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Based on the Morphological Method

Miao Liu1, 2, †, Huijun Xue1, †, Fulai Liang1, †, Hao Lv1,
Zhao Li1, Fugui Qi1, Ziqi Zhang1, and Jianqi Wang1, *

Abstract—This paper proposes a morphological ultra-wideband (UWB)-radar-based respiratory signal
model. According to the detection theory, it is crucial to set up an appropriate model to fulfil the
detection purpose. Previous models pay less attention to the time dimension of the respiratory signal,
but the frequency domain cannot precisely describe it because of its non-linearity and non-stationarity.
This model uses a morphological operator to dilate or erode the base wavelet, and the length and value
of the digit in the structure element serve as the parameters in this morphological model. The result of
the experiment carried out on 10 human targets with impulse radio ultra-wideband (IR-UWB) radar
proves the efficiency of this model. As the UWB radar sensed human respiratory signal is nonlinear
and non-stationary, the parameters in the model can be regarded as a measure of non-linearity and
non-stationarity. An experiment is carried out with the simulated respiratory signal generated with the
proposed model. The result shows that the detection algorithm based on Ensemble Empirical Mode
Decomposition (EEMD) method has a better performance than that based on Adaptive Line Enhancer
(ALE) and with the value of the digit in the structure element increases, the performance of the ALE
method declines, while the EEMD method stays in a good performance, which indicates that the EEMD
method has a good potential to deal with the nonlinear and non-stationary respiratory signal.

1. INTRODUCTION

UWB radar has the advantages of non-contactness and penetrability through non-metallic materials. It
can be used to detect the human beings in the scenarios of search and rescue, anti-terrorism and some
other important areas [1–8]. The electromagnetic wave is radiated by the transmitting antenna and
reflected back by the human body. The human target can be detected and located by analyzing the
micro-motion hidden in radar echoes, which means that the aim of detecting human beings is usually
achieved by detecting the respiration and heartbeat of human body. According to the detection theory,
it is important to set up the to-be detected signal model to ensure the effectiveness of the detection [9].
Therefore, the accuracy of the model of the respiration and heartbeat affects the UWB radar human
detection. As the amplitude of the movement caused by the respiration is about 10 times larger than
that caused by the heartbeat, the paper focuses on the model of the respiratory signal.

As a quasi-periodic signal, the respiratory signal is usually modeled as a sinusoid signal with the
parameters of amplitude, frequency and phase. But the shape of the respiratory signal is not always in
a sinusoid, then a model based on the even power of cosine function (EPCM) and the power of absolute
value of cosine function (PACM) is proposed [10]. However, like other biomedical signals, respiratory
signal is a kind of nonlinear and non-stationary signal. The parameters of the signal change with time,
so does the waveform of the signal. But as the respiratory signal is generated from the same person in a
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certain time period, the general waveform shapes in a certain time are identical. According to the theory
of mathematical morphology, the morphological method like dilation and erosion can change the wave
shape in an extent determined by the structure element [11]. The mathematical morphological method is
widely used in different areas. In the two-dimensional data processing area, it is used in image processing
and segmentation. As to one-dimensional data processing area, it is used in biomedical signal detection
and extraction [12–14]. Because the waveform of the one dimensional respiratory signal changes among
different periods, it is suitable to be modeled by morphological method with the parameters being the
structure element. Therefore, a new respiratory signal model based on the morphological method is
proposed, and the model is verified by the signal in the database. An experiment is carried out with an
IR-UWB radar. To further testify the influence of the model parameters on the detection algorithms,
a simulated experiment is carried out with two detection algorithms.

The rest of the paper is arranged as follows. Section 2 illustrates the mathematical model of the
respiratory and the verification of the model. Section 3 depicts the varying parameters’ effect on the
detection algorithms. Finally, the discussion and conclusion are given in Section 4 and Section 5.

2. MORPHOLOGICAL MODEL OF RESPIRATORY SIGNAL

2.1. The PACM Model

There are mainly 4 respiratory signal modeling methods, which are listed in Table 1 [10]. The CM is a
cosine model, which just models the respiratory signal with cosine function and treats it as a plain cosine
signal. The ACM is an absolute cosine model, which uses the absolute value of the cosine function and
is shown to be more accurate than the CM model [15]. The EPCM is an even power cosine model, which
takes the duty cycle into account, and it depends on the parameter m. It has better performance than

Table 1. Various respiratory signal models.

Model Respiratory Signal

CM Model M
(f,dc,Ac)
c (t) = dc +Ac cos(2πft)

AC Model M
(f,dAC,AAC)
AC (t) = dAC −AAC|cos(πft)|

EPC Model M
(f,dEPC,AEPC,m)
EPC = dEPC +AEPC(cos(πft))2m

PAC Model M
(f,dPAC,APAC,n)
PAC (t) = dPAC +APAC|cos(πft)|n

Figure 1. Database signal and simulated signal with PACM model.
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the ACM model. The PACM is power of absolute value of cosine model, which avoids the disadvantage
of the duty cycle deviation to some extent, showing a better performance than EPCM model.

With PACM model, the respiratory signal can be modeled by the respiratory frequency, f , power
order, n, and the power of absolute value of cosine function. dPAC is a DC term, which will be eliminated
in the analysis of UWB echo signal.

The standard to evaluate the efficiency of a model is whether the model can mimic the respiratory
signal with the optimized parameters. The data used for model performance test are the benchmark
dataset from CapnoBase, which is a public database for respiratory signal analysis [16]. It is measured by
capnography, highly correlated with respiratory volume, which can be measured by respiration belt [17].
The simulated respiratory signal frequency is set by the FFT analysis to the database signal, and the
time duration is set by the equation that the data number of the database signal is divided by the
sampling frequency. Both of the simulated signal and database signal are scaled into the amplitude
range of [−1 1]. The result is shown in Figure 1.

It can be seen from Figure 1 that the simulated respiratory signal cannot mimic the database signal
well because of the non-linearity and non-stationarity of the respiratory signal.

2.2. Mathematical Morphology

Mathematical morphology has been mostly applied to image processing area, and one dimensional
morphology operators have been used for line detection and path opening etc. It is a process directly
carried out on the time or space domain.

The theory of mathematical morphology is based on mathematical operators, which are applied to
the analyzed signal with structure elements. Structure element is a predefined shape, such as flat and
triangle, with finite length. The mathematical morphology process is a new signal construction process
through sliding the line segment (G) along the original signal (F ) to trace out the new signal.

There are four basic mathematical morphology operations:
Dilation:

(F ⊕G)(x) = ∨
h∈[a,b]

F (x− h) (1)

Erosion:
(F �G)(x) = ∧

h∈[a,b]
F (x+ h) (2)

Opening:
(F ◦G)(x) = ((F �G) ⊕G)(x) (3)

Closing:
(F •G)(x) = ((F ⊕G) �G)(x) (4)

where [a, b] represents the integer range from a to b [11].

2.3. The Mathematical Model Based on Mathematical Morphology

Considering the similarity of the respiratory waveforms in different periods, the difference is mostly
caused by the scale, which makes applying the theory of morphology to the mathematical modeling
of respiratory signal possible. Because the respiratory signal is a time series, the one-dimensional
morphological process reflects on the change of amplitude. With dilation processing, the signal can be
amplified in some degree. In contrast, the signal can be lowered in amplitude with erosion processing. To
some extent, the dilation and erosion processing are similar to amplification and shrinking respectively
for a one-dimensional signal. However, the processing carried out on the signal should not only change
the amplitude of the each signal datum individually, but also change the ratio relationship between the
data, or the dilation and erosion will not take effect because of the scaling process.

First, consider the respiratory signal as a summation of different waveforms; f [n] =
K∑

k=1

ψk, ψk

represents the kth waveform; K is the total number of the waveforms. In order to easily decompose the
respiratory signal into different waveforms, the waveforms are separated by the minimums. As to each
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waveform, it is a transform of a base form, namely a base wavelet. With the dilation or erosion to the
base wavelet, the new waveform is generated.

There are many ways to fulfill the morphology process, and the most common one is illustrated as
follows,

g(n) = max {f(n+ t) + s(t) |(n+ t) ∈ Df , t ∈ Ds } (5)
h(n) = min {f(n+ t) − s(t) |(n+ t) ∈ Df , t ∈ Ds } (6)

g(n) and h(n) denote the dilated and eroded signals respectively, and Df and Ds denote the
generated signal and structure element domain, respectively. It is clear that if the structure element,
namely s(t), has the form of [BB . . . . . . B B], whose elements are equal in value, and the value after
process will always be f(n) + B when it is dilation and f(n) − B when it is erosion. Though the
amplitude of the data can be amplified or reduced after the common morphological processing, the
scaled results will not change with the value in the structure element.

Instead of the flat form of structure element, the structure element can also be in triangular form
and some other forms, but changing the form of the structure element may result in the distortion of
the shape of the signal, and it is hard to choose an appropriate form to model the respiratory signal. In
order to keep the form of the structure element flat, as well as fulfill the goal of dilation and erosion, a
novel morphological method should be proposed to satisfy this need, which can make the scaled signal
change with the value in the structure element. Then not only the structure element should relate with
the datum under processing, but also the datum or data nearby should be taken into account. The
derivative of a time series measures the sensitivity to change of the signal value with respect to change
of time, a novel morphological method based on derivative-based structure element is proposed,

g(n) = max {f(n) + [f(a) − f(a− 1)] ∗B |a ∈ [n − (A− 1)/2, n+ (A− 1)/2]} (7)
Because the derivative varies within the window length determined by the length of structuring

element, namely A, a changing B in the structure element can bring up different added or subtracted
values according to the derivative, so as the scaled data changes with the value of A and B in the
structure element. The results are shown in Figure 2 and Figure 3. Figure 2 is the result illustrating
the effect of varying A, while Figure 3 is the result depicting the effect of varying B.

(a) (b)

Figure 2. The effect of the length of structure element on the base wavelet. (a) The original base
wavelet and signals after the novel dilation method; (b) The scaled original base wavelet and signals
after the novel dilation method.

It can be seen that the shape of the scaled signal changes with the variant A and B. Though the
shape can change with A and B, A and B are both necessary for the model as A must be an integer
and acts as a rough modeling parameter. When it is set, B acts as a delicate modeling parameter to
further detail the respiratory signal.
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(a) (b)

Figure 3. The effect of the value of structure element on the base wavelet. (a) The original base
wavelet and signals after the novel dilation method; (b) The scaled original base wavelet and signals
after the novel dilation method.

All in all, the modeling problems of nonlinearity and non-stationarity are solved by the minimum
segmentation and mathematical morphological processing. Then the final form of the respiratory signal
modeling is

g(n) =
K∑

k=1

max {f(n) + [f(a) − f(a− 1)] ∗B |a ∈ [n− (A− 1)/2, n+ (A− 1)/2]}
⎧⎪⎨
⎪⎩

n = nk k = 1

n =
K∑

k=1

kN + nk k > 1
(8)

in which nk is the nth number in the kth waveform, and it will be a dilation process if B is positive
and an erosion process if B is negative.

So the simulated respiratory signal is determined by K, which is the number of segmented
waveforms, kN , which is the number of data in the kth waveform, A, which is the length of the
morphological process, and B, which is the value of the flat structuring element. Concerning the
base waveform, it is set up by the PACM model described above.

2.4. Verification of the Morphological Model

The standard for evaluating the proposed model is the correlation coefficient between the real respiratory
signal and the simulated respiratory signal with the optimized parameters listed above. The correlation
coefficient, which is a measure of the correlation of two signals, is defined as the following equation

ρXY =
Cov(X,Y )√
D(X)

√
D(Y )

(9)

where X,Y are two time series; Cov(X,Y ) is the covariance of X and Y ; D(X) and D(Y ) are squared
deviations of X and Y , respectively.

2.4.1. Experiment Setup

An experiment was carried out to collect the UWB radar sensed human respiratory signal at the
Bioradar laboratory at the Fourth Military Medical University. 5 male and 5 female healthy volunteers
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Table 2. Key parameters of IR-UWB radar.

Parameter Value
Signal mode Impulse

Transmission peak power 0.26 W
Pulse repetition frequency 128 kHz

Operating frequency 250–750 MHz
Receive dynamic range 80 dB

Receiver sensitivity 3 dB
ADC accuracy 16 bits
Minimum step 10 ps

are recruited in this experiment. Each volunteer is asked to stand behind a brick wall, whose thickness
is 24 cm, breathing freely. An IR-UWB radar system consists of a transmitting antenna, and a receiving
antenna, whose key parameters are listed in Table 2, is deployed on the wall at the other side. The
IR-UWB radar system is with center frequency of 500 MHz and bandwidth of 500 MHz, which ensures
good penetrability and high range resolution. It complies with the definition of UWB according to the
federal communication commission (FCC). The pulse repetition frequency (PRF) is 128 kHz, and the
transmit power is 0.26 W, which is safe to the experiment subjects. In addition, the radar is controlled
by a laptop, and the data stream is transported through Wi-Fi. The distance between the human
subject and the antenna was 3 m. The experiment scenario is depicted in Figure 4.

Figure 4. Experiment scenario of human respiratory signal detection based on IR-UWB radar, Tx is
transmitting antenna, Rx is receiving antenna.

The IR-UWB radar echoes are received by the receiver antenna, sampled by the AD converter and
then stored in the laptop in the form of data matrix. The radar echo signal is stored in a form of
two-dimensional data r[m,n] = r[mδτ , nTs], where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1. The column
of the matrix represents a range profile of the IR-UWB radar data denoted as rn[m]. The row of the
matrix represents an echo signal at a range denoted as rm[n]. δτ and Ts are the sampling interval in
range (unit is nano second) and the measuring period in time (unit is second) [18].

2.4.2. Model Parameter Estimation

In order to generate the waveform to best mimic the sensed respiratory signal, optimized parameters
should be estimated. A flowchart of the model parameter estimation is depicted in Figure 5.

Firstly, detect and locate the human target by the Adaptive-multichannel singular spectrum
analysis (MSSA) method and determine the range number m [19]. Extract the row signal rm[n]
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Figure 5. Flowchart of the morphological model parameter estimation.

and regard it as the respiratory signal data sensed by the IR-UWB radar. Afterwards, analyze it
by FFT process, and the frequency is estimated. Then segment the signal into various waveforms by
the minimums. Estimate the power order n which makes the correlation coefficients largest between
the simulated and real respiratory signal. With the frequency and power order, a base wavelet can
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be generated with the PACM model. Compare the segmented waveform with the base wavelet, if the
average difference is larger than 0, then a dilation process should be used; otherwise, an erosion process
should be used. As to the parameters of dilation or erosion, namely the length of structure element,
A, and the value in it, B, a changing A (should be odd integer) from 3 to 21 and a changing B from
0.5 to 100 are applied to the morphological process. With each A and B, a correlation coefficient is
calculated, and find A and B that make the correlation coefficient largest. The chosen A and B form
an optimized structure element, and use this structure element to fulfill the morphological process. An
optimized waveform is formed. The same process should be carried out on the other waveforms, and a
sequence of optimized waveforms is generated. Sequence these waveforms up and fulfill the waveform
combination process.

2.4.3. Experiment Results

Take one subject as an example to illustrate the calculating process and the result. The respiratory
frequency is 0.5 Hz according to the FFT analysis. In the power order estimation procedure, the result
is shown in Figure 6. It can be seen that the correlation coefficient changes with the order n, and when
the n reaches 3, the correlation coefficient is at its largest value.

Figure 6. The result of power order estimation.

The respiratory signal was separated into 9 wavelets, and there will be 9 pairs of optimized
parameters to form the structure element. The parameters are listed in Table 3.

With the respiratory frequency and the optimized power order, a base wavelet is formed with the
PACM model. Compare the original PACM model and the proposed mathematical morphology model,
and the results are shown in Figure 7 and Figure 8.

It can be seen that the proposed model can better mimic the respiratory signal, and the correlation
coefficients can reach to 0.98, while that for the PACM model can only be 0.81.

It can be seen from Table 3 that the value of 2 takes most part of A, if we choose
2 as a fixed value for A, and the optimized B to best mimic the respiratory signal is
−8,−12.5,−5.5,−6,−7, 3,−22.5,−9,−16.5.

Simulate a signal with fixed A and optimized B, the simulated signal is shown in Figure 9. The
correlation coefficient between the real respiratory signal and simulated signal is 0.96. Though it is
smaller than that with the optimized A and B, which is 0.98, it is larger than that with no optimized
A and B, which is 0.81. It can be concluded that the simulated respiratory signal can better mimic the
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Table 3. The result of parameter estimation.

Wavelet Number A B

1 2 −8
2 2 −12.5
3 1 −4.5
4 3 −7
5 9 −11.5
6 1 3.5
7 10 −28
8 1 −8
9 2 −16.5

Figure 7. The comparison between the real respiratory signal and simulated signal with PACM model.

Figure 8. The comparison between the real respiratory signal and simulated signal with the proposed
model.
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Figure 9. The comparison between the real respiratory signal and simulated signal with the proposed
model with a fix length of structure element.

Table 4. The correlation coefficient with the two methods of the 10 subjects.

Subject
Correlation Coefficient

Proposed Method PACM Method
Male 1 0.96 0.83
Male 2 0.97 0.78
Male 3 0.98 0.81
Male 4 0.94 0.82
Male 5 0.95 0.83

Female 1 0.89 0.81
Female 2 0.96 0.90
Female 3 0.86 0.76
Female 4 0.95 0.83
Female 5 0.97 0.82

real respiratory signal than the original PACM model, though the result is not as good as that with a
varying A.

The experiment results of the 10 subjects are shown in Table 4, from which we can see that the
proposed morphological method shows better performance than the PACM, because non-linearity and
non-stationarity are taken into account. We can also see that some correlation coefficients are lower
than 0.9, in spite of being applied with the proposed modeling method. This is caused by the random
distortion of the waveform because of the micro-motion of the human target, which is hard to predict
in advance.

3. MODEL’S EFFECT ON THE DETECTION ALGORITHMS

The proposed method models the UWB-radar sensed human respiratory signal with a sliding structure
element applied to the base wavelet. The structure element is in a flat form with two parameters in
it: one is the length, and the other is the value in it. In an extent, the two parameters can measure
the non-linearity and non-stationarity of the UWB-radar sensed human respiratory signal. The non-
linearity and non-stationarity are the main properties of the UWB radar sensed human respiratory
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signal, compared with plain sinusoid signal.
Adaptive Line Enhancer (ALE) and Ensemble Empirical Mode Decomposition (EEMD) are two up-

to-date human target detection methods based on the UWB radar. Now that the proposed modeling
method can better mimic the UWB radar human respiratory signal, a set of respiratory signals are
generated with it. And an experiment is carried out to test which algorithm has a better performance on
extracting the respiratory signal with these simulated respiratory signals. A deviation of the parameters
will be considered as a variable, and the detection effect with this variable is studied. We fix A in the
structure element as 3 and change B to test the parameter’s effect on the detection algorithm. A series
of B is generated with a random function which can set the variance of this series. Combine the series
of waveforms into a time series and add Gaussian noise into the combined time series.

The correlation coefficient is used as an index to test the performance of the algorithms. The larger
the correlation coefficient is, the more performance the detection algorithm has.

3.1. Detection Algorithms Description

The first algorithm is adaptive line enhancer (ALE), which is a method for the detection of sinusoid
signals in wideband noise [20]. It can adaptively cancel out the noise because the respiratory signal
has strong self-correlated properties compared with the noise. A block diagram of the ALE is shown in
Figure 10.

Figure 10. Block diagram of the adaptive line enhancer.

The primary input signal is the noise-contaminated signal. The reference signal is a delayed version
of the primary input, and τ is the delay time, which should be set less than the time correlated radius.
For the adaptive filter, the tap weights of the filter are adapted by means of the Least-Mean-Square
(LMS) algorithm [21].

Another process that should be done for the adaptive line enhancer process is the time delay
estimation because the ALE processing system can cause some phase change on the input signal. With
the estimated time delay, the phase can be calibrated, then the correlation coefficient can be carried
out on the calibrated signal and the original signal. Calculate the cross coefficient between the output
signal and the original signal, and the maximum of the cross-correlation function indicates the number
of points in time where the signals are best aligned [22].

The other algorithm is the Ensemble Empirical Mode Decomposition (EEMD), which represents
a substantial improvement over the original Empirical Mode Method (EMD). EMD is a time space
analysis method. The noise is cancelled out by ‘sifting’ process, and the left part is treated as the true
and more physical meaningful answer. To overcome the mode mixing problem, Ensemble Empirical
Mode Decomposition (EEMD) is proposed, which defines the true Intrinsic Mode Function (IMF) as
the mean of an ensemble of trials [23, 24]. A flowchart of EEMD is shown in Figure 11.

The sifting process is carried out as:

1. Locate all the extrema (both maxima and minima);
2. Interpolate the maxima and minima points by cubic splines to get the upper and lower envelopes;
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Figure 11. Flowchart of ensemble empirical mode decomposition.

3. Subtract the local mean of the upper and lower envelope from the original signal to obtain the first
component h1(t);

4. Test whether h1(t) can satisfy the following two IMF conditions. (1). For the whole signal item,
the number of extrema is equal to the number of zero crossings, or one difference at the most. (2).
At any point, the mean of the maxima envelope and minima envelope should be zero, which means
that the signal is symmetric about the time axis.
If h1(t) satisfies the two conditions, it will be regarded as the first IMF1(t), IMF1(t) = h1(t), but
if h1(t) does not satisfy the conditions, h1(t) will be treated as a new signal and repeat steps 1–4
on h1(t) for k times until the two conditions are satisfied, and a new signal h1k(t) is obtained
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IMF1(t) = h1k(t);
5. Subtract IMF1(t) from the original signal and obtain the first order residual signal r2(t) and repeat

steps (1)–(4) to obtain the IMF3(t), . . . . . . , IMFN (t) and the rn(t), r3(t), . . . . . . , rN (t). This step

can be illustrated as

⎧⎨
⎩

r1(t) − IMF1(t) = r2(t)
...
rN−1 − IMFN (t) = rN (t)

;

6. A complete sifting process stops when the residue, rN (t), becomes a monotonic function from which
no more IMF can be extracted.

3.2. Result of the Comparison

The result of the comparison is shown in Figure 12. It can be seen that both ALE and EEMD can filter
out the noise to an extent (above 0.95). But for each point of standard deviation of B, the result of
EEMD method is better than that of ALE method. The correlation coefficient in the result of ALE is
in a decreasing trend along with the increase of the deviation of B, which can be seen from that the
slope of the linear trend of the correlation coefficient is negative, while the result of EEMD is generally
in a stable status against the increase of standard deviation of B as the slope of the linear trend is near
0.

Figure 12. Result of the comparison between the EEMD method and ALE method.

4. DISCUSSION

In the model setup process, the morphology model can follow the change of the real respiratory signal by
changing the parameters in the structure element, which is verified by that the correlation coefficient can
reach 0.98. The change of the morphological shape is achieved by the effect of the structure element with
the derivative of the time signal, which can keep the morphological change from the elimination effect
of scaling process. In order to simplify the model and lower the number of parameters, an examination
is carried out with A in the structure element being a fixed number and optimizing B in the structure
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element to mimic the real respiratory signal. The correlation coefficient can reach 0.96, better than the
result of original PACM model, which is 0.81, worse than the result with both optimized A and B. The
experiment result proves the efficiency of the proposed model.

An experiment with the simulated respiratory signal is carried out to study the effect of the
parameters in the model on the detection algorithms. Two algorithms are used. One is the adaptive line
enhancer (ALE), and the other is ensemble empirical mode decomposition (EEMD). The results show
that both of the algorithms can achieve the goal of de-noising, with the correlation coefficient above
0.95. However, the EEMD method shows better performance than the ALE method, proved by that
the correlation coefficient of the EEMD keeps higher than that of the ALE method. Furthermore, the
correlation coefficient in the result of ALE method is in a decreasing trend against the increase of the
deviation of B, while that in the result of EEMD method keeps stable, with a high value (average being
0.995). As the deviation of the parameters in the structure element can be a measure of non-linearity
and non-stationarity, the result indicates that the EEMD method has a better performance over the
ALE method with the increase of the non-linearity and non-stationarity of the respiratory signal.

5. CONCLUSION

This paper presents a morphological method based respiratory signal modeling. It pays attention to the
time domain information compared with the previous modeling methods. The experiment shows that
it can mimic the real respiratory signal sensed by IR-UWB radar. It is a good method to simulate the
respiratory signal, which is promising in the area of simulation and the test of human target detection
algorithm. Because the model is a time domain method, the parameters can be treated as a measure
of non-linearity and non-stationarity of the sensed respiration. The comparison result shows that the
EEMD has better performance than the ALE method, which indicates that the EEMD based human
detection algorithm has a good property to resist the non-linearity and non-stationarity.
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