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Grade Nested Array with Increased Degrees of Freedom
for Quasi-Stationary Signals

Sheng Liu, Jing Zhao*, Decheng Wu, and Hailin Cao

Abstract—In this paper a grade nested array constituted by a uniform linear array and a grade
linear array with uniformly increasing inter-element is presented. The closed-form expression of the
proposed array geometries and corresponding direction-of-arrival (DOA) estimation algorithm are
derived. Theory analysis certifies that the proposed grade nested array can provide higher degrees of
freedom (DOF) than some existing nested arrays. Some simulations are also presented to demonstrate
the improved performance of the proposed nested array for DOA estimation of quasi-stationary signals.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation based on array is one of the primary contents in array signal
processing, and it is extensively applied in mobile communication [1] and multiple input multiple
output (MIMO) radar [2, 3]. Compared with uniform arrays, sparse arrays show distinct advantage in
increasing degrees of freedom (DOF) for DOA estimation of multiple signals. Many high-performance
sparse arrays including minimum-redundancy array (MRA) [4], co-prime arrays [5, 6] and two-level
array [7] have been proposed. In various kinds of sparse arrays, MRA can provide the largest DOF
while generate the difference co-array (DCA) with consecutive virtual sensors. However, it is difficult
to give the closed-form expression of the geometries of MRA as the sensor number has been given. A
co-prime array consists of two uniform linear arrays, and a pair of co-prime integers is used to set the
inter-element spacing of the two sub-arrays. Although co-prime array can reduce the mutual coupling
between different sensors, the DOF of co-prime array is lower than MRA and two-level array.

Two-level array also consists of two uniform linear arrays, where the inter-element spacing of
the second sub-array is related to the number of the elements in the first sub-array. Because of
simple structure and relatively higher DOF, two-level nested array has been regarded widely, and many
modified nested arrays [8–12] have been presented one after another. In [8, 9] two improved nested array
configurations have been given by changing the element spacing of the second sub-array, and modified
nested arrays can offer more DOF than two-level nested array [7]. A subspace extension algorithm
based L-shaped nested array is presented to estimate the azimuth and elevation simultaneously in [10].
A DOA estimation algorithm with a special two-level nested array under unknown mutual coupling is
proposed in [11]. It can increase DOF and improve the accuracy of DOA estimation. In addition to
this, many nested arrays based fourth-order cumulants have been presented in [13–15].

The existence of periodic stationary signals [16] such as speech and audio signals is quite extensive.
In [12], a new nested array for quasi-stationary signals was proposed, and it can offer more DOF
than nested arrays [7–9]. However, the redundancy of this nested array is still higher because of the
partial uniform structure of the second sub-array. In addition to this, the closed-form expression of
corresponding DOA estimation algorithm has not been addressed.
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In this letter, a grade nested array for quasi-stationary signals is proposed. Compared with a
nested array [12], it has larger virtual array apertures and can offer more DOF. Besides, the closed-form
expression of corresponding DOA estimation algorithm can also be given.

Notation: [·]T , [·]H , E[·] and [·] denote transpose conjugate transpose, statistical expectation and
integer part, respectively. � and ⊗ stand for Khatri-Rao product and Kronecker product, respectively.

2. DATA MODEL

Consider K narrowband uncorrelated quasi-stationary signals with DOA θk, k = 1, 2, 3, . . . , K
impinging a linear array. Denote dl, l = 2, 3, . . . , L as the distance between the l-th sensor and
the first sensor, then the observation vector x(t) = [x1(t), x2(t), . . . , xL(t)]T ∈ CL×1 can be presented
as

x(t) = As(t) + n(t) (1)

where A = [a(θ1),a(θ2), . . . ,a(θK)] ∈ CL×K is the response matrix with a(θk) = [1, e−i 2π
λ

d2 sin(θk), . . . ,

e−i 2π
λ

dL sin(θk)]T ∈ CL×1; s(t) = [s1(t), s2(t), . . . , sK(t)]T ∈ CK×1 is the signal vector; λ is the wavelength
of incident signals; and n(t) represents the noise vector.

Assume that noise and signals are uncorrelated and that the length of frame is T , then we can
denote the covariance matrix of the q-th frame as [12, 16]

Rq = E{x(t)xH (t)}
= ARsqAH + Rn ∈ CL×L, ∀t ∈ [(q − 1)T, qT − 1] (2)

for q = 1, 2, . . . , Q, where Q is the number of frames.
In formula (2), Rn = E{n(t)nH (t)} is the noise covariance matrix, and Rsq = E{sq(t)sH

q (t)} is the
signal covariance matrix with the expression

Rsq = diag
{
p2

q1, p
2
q2, . . . , p

2
qK

}
(3)

3. KR-MUSIC ALGORITHM [16]

Denoting Y = [y1,y2, . . . ,yQ] and P⊥
Q = IQ − (1Q1T

Q)/Q, where yq = vec(Rq) and 1Q = [1, . . . , 1]T ∈
CQ×1, we can get

YP⊥
Q = (A∗ � A)(P⊥

QΨ)T (4)

where

Ψ =

⎡
⎢⎢⎢⎣

p2
11 p2

12 . . . p2
1K

p2
21 p2

22 . . . p2
2K

...
...

. . .
...

p2
Q1 p2

Q2 . . . p2
QK

⎤
⎥⎥⎥⎦ (5)

Performing singular value decomposition (SVD) of YP⊥
Q, we can get the signal subspace, and

MUSIC algorithm [17] can be used to estimate the DOA. More details of the KR-MUSIC and the
dimension reduction KR-MUSIC algorithms can be found in [16]. To save space, the detailed procedure
is not presented throughout this paper.

4. GRADE NESTED ARRAY

The proposed grade nested array consists of two linear arrays shown in Fig. 1. The first sub-array is
a uniform linear array, and the inter-element spacing is d. The second sub-array is a grade array with
continuously incremental inter-element spacing from Dd to (D + M − 2)d. The set of sensor locations
of the two sub-arrays can be expressed as

S1 = {nd |n = 0, 1, . . . , N − 1} (6)
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Figure 1. The configuration of grade nested array.

and

S2 =
{

(m + 1)m
2

Dd |m = 0, 1, . . . ,M − 1
}

(7)

where d ≤ λ/2 and D is a positive integer.
The difference co-array [12] set can be expressed as

Dc = Dc11 ∪ Dc12 ∪ Dc22 (8)

where Dc11 and Dc22 are two self-difference sets, and Dc12 is the cross-difference set.
As [12], we denote the number of unduplicated elements in Dc as DOF of the array. According to

Eqs. (6) and (7), Dc11, Dc22 and Dc12 can be written as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dc11 = {±(n1d − n2d)}
Dc12 =

{
±(nd − (m + 1)m

2
Dd)

}

Dc22 =
{
±

(
(m1 + 1)m1

2
Dd − (m2 + 1)m2

2
Dd

)} (9)

where n1, n2, n = 0, 1, . . . , N − 1 and m1, m2, m = 0, 1, . . . , M − 1.
In order to reduce the number of repetitive elements between Dc12 and Dc22, we let{

D ≥ N + M2/4 − 3M/2 + 1, M is even

D ≥ N + M2/4 − M + 3/4, M is odd
(10)

Assume that the number of array elements is L(L ≥ 5). Because the first sensor of the first sub-array
has the same location as the first sensor of the second sub-array, we let N = [L/2] and M = L−N + 1.
When L is even, we have N = L/2 and M = L/2 + 1. The number of nonnegative elements in Dc11 is
L/2. Since 0 ∈ Dc11, we only need to know the positive elements of Dc12 and Dc22. It is easy to know
that the number of positive elements being different from Dc11 in Dc12 is L2/4. According to Eq. (10),
removing the same elements with Dc12, the number of positive elements in Dc22 is (L2−2L)/8. When
L is odd, we have N = (L− 1)/2 and M = (L + 1)/2 + 1. The number of nonnegative elements in Dc11

is (L − 1)/2, and the positive elements being different from Dc11 in Dc12 are (L2−1)/4. According to
Eq. (10), except the same elements with Dc12, the number of positive elements in Dc22 is (L2−1)/8.

From the analysis above, combining the symmetry of Dc11, Dc22, Dc12, we can get the DOF of
proposed array as

DOF =

⎧⎪⎪⎨
⎪⎪⎩

3L2 + 2L
4

− 1, L is even

3L2 + 4L − 7
4

− 1, L is odd
(11)

For the two-level nested arrays [7], the second sub-array is also a uniform array, which limits the
number of elements in self-difference set of the second sub-array. For the improved nested arrays [8, 12],
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the second sub-array is replaced by a uniform linear array and an isolated sensor. In [9], the second sub-
array is replaced by two different uniform linear arrays. However, the DOF of the nested arrays [8, 9, 12]
is still affected by the partial uniform structure of the second sub-array.

Take 7-element array as an example to compare the DOF of different nested arrays. Since the DOF
of array [9] is lower than the nested array [8], and the configurations of two nested arrays are similar,
we only compare the proposed array with a two-level nested array [7], Yang’s array [8] and Huang’s
array [12]. For the proposed array, we let D = 5, N = 3 and M = 5. Fig. 2 shows the configurations of
four nested arrays.

Tow-level 
Nested array [7] 0 1 2 3 7 11 15

0 1 2 6

11

14 17

0 1 2 5 17 24

0 1 2 5 1811 26

Yang's nested
array [8] 

Huang's nested
array [12] 

Proposed grade 
nested array 

10

Figure 2. The configurations of four 7-element nested arrays.

The difference co-array set of sensor locations for two-level nested array [7], Yang’s array [8], Huang’s
array [12] and proposed grade nested array are D1c = {−15,−14,−13,−12,−11,−10,−9,−8,−7,−6,−5,
−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}d, D2c = {−17,−16,−15,−14,−13,−12,−11,
−10,−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}d, D3c = { −
24,−23,−22,−19,−17,−16,−15,−13,−12,−11,−10,−9,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7,
9, 10, 11, 12, 13, 15, 16, 17, 19, 22, 23, 24}d, and D4c = {−26,−25,−24,−21,−18,−17,−16,−15,−13,−11,
−10,−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 21, 24, 25, 26}d, re-
spectively. The DOF of the four arrays are 31, 35, 39, 41, respectively.

We must acknowledge that there are “holes” in the virtual array for the proposed nested array and
Huang’s nested array [12]. We know that “holes” may bring about angle ambiguity. However, when
the number of consecutive virtual sensors is large enough, the “holes” will not affect the performance
of DOA estimation. More relevant details are described in [12]. In addition, from the above example,
we can also find that the number of consecutive virtual sensors of the proposed array is larger than the
nested array [12].

5. DIMENSION REDUCTION KR-MUSIC FOR PROPOSED ARRAY

In this section, we derive the closed-form expression of DOA estimation algorithm based on the
characteristic of proposed grade nested array. We construct a selection matrix G ∈ CF×L2

with the
expression

G =
[

GT
M−1 GT

M−2 . . . GT
0 ḠT

0 . . . ḠT
M−2 ḠT

M−1

]T (12)
where F is the DOF of the proposed array.

In formula (12), Gm and Ḡm can be written as

Gm =

{
[0(N+m−1)×(N+m−1)L, IN+m−1,0(N+m−1)×(L2−(N+m−1)(L+1))], m = 1, . . . ,M − 1

[0N×(N−1)L, IN ,0N×(L2−(N−1)L−N)], m = 0
(13)

and
Ḡm =

[
JN+m−1 ⊗ eN+m 0(N+m−1)× [L2−(N+m−1)L]

]
,m = 0, . . . ,M − 1 (14)
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where eN+m = [ 0 . . . 1 . . . 0 ] ∈ C1×L is a vector with one on the (N +m)th component and zero
for other components; IN+m−1 indicates an N + m − 1 order identity matrix; and JN+m−1 denotes a
matrix with one on back-diagonal and zero for other elements.

According to Eq. (4), we denote Ȳ ∈F×Q as

Ȳ = GYP⊥
Q = G(A∗ � A)(P⊥

QΨ)T (15)

As [16], SVD of Ȳ can get the noise subspace Un, where Un is a matrix consisting of the left
singular vectors of the smallest F − k singular values. Minimizing cost function

f(θ) =
1

(G(a∗(θ) ⊗ a(θ)))HUnUH
n G(a∗(θ) ⊗ a(θ))

(16)

by multiple signal classification (MUSIC) algorithm [17], we can get the DOA estimation of all signals.
In fact, the configuration of proposed array has something in common with the other four nested

arrays [7–9, 12]. All the five arrays consist of a uniform array with small inter-element spacing and a
sparse array with large inter-element spacing. Meanwhile, all the difference co-array sets of five arrays
consist of two self-difference sets and a cross-difference set. So, a similar method can also be given for
the other four arrays.

6. SIMULATION

In order to prove the improved performance of proposed grade nested array, we give three sets of
simulation results. The nested array [8] has clear advantage over two-level nested array [7] in DOF and
the performance of DOA estimation, which has been proved in [8] and [12]. Hence, we only compare
the nested array [8] and nested array [12] with the proposed grade nested array.

First, we compare the DOF of the three nested arrays. DOF of three nested arrays versus the
number of sensors is provided in Fig. 3. Obviously, the proposed grade nested array can offer more
DOF than other two nested arrays.

Figure 3. DOF against the number of sensors.

Second, we compare the MUSIC spectra of dimension reduction KR-MUSIC for three nested arrays.
11 narrowband uncorrelated quasi-stationary signals come from the directions [−50◦, −40◦, −30◦, −20◦,
−10◦, 0◦, 10◦, 20◦, 30◦, 40◦, 50◦]. Fix the signal to noise ratio (SNR) at −5 dB, and Fig. 4 shows the
MUSIC spectra of three arrays with T = 500, Q = 40 and L = 7. Because of larger virtual aperture, the
proposed nested array can provide sharper spectral peak. From Fig. 4, we can find that the proposed
nested array can provide higher resolution than other two nested arrays.
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Figure 4. MUSIC spectra of three nested arrays.

At last, we compare the RMSE of dimension reduction KR-MUSIC for three nested arrays. The
root mean square error (RMSE) is expressed as

RMSE =

√√√√ 1
KJ

J∑
j=1

K∑
k=1

(θ̂kj − θk)2 (17)

where θ̂kj is the estimation in the jth experiment for the kth signal, and J = 200 is the number of
experiments.

The DOAs of six narrowband uncorrelated quasi-stationary signals are [−50◦, −40◦, −30◦, −20◦,
30◦, 40◦]. Let T = 500, Q = 40 and L = 7, and the RMSEs with respect to the SNR are described
jointly in Fig. 5. Fig. 6 describes the RMSEs versus the number of snapshots with SNR = 10 dB, Q = 40
and L = 7. Fig. 7 shows the RMSEs versus the number of frames with SNR = 10 dB, T = 500 and
L = 7. It can be indicated from the three figures that the estimation precision of proposed nested
array is higher than other two nested arrays in different situations. But we must point out that the
performance of three arrays degrade sharply when the number of frames is less than 25, which can be
seen in Fig. 7.

Figure 5. RMSE against SNR for three nested arrays.
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Figure 6. RMSE against the number of snapshots for three nested arrays.

Figure 7. RMSE against the number of frames for three nested arrays.

7. CONCLUSION

We present a grade nested array for quasi-stationary signals. The closed-form expression of array
geometries and corresponding DOA estimation algorithm are obtained. Because of the reduction of
redundancy, it can offer more DOF than many pre-existing nested arrays. Simulation results testify the
improved performance of proposed nested array in DOA estimation for quasi-stationary signals.
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