where Rh is the radius of the radar’s
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Figure 1. Simulation configuration in the target-fixed frame with radar at (R, θ, φ) and rotating about
the z′ axis. Target location is denoted by (x′, y′, z′) with z′ = 0.

horizontal projection in the x′-y′ plane.
An FMCW radar mixes the received signal with a reference chirp over the sweep period. Neglecting

multiple scattering and spherical spreading, the dechirped signal is:

s (t, φ) =
[∫

dx′dy′η
(
x′, y′

)
g

(
t − 2r

c

)]
g∗ (t) , (1)

where t denotes the radar fast time, and φ is the radar’s azimuthal angle. The expression in [·] is the
backscattered signal under the Born approximation, where η(x′, y′) is the scattering amplitude at (x′, y′),
g(t) is the transmitted waveform, c is the speed of electromagnetic waves, and 2r/c represents the two-
way signal delay. The mixing operation that multiplies the scattered signal with the complex conjugate
of the transmitted signal reduces signal frequency to the audio band for ease of data acquisition. Instead
of range compressing at this stage, CSAR accomplishes both range and azimuth compression with a 2D
matched filter on the dechirped data, as described in Section 2.3 and the Appendix.

The transmitted FMCW waveform is

g (t) = ei2π(f0+αt)t, (2)

where f0 is the center frequency, α = B/2T is the sweep parameter with bandwidth B and sweep time
T . To be specific, the baseline model in this paper uses f0 = 60 GHz, B = 2 GHz, and T = 10 msec.

Combining Eqs. (1) and (2) and neglecting the term proportional to r2/c2 in the exponent gives

s (t, φ) =
∫

dx′dy′η
(
x′, y′

)
e−i2π(f0+2αt) 2r

c =
∫

dx′dy′η
(
x′, y′

)
e−i4πf r

c , (3)

where f = f0 + 2αt is the instantaneous frequency at t. Given this one-to-one correspondence between
f and t, the dechirped signal will be referred to as s(f, φ) throughout the rest of this paper. Equation
(3) serves as the starting point of the CSAR processor outlined in the Appendix. While the processor
makes the single-scattering assumption, s(f, φ) is calculated with a full-fidelity simulation, as described
in the next section.

2.2. Signal Simulation

Figure 2 shows the basic target configuration with two square perfect electrical conductor (PEC) patches
aligned along the x′ axis, centered at the origin. The size of each patch is 3.2 mm (1/8′′), or 0.64λ,
where λ = 5 mm is the wavelength at 60 GHz. The center-to-center separation between the patches, d,
varies from 0.64λ to 3.2λ (3.2 mm to 16 mm). For reference, the signal wavelength at 60 GHz is also
shown in Fig. 2. Since the patch size and separation are comparable to wavelength, high order multiple
scattering is to be expected.

The induced currents and charges that constitute re-radiation sources migrate with incident
direction in a conductor, contrary to the standard SAR imaging assumption that η(x′, y′) is independent
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Figure 2. Two conducting, 3.2 mm square patches in the basic simulation configuration. The patch
size and separation are both on the order of the signal wavelength at 60 GHz. MAT divides each patch
into a triangular mesh for MoM computation.

of radar direction. The complex field-conductor interaction is modeled with an MoM approach in
Matlab’s Antenna Toolbox (MAT). Unlike finite difference or finite element methods, MoM does not
require a 3D computational domain that tends to have residual boundary effects [24]. For PEC targets,
MoM only calculates current and charge distributions over the 2D conductor surface. The resulting
time saving is important for this study, which simulates scattering from many directions over a large
parameter space. The current and charge distributions naturally produced by MoM are also useful
for interpreting CSAR image — it is after all these sources that CSAR images. Alternatively, a
multiple scattering approach [25] which systematically incorporates higher order scattering into the
CSAR processor may improve performance in the future. This paper uses MoM as it is already efficiently
implemented in MAT.

MAT divides each patch into a triangular mesh of elements. The Rao-Wilton-Glisson basis [22, 23]
over these elements is used to solve an electric field integral equation (EFIE) for the current distribution
on the conductors [26]. The EFIE comes directly from Maxwell’s equations by applying the conducting
boundary condition. The description below summarizes the basic set of equations pertinent to EFIE,
as given in Section II of [22].

The scattered electric field from a time-harmonic incident wave of frequency f is

Es = −i2πfA−∇Φ, (4)

where A and Φ are the magnetic vector potential and scalar electric potential, respectively. These
potentials are due to the current density, J, and surface charge density, σ, propagated from source
points on the conductor to the field point at the radar by the free-space Green’s function:

A =
μ0

4π

∫
S′

J
e−i2πf r

c

r
dS′, Φ =

1
4πε0

∫
S′

σ
e−i2πf r

c

r
dS′. (5)

In the above equations, S′ denotes the conductor surface, and r is the distance from the source point
to the radar. The surface charge density and current density satisfy the continuity equation

∇ · J = i2πfσ. (6)

On the surface of the conductor, the tangential component of the incident electric field satisfies the
EFIE:

Ei
tan = i2πfA + ∇Φ. (7)

Equation (7) must be solved consistently with Eqs. (5) and (6) over S′. The primary output of the
calculation is the current distribution J, which spans over the mesh elements with a basis set described in
Section II of [22]. Reference [23] (Appendix B) provides additional details on the exact forms of integral
solutions, including the self-contribution within a mesh element. We are interested in the scattered field
from Eq. (4) for CSAR image formation and the current/charge distributions, J and σ, for CSAR image
interpretation.
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The combination of Eqs. (4) and (5) can be considered a more exact form of the backscattered
signal in Eq. (1). The radar signal s(f, φ) is the component of the electric field along the receiver
antenna. To be specific, this paper considers horizontally polarized incident and received fields, i.e., HH
polarimetric configuration. In terms of spherical coordinates, both transmission and reception involve
the electric field component in the φ̂ direction, where φ̂ is the unit vector in the direction of increasing
φ. Despite this specific choice, the conclusions below regarding the significance of sidelobes and EM
coupling apply equally well to other polarimetric combinations.

The received signal, s(f, φ), is computed over a discrete grid. In our simulation regime, s(f, φ)’s
frequency dependence is dominated by the two-way propagation phase factor, e−2i( 2πf

c
)r. It is verified

numerically that the quantity s(f, φ)e2i( 2πf
c

)R, where R is the distance from the radar to the target
origin, is essentially independent of frequency over the 59 to 61 GHz band. The simulations below
compute s(f, φ)e2i( 2πf

c
)R at 60 kHz.

The azimuthal grid spacing of s(f, φ) must satisfy the Doppler sampling criterion implied by the
phase factor in Eq. (3), i.e., 4π(f/c)(rmax

′Δφ) ≤ π, where Δφ is the angular increment between
FMCW sweeps, rmax

′ is the maximum target radial extent, and rmax
′Δφ is the maximum possible radial

movement of a scatterer between consecutive sweeps. The simulations below use Δφ = 2◦, corresponding
to a rmax

′ of about 3.5 cm, which is considerably larger than the actual target extent. At each angle,
the scattered electric field calculation assumes that the radar is stationary during transmission and
reception, consistent with the standard stop-and-hop approximation in SAR simulations.

2.3. CSAR Processing

CSAR imaging for the general geometry is described in detail in [11–13]. When rmax
′ � R, the

procedure is greatly simplified by inverting Eq. (3) for the scattering amplitude, η(x′, y′), with a 2D
Fourier transform, as outlined in the Appendix (Eqs. (A1)–(A5)). The key step that enables 2D FFT is
an interpolation from polar to rectangular coordinates, known as the polar formatting algorithm (PFA).
An excellent source of SAR operation principle and algorithms is [7]. More specifically, PFA is described
in Section 10.3 of this reference and in more detail in Section 3.3 of [8].

The resultant scattering amplitude estimate, η̂, from the Appendix is

η̂
(
x′, y′

)
=

∫
s (f, φ) eikRe−i(κxx′+κyy′) dκxdκy

(2π)2
, (8)

where frequency and wavenumber are related in the following manner:

k ≡ 4πf

c
, (9)

κx = k
Rh

R
cos φ, κy = k

Rh

R
sin φ. (10)

The caret over η is a reminder that η̂ is a bandlimited estimate of the actual η. The domain of s(f, φ),
or equivalently, s(κ, φ), is an annular region bounded by the values of κ corresponding to the system’s
minimum and maximum frequencies. (See Eqs. (9) and (10).) Following the standard PFA procedure,
s(f, φ) is interpolated onto a uniform rectangular grid in κx, κy , which then allows the use of 2D FFT
to calculate η̂. The simulations below use 4096 FFT in κx and κy with Nyquist value of 1.26× 104 m−1,
corresponding to a square pixel size of Δx′ = Δy′ = 0.25 mm in the image domain.

2.4. Separating Sidelobe Interference from EM Coupling

Since CSAR imaging is linear, sidelobe interference and EM coupling can be separately in the following
way:

1) Simulate the “total” field η̂total with both patches present. This field contains both sidelobe
interference and EM coupling.

2) Simulate the individual fields η̂1 and η̂2 of each patch by itself and add the results to form the
“sum” field η̂sum = η̂1 + η̂2. This field contains sidelobe interference but not EM coupling.
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3) Find the difference η̂EM = η̂total − η̂sum, which is due to EM coupling alone.
Similarly, linearity of Maxwell’s equations allows the same decomposition to isolate currents and

charges due to EM coupling. MAT is used below to derive the total, sum, and difference currents and
charges. The difference J and σ are solely due to EM coupling and responsible for η̂EM .

3. SIMULATION RESULTS

3.1. CSAR Images of Individual and Multiple Conducting Patches

In Sections 3.1–3.3 we assume the radar to be in the same horizontal plane as the scattering area, i.e.,
θ = 90◦, and R = Rh = 2 m. The result of other incidence angles is discussed in Section 3.4. To

(a) (b)

Figure 3. CSAR intensity image of a 0.64λ (3.2 mm) square patch: (a) on a linear scale with the
red box marking the boundary of the square patch, and (b) on a dB scale, showing the collection of
highlights in the patch and slowly decreasing sidelobes.
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Figure 4. The total, sum, and difference images of two patches. (a)–(c) Total, sum, and difference
images for center-to-center separation of d = 1.9λ (9.6 mm); (d)–(f) Same set of images with d = 1.3λ
(6.4 mm).
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illustrate the sidelobe structure, the CSAR intensity image, |η̂(x′, y′)|2, of a single 0.64λ (3.2 mm) patch
centered at the origin is shown in Fig. 3(a) on a linear intensity scale. All distances are labeled in units
of λ. The red box marks the physical boundary of the patch. Instead of a uniformly illuminated square,
the patch appears to be a collection of highlights at λ/4, or 1.25 mm spacing. This grid of highlights is
an interference pattern produced by the sub-aperture images that make up the full circular aperture.

Figure 3(b) shows the 3D surface plot of the intensity field on a dB scale. Sidelobes extend into
an area many times the actual patch size. Those sidelobes immediately outside the patch boundary is
3 dB lower than the central peak, whereas sidelobes 4λ away only decrease by another 9 dB, illustrating
the persistence of these sidelobes.

Figures 4(a)–(c) show the total, sum, and difference images of two patches separated by a relatively
large distance of d = 1.9λ (9.6 mm, measured center to center). All three images are normalized by
the maximum intensity of the total image. The total and sum images in Figs. 4(a) and 4(b) are nearly
identical due to negligible EM coupling at this separation. Figs. 4(d)–(f) show the same set of three
images for two patches separated by d = 1.3λ (6.4 mm), also normalized by the maximum intensity
of the total image. Sidelobe interference is significant at this separation. Although the total and sum
images in this case have similar structure and overall intensity, there are noticeable differences between
them due to EM coupling. The EM coupling image in Fig. 4(f) extends along the line connecting
the patches. Its maximum intensity is 58% that of the total image and primarily occupies the region
between patch centers.

3.2. Sidelobe Interference

Besides the image distortion seen in Figs. 4(d) and 4(e), sidelobe interference also causes significant
variation in the overall image intensity. Figs. 5(a)–(c), all normalized to the maximum intensity of 5(c),
illustrate this effect for a patch separation of 1.0λ (5 mm). Figs. 5(a) and 5(b) show the individual patch
images. Fig. 5(c) is the sum image, the maximum intensity of which is 230% that of the individual

(a) (b)

(c) (d)
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'/
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Figure 5. Image sidelobes can interfere constructively or destructively. (a) and (b) are images of two
individual patches separated by d = 1.0λ (5 mm). (c) The sum image showing higher intensity than
either individual image. Contrasting this with (d) the sum image with d = 1.26λ (6.3 mm), showing
destructive interference.
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Figure 6. Dependence of the image intensity on patch separation, d. The total, sum, and EM curves
are in blue, red, and black, respectively.

patches, indicating constructive interference. In contrast, Fig. 5(d) illustrates the sum image with 1.26λ
(6.3 mm) patch separation, also normalized the same way. Its maximum intensity is only 44% that of
the individual images, indicating destructive interference.

Figure 6 depicts the full dependence of image intensity on patch separation, d. The red curve,
normalized to unit peak value, represents the maximum intensity of the sum image. It shows a clear
interference effect with λ/2 (2.5 mm) period, which agrees with the period of the CSAR amplitude
response in Eq. (A6) (not to be confused with the λ/4 periodicity of the intensity response). There is
a 7 dB difference between the maximum near d = 1.0λ (5 mm) and minimum near d = 1.26λ (6.3 mm).
This strong intensity dependence on patch spacing suggests care must be taken in chipless RFID design
to avoid destructive interference.

A variety of sidelobe suppression techniques are useful for traditional radar imaging, including
spectral windowing, nonlinear techniques such as spatially variant apodization (SVA [27, 28]), and
SVA’s extensions for spectral extrapolation (Super-SVA [29], Adaptive Sidelobe Reduction [30]). The
effectiveness of such techniques for CSAR imaging in the subwavelength regime is questionable. Unlike
fully sampled radar data, s(f, φ) occupies a thin annular region in the f −φ domain, extending from 59
to 61 GHz. The “sidelobes” with λ/4 spacing are more properly considered grating lobes or ambiguities
due to the missing data from DC to 59 GHz. Windowing and SVA (which nonlinearly combines windows)
are not effective against grating lobes. The utility of spectral extrapolation techniques operating over
such a wide domain is also dubious. Two other options, image deconvolution and TR-MUSIC, are
discussed in Section 4 as future work. Increasing bandwidth can reduce the more distant sidelobes, as
discussed in Section 3.4.

3.3. Electromagnetic Coupling

The extent of EM coupling is shown as the black curve in Fig. 6. It is the maximum intensity of the
difference image as a function of patch separation. This curve comes close to the intensity of the sum
image (red curve) near d = 0.7λ and 1.2λ, where the sum is near destructive interference. EM coupling
generally decreases with patch separation, although there are several mild resonances. The blue curve
in Fig. 6 corresponds to the peak intensity of the total image, including the effect of both sidelobe
interference and EM coupling. EM coupling tends to offset the interference effect such that the total
image intensity is weaker than the sum image in general. This effect is most noticeable at small patch
separations where EM coupling is strong. The total image’s first peak near d = 1λ is actually weaker
than its second peak near 1.5λ.
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Figure 7. Induced currents in the two patches at four radar angles, φ = 0◦, 90◦, 180◦, 270◦. The left
column is the total current distribution. The right column is the difference current distribution due to
EM coupling.

The opposing effects of sidelobe interference and EM coupling as well as the morphology of the
EM-coupling image in Fig. 4(f) can be explained by the distribution of induced currents and charges.
The magnitude of the induced currents for four radar angles are shown in the left column of Fig. 7 for
two patches separated by λ. At φ = 0◦, the induced currents concentrate around the right edge of the
patches toward the radar direction. The maximum current in the right patch is considerably stronger
than that in the left one, an asymmetry due to EM coupling. The situation reverses when φ = 180◦.
At φ = 90◦ and 270◦, the induced currents concentrate along the patches’ top or bottom edges with
identical magnitudes since the patches are equally illuminated by the radar. Although not shown, the
same calculations for each patch by itself shows equal currents at the four angles by symmetry.

Following the procedure described in Section 2.4, we calculate the “sum” currents by superposing
the two single-patch currents. The difference between the total and sum currents represents the change
due to EM coupling, which is shown in the right column of Fig. 7. (Note the color scale change in the
right column.) At φ = 0◦ the difference currents reside on the inner edge of the left patch; they shift
to the inner edge of the right patch when φ = 180◦. The difference currents at 90◦ and 270◦ are much
weaker by comparison. EM coupling-induced charges (not shown) behave in a similar way, also residing
along the inner edges of the patches and reaching their maximum density at φ = 0◦ or 180◦.

Since the difference currents and charges are only active near 0◦ and 180◦, the difference EM field
is only significant near these angles. The resultant image is an elongated feature along those directions,
the length of which is governed by the 7.5 cm range resolution corresponding to 2 GHz bandwidth (viz.
δr = c/2B where δr is range resolution). The actual extent of the horizontal image feature in Fig. 4(f)
is shorter than 7.5 cm due to integration over a finite angular extent around 0◦ and 180◦, affording some
degree of “smearing” of the range response over angle. The range responses of the two patches add such
that the interference pattern has maximum intensity between the patch centers, as seen in Fig. 4(f).

Regarding the opposing effects of sidelobe interference and EM coupling, note that sidelobe
interference is most prominent when the two patches have equally intense sidelobes. EM coupling,
however, causes asymmetrical distribution of currents and charges in the two patches, reducing the
magnitude of sidelobe interference.
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Figure 8. The total, sum, and difference images of two patches separated by 1.3λ (6.4 mm). The
system frequency is from 55 to 65 GHz. (a) total image, (b) sum image, and (c) difference image.
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Figure 9. Incidence angle dependence of CSAR (total) images of two patches separated by 1.9λ
(9.6 mm) in (a)–(c), and 1.3λ (6.4 mm) in (d)–(f). For each patch separation, images are simulated for
three different incidence angles, θ = 90◦, 60◦, 30◦ (corresponding to 0◦, 30◦, and 60◦ grazing).

3.4. Effect of Bandwidth and Incidence Angle

System bandwidth determines radar range resolution. Since the CSAR image can be thought of as
the sum of sub-aperture images, each with its own range sidelobe along its look direction, one might
expect increased bandwidth to mitigate CSAR sidelobes. This has only limited effectiveness in the
subwavelength regime, however. The CSAR images of two patches separated by 1.3λ (6.4 mm) are
simulated for a 55–65 GHz system. The slowly-varying function discussed in Section 2.2, s(f, φ)e2i( 2πf

c
)R,

is computed at 2GHz intervals over the 10 GHz band and assumed to be piecewise linear in between.
Figure 8 shows the total, sum, and difference images. Comparing them with Figs. 4(d)–(f) shows

that increasing bandwidth suppresses the more distant sidelobes. However, the first few orders of
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sidelobes (which are more aptly described as grating lobes) remain persistent for the reason discussed in
Section 3.2. It would take significantly larger bandwidth than 10 GHz to suppress these inner sidelobes,
an unlikely prospect with current technology. The intensity of EM coupling image in Fig. 8(f) is similar
to that in Fig. 4(f), indicating that bandwidth has little effect on EM coupling.

Incidence angle affects detailed image features as well as polarization-dependent scattering
amplitude and the exact amount of EM coupling. However, the general characteristics of interference
and coupling are not altered by incidence angle. Fig. 9 illustrates CSAR images at different incidence
angles. Figs. 9(a)–(c) are the images of two patches with center-to-center separation d = 1.9λ (9.6 mm)
at three different incidence angles, θ = 90◦, 60◦, 30◦ (0◦, 30◦, and 60◦ grazing). Figs. 9(d)–(f) are the
corresponding images for two patches separated at d = 1.3λ (6.4 mm). For both patch separations, the
images become less resolved with decreasing incidence angle (increasing grazing angle) due to radar
range layover. The spatial diversity afforded by CSAR completely vanishes at 90◦ grazing, where all
the scatterers are at nearly identical range. These results suggest that one should use grazing angles of
order 30◦ or less for this application.

4. CONCLUSIONS

CSAR images of closely spaced conducting patches are distorted by sidelobe interference and EM
coupling when patch size and separation are comparable to radar wavelength, a regime of interest
to chipless RFID. Such image distortions can limit practically achievable patch density. This challenge
is not unique to CSAR. In stripmap SAR, for example, the range response of patches closely packed in
range can interfere, while EM coupling can cause both azimuthal and range artifacts.

Sidelobes of neighboring patches interfere to produce as much as 7 dB of image intensity variation
with patch separation, at λ/2 periodicity. This result suggests the importance of judiciously chosen
patch spacing in order to avoid destructive interference. The image of EM coupling-induced currents
and charges concentrates along the line connecting the patches. The magnitude of this distortion
decreases with patch separation, showing weak resonance peaks.

The “sidelobes” in CSAR images are actually grating lobes due to missing data from DC to the
lower band edge. As such the sidelobes are resistant to conventional sidelobe suppression techniques
and improved bandwidth. One candidate approach for mitigating such sidelobes is nonlinear image
deconvolution such as CLEAN and WIPE [31, 32]. These algorithms have been employed in radio
astronomy for removing severe grating lobes. As mentioned in the Introduction, TR-MUSIC has also
demonstrated low sidelobe level in the subwavelength regime. Given CSAR’s cost benefit and TR-
MUSIC’s desirable image quality, a hybrid method combining them, e.g., using several transceivers to
cover subapertures in conjunction with a rotating target, may reap the benefits of both approaches.

Current CSAR formulation is based on the Born approximation with fixed scattering amplitude and
location. The movement of induced currents and charges with radar direction in a conductor causes
image smearing, manifested as interference patterns at the characteristic λ/4 spacing. The single-
scattering TR-MUSIC faces the same issue. When scatterers vary, the eigenspectrum of the MDM does
not cleanly separate into signal and noise subspaces, even in the absence of noise. (See e.g. [33].) The
system’s Green’s functions are no longer strictly orthogonal to the noise subspace, the expected result
of which is image distortion. A truly effective hybrid CSAR/TR-MUSIC algorithm should account for
multiple scattering. Although this has been formulated in TR-MUSIC for a scalar field [34], vector field
multiple scattering must be considered for radar imaging.

Future work will provide experimental verification of the simulated results, analyze consequences
on RFID information processing, image deconvolution, as well as the prospect of a hybrid CSAR/TR-
MUSIC setup.

APPENDIX A.

An overview of the CSAR processor is provided here for completeness. Eq. (3) is reproduced here as
the starting point:

s (t, φ) = s (f, φ) =
∫

dx′dy′η
(
x′, y′

)
e−i4πf r

c , (A1)
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where r = |R − r′| is the distance between the radar at R = (Rh cos φRh sin φz) and a scatterer at
r′ = (x′, y′, 0). When r′ � Rh, the distance r can be approximated by its linear expansion in r′/R:

s (f, φ) ≈
∫

dx′dy′η
(
x′, y′

)
e
−i 4πf

c

(
R−Rh

R
cos φx′−Rh

R
sin φy′

)
. (A2)

By making the following frequency-wavenumber associations

k =
4πf

c
, κx = k

Rh

R
cos φ, κy = k

Rh

R
sin φ, (A3)

Eq. (A2) becomes

s (f, φ) =
∫

dx′dy′η
(
x′, y′

)
e−ikReiκxx′+iκyy′

. (A4)

Although s(f, φ) is bandlimited, one can still formally invert the above equation to obtain an estimate
of η:

η̂
(
x′, y′

)
=

∫
s (f, φ) eikRe−iκx

′x′−iκy
′y′ dκx

′dκy
′

(2π)2
, (A5)

namely that η̂(x′, y′) is the 2D Fourier transform of the received data multiplied by a frequency-
dependent phase factor. The exponential factors in the integrand represent the 2D matched filter used
by CSAR to accomplish simultaneous range and azimuth compression. The data s(f, φ) is computed
on a regular grid within an annular region in the f − φ domain. Once it is interpolated onto a regular
rectangular grid, 2D FFT can be used to do the integral in Eq. (A5) efficiently. This is the polar
formatting algorithm.

For a unit point scatterer at the origin, i.e., η(x′, y′) = δ(x′)δ(y′), the point response of an ideal
system with flat spectrum over the frequency range [fminfmax] is

η̂
(
x′, y′

)
=

∫
e−iκxx′−iκyy′ dκxdκy

(2π)2

=
1

2πr′
(
κmaxJ1

(
κmaxr

′) − κminJ1

(
κminr

′)) , (A6)

where κmin = 4πfminRh/(cR), and κmax = 4πfmaxRh/(cR), and r′ is the radial distance of (x′, y′). This

is a circularly symmetric Airy pattern. Since J1(ρ) ∼
√

2
πx cos(ρ − 3π

4 ) asymptotically, η̂ has a radial
period of approximately 2π/κ, or (Rh/R)(λ/2), where λ is the wavelength at the center frequency of
the system. The intensity, |η|2, has period (Rh/R)(λ/4). The −3 dB width of the main lobe centered
at the origin is also approximately (Rh/R)(λ/4).
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