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Abstract—Hierarchical (H-) matrix based fast direct and iterative algorithms are presented for
acceleration of the Method of Moment (MoM) solution of the Surface-Volume-Surface Electric Field
Integral Equation (SVS-EFIE) formulated for scattering and radiation problems on homogeneous
dielectric objects. As the SVS-EFIE features the product of the integral operator mapping the tangential
equivalent electric current on the surface of the scatterer to the volume polarization current and the
integral operator mapping the volume polarization current to the tangential component of the scattered
electric field, its MoM discretization produces the product of non-square matrices. Formation of
the non-square H-matrices for the MoM discretized integral operators is described. The algorithms
for arithmetics pertinent to the product of the non-square H-matrices are explained. The memory
and CPU time complexity scaling of the required H-matrix operations are analyzed in details and
verified numerically. The numerical validation of the proposed algorithm is provided for both the low-
loss dielectric objects as well as for the high-loss biological tissues found in the bioelectromagnetics
applications. The numerical experiments demonstrate a significant reduction of memory usage and a
considerable speedup for CPU time compared to näıve MoM, thus, enabling solution of the large-scale
scattering and radiation problems with the SVS-EFIE.

1. INTRODUCTION

Electromagnetic field interactions with the biological tissues occur in many natural and staged scenarios
ranging from involuntary human body exposures to the natural and man-made sources of RF and
microwave radiation [1] to the near field radiation of the mobile [2], wearable and implanted antennas [3]
or biomedical imaging systems [4]. Understanding, prediction, and control of such interactions is
becoming of paramount importance in the design of the novel body mounted communication systems [5]
and sensor networks [6], setting up the Internet-of-Things connected home and office spaces [7],
development of smart antennas for 5G systems [8], and many other practical applications [9].

The limiting capabilities of the non-invasive experimental techniques for studies of field-to-body
interactions motivate development of computational methods [10] for accurate virtual prototyping
of such phenomenon. Due to significant inhomogeneity of the biological tissues, the methods of
computational electromagnetics (CEM) based on the direct discretization of the Maxwell Equations such
as Finite-Difference Time-Domain (FDTD) [11] and discretization of the wave equations such as the
Finite Element Method (FEM) [12] have become the most popular approaches for bioelectromagnetics
(BioEM) analysis with various commercial tools available [13, 14]. While FDTD and FEM offer great
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versatility and simplicity in implementation and parallelization, they are plagued by fundamental
limitations of error accumulation when propagation of wave phenomena over electrically large distances
is analyzed [15] and necessity to discretize the space outside the regions of interest [12]. Integral
equations (IEs) of CEM discretized with Method of Moments (MoM) [16] establish computational
frameworks free of these disadvantages. The discretization of the IEs, however, results in the dense
matrix equations which require development of sophisticated fast algorithms [15] in order to reduce the
CPU time and memory complexity associated with their solution. The detailed comparisons in terms of
the achieved accuracy and used computational resources between the differential and integral equations
based approaches in application to solution of the BioEM problems can be found in [17].

The development of fast algorithms aiding iterative solutions of the dense matrix equations [18, 19]
which result from the discretization of the IEs has reached a certain maturity [15] with Multi-Level-Fast-
Multipole-Method (MLFMM) [20–23], FFT-based methods [24–26], and Adaptive Cross Approximation
(ACA) [27, 28] methods dominating the field. The grand challenge in use of the fast iterative algorithms
though is in development of appropriate preconditioning schemes which ensure sufficiently rapid
convergence under conditions of multiscale discretization, high disparity in the material properties,
and broad range of frequencies. To date development of such preconditioning schemes has been met
with only partial success and remains a rather ’black art’ than science [29].

The recent efforts in circumventing this grand challenge posed by the lack of robustness in the
iterative schemes for the solution of the dense matrix equations have been in two areas. The first is the
construction of well-conditioned IE formulations and their appropriate discretization schemes [30], and
the second is the development of the fast methods for direct solution of the dense matrix equations [31–
38]. The non-iterative nature of the latter allows them to remain largely insensitive to the deterioration
of the IEs conditioning stemming from the multiscaling and other factors and, hence, provide robust
computational schemes under conditions where traditional iterative schemes fail.

In this work, we develop a hierarchical (H-) matrix based MoM frameworks [31, 32] for solution of
the Surface-Volume-Surface Electric Field Integral Equation (SVS-EFIE) which we recently introduced
for analysis of the scattering problems on dielectric objects [39–43]. The SVS-EFIE is a class of Single-
Source Surface Integral Equations (SSSIE) [44, 45] which reduces the number of unknowns by half
compared to the traditional surface integral-equation formulations [46, 47]. It features only one product
of electric-field type integral operators and allows for a mixed potential formulation free of hyper-singular
integrals under MoM discretization. These benefits of the SVS-EFIE come at an extra cost of computing
field translations from the scatterer surface to its volume and then from its volume back to the surface.
In the BioEM applications, computation of the field throughout the volume of the lossy body tissues
is typically required for determining of the specific absorption rate, depth of field penetration, and
localization of the high field concentration areas making SVS-EFIE particularly suitable [43] for solution
of such problems. Due to field translation to the volume of the object of interest, discretization of both
surface and volume field quantities takes place in the SVS-EFIE. As such, the memory requirements and
computational complexity of dense matrix operations and storage for näıve MoM solution of the SVS-
EFIE become prohibitive for tackling of practically important problems. To reduce the computational
and memory costs, an H-matrix based fast direct and iterative solvers are developed in this work to
accelerate MoM solution of the SVS-EFIE for 3-D scattering problems on dielectric objects.

2. FORMULATIONS AND EQUATIONS OF SVS-EFIE AND ITS MOM SOLUTION

In our previous work [40, 43], we introduced a new type of an SSSIE by combining the ideas of the
traditional volume equivalence principle and the theory of SSIEs. The SVS-EFIE formulation for 3-D
scattering problem is given by Eq. (1), where r is an observation location on the scatterer boundary ∂V ;
r′ is the position-vector of the total electric field inside the scatterer; and complex relative permittivity
ε is ε = ε + σ/(iωε0). In Eq. (1), t̂ is the tangential vector to the scatterer surface ∂V , and ω is the
cyclic frequency.

iωμ0t̂·
(
−
∮

∂V

¯̄Gε(r, r′′)·J(r′′)ds′′+k2
0 (ε− 1)

∫
V

¯̄G0(r, r′)·
∮

∂V

¯̄Gε(r′, r′′)·J(r′′)ds′′dv′
)

= t̂·Einc(r), r ∈ ∂V.

(1)
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It is convenient to express Eq. (1) in the integral-operator form

−
(
T ∂V,∂V

ε,∇Φ + TTT ∂V,∂V
ε,A

)
︸ ︷︷ ︸

T ∂V,∂V
ε

◦J +
(
TTT ∂V,V

0,∇ϕ + TTT ∂V,V
0,a

)
︸ ︷︷ ︸

T ∂V,V
0

◦
(
TTT V,∂V

ε,∇Φ + T V,∂V
ε,A

)
︸ ︷︷ ︸

T V,∂V
ε

◦J = t̂ ·Einc,
(2)

where T ∂V,∂V
ε , T ∂V,V

0 , and T V,∂V
ε are surface-to-surface, volume-to-surface, and surface-to-volume

operators, respectively. Operators T ∂V,∂V
ε , T ∂V,V

0 , and T V,∂V
ε in Eq. (2) are composed as a sum of

two integral operators corresponding to the scalar and vector potentials as detailed in [40].
In order to solve SVS-EFIE in Eq. (1) with MoM, the volume of the scatterer V is discretized

with a 3-D mesh consisting of N tetrahedron elements, and its surface ∂V is discretized with a 2-D
mesh consisting of M triangle elements. Discretization of the unknown tangential weighting function J
defined on the boundary ∂V is performed over P Rao-Wilton-Glisson (RWG) basis functions [48] as

J(r′′) ∼=
P∑

m′′=1

Im′′tm′′(r′′). (3)

Following the standard MoM procedure (described in detail in [40]), the SVS-EFIE is reduced to the
set of linear algebraic equations with respect to the unknown coefficients vector I in the expansion of
the unknown surface weighting function in Eq. (3). The MoM matrix equation structure is shown in
Fig. 1.

The surface-to-surface impedance matrix Z∂V,∂V
ε corresponding to the operator T ∂V,∂V

ε is a P × P

square matrix since the surface ∂V serves as support for both the domain and range of T ∂V,∂V
ε . The x,

y, and z components of ZZZ∂V,V
0 , translating the volume polarization current to the tangential component

of the scattered electric field and ZZZV,∂V
ε translating the unknown tangential weighting source function

to the total field inside the scatterer are handled separately and result in P × 3N and 3N × P sized
matrices. These matrices have rectangular structures since their continuous counterparts have different
range and domain supports: ∂V and V for T ∂V,V

0 and V and ∂V for T V,∂V
ε , respectively. In Fig. 1, Γ

is the Gram matrix with elements of Γn,n′ = Vn, if n = n′ and zero, otherwise, n = 1, . . . , N . Here, Vn

is the volume of the nth tetrahedron element.
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Figure 1. System of linear equations structure resulting from MoM discretization of the SVS-EFIE (1).
Here, P is the number of RWG basis functions on the boundary ∂V and N is the number of tetrahedron
elements in the volume V .

3. H-MATRIX ACCELERATION OF MOM SOLUTION

Blocks of the MoM matrices corresponding to far interactions can be compressed using ACA [27, 28] or
other low-rank factorization methods [49, 50] allowing for significant reduction of storage requirements
and fast arithmetic in H-matrix format, including H-LU decomposition and matrix-vector product
(MVP) for the fast direct and fast iterative solution of the SVS-EFIE, respectively. Since the SVS-EFIE
in Eq. (2) involves a product of integral operators with range and domain supports being different, the
H-matrix based MoM solution of the SVS-EFIE in Eq. (1) requires operations with rectangular H-
matrices and separate hierarchical interaction trees as discussed in the following subsections.
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3.1. Multilevel Geometry Partitioning

The H-matrix based MoM algorithm starts with a multilevel partitioning of discretized domains. In this
work, we use geometric based bisection [32] that performs well for relatively uniform meshes. Since two
different domains ∂V and V are discretized, two separate cluster trees are created: binary tree TS for
the test functions and binary tree TV for the basis functions (Fig. 2). To construct a surface cluster tree
TS , we start from the full index set of RWG basis/testing functions S

(0)
1 (the superscript represents the

level and the subscript represents the ID of the set within the level). Next, we determine the bounding
box for this set and partition it in half along the largest dimension to form disjoint children clusters S

(1)
1

and S
(1)
2 . The partitioning process is repeated recursively until the number of basis/testing functions

becomes less than the predetermined leafsize nmin parameter which controls the depth of the cluster
tree. The leafsize nmin is usually chosen empirically, and it is problem/hardware dependent. The cluster
tree for the volume domain TV is constructed similarly to TS with the piece-wise basis/testing functions
on the tetrahedron elements being partitioned as opposed to the RWGs. As depicted in Fig. 2, both
surface and volume basis/testing functions are hierarchically divided into an L-level tree of clusters. In
the subsequent discussion, the level � relative of the cluster S(j) at the jth level is denoted as R�(S(j)).†

S (0)
1 /V (0)

1

S (1)
1 /V (1)
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2 /V (1)

2

S (2)
1 /V (2)
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n
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 − 

Figure 2. Hierarchical partitioning of RWG basis/testing functions for surface mesh and piece-wise
basis/testing functions for volume mesh into an L-level hierarchy of clusters. TS and TV represent
surface and volume cluster trees, respectively.

3.2. H-Matrix Structure for the SVS-EFIE Operators

To approximate the impedance matrices of the MoM discretized SVS-EFIE integral operators, the
hierarchical matrix structure for each impedance matrix is constructed. The process starts by taking
the root elements of the cluster trees corresponding to the range (observer) and domain (source) of
the MoM discretized integral operator. The distance between the source and observer, and the size of
the individual clusters are calculated, and their interaction is classified as admissible or inadmissible
according to the following criterion [31]

min{diam(Bobs),diam(Bsrc)} ≤ η dist(Bobs,Bsrc) (4)

where Bobs and Bsrc are the bounding boxes of the observer and source clusters, respectively; diam(·)
and dist(·, ·) denote the Euclidean diameter and minimum distance between these bounding boxes.
In Eq. (4), parameter η is a positive real number that controls the amount of admissible blocks and
accuracy of the solver. The interactions between the test/basis functions in the clusters are considered
admissible (corresponding matrix block is rank-deficient), if the distance between the bounding boxes
† Terminology: Relatives of a cluster at all levels � higher than its own level j (i.e., � < j) are called ancestors. For example, for

cluster S
(2)
1 in Fig. 2, its relative R0(S

(2)
1 ) at level 0 is S

(0)
1 , e.g., R0(S

(2)
1 ) = S

(0)
1 . Similarly, level 1 relative R1(S

(2)
1 ) of S

(2)
1 is S

(1)
1 .

Relatives of a cluster at its own level (i.e., � = j) R2(S
(2)
1 ) = {S(2)

1 , S
(2)
2 } are the cluster itself and its sibling R2(S

(2)
1 ) = S

(2)
2 . Also,

relatives of a cluster at levels � lower than its own level (i.e., � > j) are called descendants, e.g., R3(S
(2)
1 ) = {S(3)

1 , S
(3)
2 }.
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is sufficiently large in Eq. (4). Otherwise, the interactions at this level are classified as inadmissible
and interactions between all the children of both the source and observer clusters are examined on
admissibility recursively until the leaf level is reached. To demonstrate the described process, the
construction of H-matrix structure for the volume-to-surface operator ZZZ∂V,V

0 of SVS-EFIE is visualized
in Fig. 3. Here, the spheroid model [17] is chosen as an example, and four-level surface and volume
cluster trees for its test and basis functions are constructed. As demonstrated in Fig. 3, to construct an
H-matrix structure for ZZZ∂V,V

0 , TS is chosen as the observer tree Tobs and TV chosen as the source tree
Tsrc. The process starts from the interaction between the whole set of surface testing functions S

(0)
1 and

volume basis functions V
(0)
1 and continues recursively by applying admissibility criterion in Eq. (4).
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Figure 3. H-matrix representation of the volume-to-surface MoM impedance matrix ZZZ∂V,V
0 arising

from TS×V interaction tree. The structure is constructed using an spheroid model with its surface tree
TS as observer tree and volume tree TV as source tree with tree depth L = 3. Red blocks represent
inadmissible blocks and green blocks represent admissible blocks.

To solve the SVS-EFIE, H-matrix structures have to be constructed for each of the three operators
(Fig. 1):

• Z∂V,∂V
ε : TS is chosen for both source Tsrc and observer Tobs trees. Therefore, as shown in Fig. 4,

the corresponding surface-to-surface square H-matrix arising from TS×S interaction tree has the
total size of P × P .

• ZZZ∂V,V
0 : For volume-to-surface interactions, Tsrc = TV and Tobs = TS . The corresponding rectangular
H-matrix arising from TS×V interaction tree is shown in Fig. 4 and has the total size of P × 3N .

• ZZZV,∂V
ε : For surface-to-volume interactions, Tsrc = TS and Tobs = TV . Therefore, as shown in Fig. 4,

the volume-to-surface rectangular H-matrix arising from TV×S interaction tree has the total size
of 3N × P .

3.3. Filling H-Matrices of the SVS-EFIE Operators

Figure 4 depicts the constructed H-matrices, where red blocks represent inadmissible blocks that will
be stored without any approximation in a full-matrix (F) format. For the green blocks corresponding
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Figure 4. Assembly of ZSVS MoM H-matrix from the individual H-matrices of SVS-EFIE operators:
Z∂V,∂V

ε arising from TS×S interaction tree, ZZZ∂V,V
0 arising from TS×V , and ZZZV,∂V

ε arising from TV×S via
formatted multiplication and addition (8) required by a H-LU based direct solution of the SVS-EFIE.

to admissible interactions, ACA algorithm [27] is used to obtain the blocks in a compressed low-rank
(R) format:

R︸︷︷︸
m×n,k(τACA)

= A︸︷︷︸
m×k(τACA)

× BH︸︷︷︸
n×k(τACA)

(5)

where m and n are the row and column sizes of the block, and k(τACA) is the revealed rank with the
accuracy of the approximation controlled by the ACA truncation threshold τACA. The complexity of
the ACA is linearly proportional to the size of the block and reveals rank k(τACA) [27].

4. H-MATRIX FAST ITERATIVE AND DIRECT SOLUTIONS

After H-matrix approximations are constructed for each discretized integral operator entering SVS-
EFIE, the resultant system of linear algebraic equations(

Z∂V,∂V
ε ⊕ZZZ∂V,V

0 ⊗ZZZV,∂V
ε

)
⊗ I = V, (6)

has to be solved, with ⊗ and ⊕ being the operations of formatted multiplication and addition described
later in this section. In this paper, we consider both H-GMRES iterative and H-LU direct solution
approaches. To solve the system using iterative H-GMRES method, at each iteration the MVPs ZSVS⊗I

are performed via formatted multiplication i = ZZZV,∂V
ε ⊗I followed by formatted multiplication ZZZ∂V,V

0 ⊗i

and its addition to the result of the formatted multiplication Z∂V,∂V
ε ⊗ I, as follows:

ZSVS ⊗ I = Z∂V,∂V
ε ⊗ I + ZZZ∂V,V

0 ⊗ZZZV,∂V
ε ⊗ I. (7)

In contrast to the iterative method, the construction of the ZSVS combining all three approximated
integral operators entering the SVS-EFIE is required to solve the system directly. After the final ZSVS

MoM H-matrix is assembled as (Fig. 4)

ZSVS = Z∂V,∂V
ε ⊕ ZZZ∂V,V

0 ⊗ ZZZV,∂V
ε , (8)

H-LU decomposition followed by H-back-substitution is applied in order to solve the system of linear
equations using the H-matrix arithmetic [31]. To elaborate, let’s consider how resultant P × P H-
matrix ZSVS is formed through combining the H-matrices for the individual SVS-EFIE operators using
approximate H-arithmetic (Fig. 4).
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The key steps of constructing ZSVS are given in Algorithms 1 and 2. The procedure starts from a
call to a recursive function MulAdd (Z∂V,∂V

ε , ZZZ∂V,V
0 , ZZZV,∂V

ε , ∂V , ∂V , V ) (see line 1 in Algorithm 1) with
SVS-EFIE H-matrices, where ∂V ∈ TS and V ∈ TV are the root-level clusters in Fig. 2. This function
performs recursive block matrix-matrix multiplication of ZZZ∂V,V

0 and ZZZV,∂V
ε and adds it to Z∂V,∂V

ε in
order to form the resultant ZSVS.

As long as all input matrices for this function are in H-format, the function calls itself for the
corresponding sub-blocks (line 8, Algorithm 1). However, if at a certain level a block r1 × r2 of
Z∂V,∂V

ε (Z∂V,∂V
ε |r1×r2) is in R-format (i.e., it is a leaf), while the other function arguments ZZZ∂V,V

0 |r1×s

and ZZZV,∂V
ε |s×r2 are still in H-format, the function MulAdd (. . . ) calls itself only with the required

part Z ′∂V,∂V
ε |ri×rj (corresponding to (ri × rj) child of (r1 × r2)) of Z∂V,∂V

ε |r1×r2 in R-format that is
returned through GetPartR (. . . ) function (line 10, Algorithm 1). Subsequently, the child Z∂V,∂V

ε |ri×rj

of Z∂V,∂V
ε |r1×r2 will be overwritten by the matrix Z ′∂V,∂V

ε |ri×rj (line 12, Algorithm 1) resulting from
the recursive call to multiplication and addition function MulAdd (. . . ) (line 11, Algorithm 1).

If Z∂V,∂V
ε |r1×r2 ∈ F (lines 17–28, Algorithm 1), the resultant matrix of ZZZ∂V,V

0 |r1×s ⊗ ZZZV,∂V
ε |s×r2

has to be stored in F-format. Hence, a näıve multiplication and addition can be performed (line 28,
Algorithm 1) after conversion of the arguments ZZZ∂V,V

0 |r1×s and ZZZV,∂V
ε |s×r2 to the F-format (see lines

19, 21, 24, 26 in Algorithm 1). The recursive function H-ApproxF (M ←M ′′′) is depicted in Fig. 5(a)
for an example of an H-matrix with depth L = 2. Here, H-matrix M ′′′ is converted to a block M
in F-format by converting R-blocks to F (M ′′ ← M ′′′) and coarsening the structure in the next two
recursive steps (M ←M ′ ←M ′′).

(a)

(b)

M M ' M '' M ''' 

Figure 5. (a) Recursive function H-ApproxF (M → M ′′′) converting an F-block M to an H-
matrix M ′′′. This procedure can also be implemented in the opposite order as F-ApproxH (M ′′′ →M).
(b) Recursive function H-ApproxR (M → M ′′′) converting an R block M to an H-matrix M ′′′. If H-
matrix M ′′′ has depth of L, then L-step recursion (e.g., M →M ′′) and one final step (e.g., M ′′ →M ′′′)
are needed for both cases (a) and (b). Here, to simplify the depiction, the depth of M ′′′ is considered
to be L = 2 which leads to 3 steps conversion.

If Z∂V,∂V
ε |r1×r2 is in H- or R-format, and the leaf level is reached for any of ZZZ∂V,V

0 |r1×s or ZZZV,∂V
ε |s×r2

(lines 29–30, Algorithm 1), their product will be computed and stored as R or F . Here (line 30,
Algorithm 1), the function FmtMulAdd (see Algorithm 2) performing formatted multiplication (at
leaves) and addition [31] is called:

• If any of ZZZ∂V,V
0 |r1×s or ZZZV,∂V

ε |s×r2 ∈ R (lines 2–9, Algorithm 2), the result of the multiplication
is stored as R. Hence, if ZZZ∂V,V

0 |r1×s is H (line 3, Algorithm 2), recursive function HmulR (. . .)
depicted in Fig. 6 is called to perform H ⊗ R and store the result as R (line 4, Algorithm 2).
Otherwise (lines 5–6, Algorithm 2), recursive function RmulH (. . .) is called to perform R ⊗ H
that is similar to HmulR (. . .) in Fig. 6. As it is shown in Fig. 6, these two functions include the
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truncation step TrunR+R
k′′←k+k′ (. . . ) which is depicted in Fig. 7(a). This operation can be performed

by truncating the singular values of the matrix block stored in an R-format in Eq. (5) that can be
done fast using reduced singular value decomposition (rSVD) [51, 7.1.1].

• If neither ZZZ∂V,V
0 |r1×s nor ZZZV,∂V

ε |s×r2 are in R-format (i.e., one of them is in F-format), the
multiplication result matrix Z ′ ∂V,∂V

ε |r1×r2 has to be stored in F-format (lines 10–18, Algorithm 2).

Algorithm 1 Multiplication and addition of H-matrices

Inputs: matrices Z∂V,∂V
ε |r1×r2 , ZZZ∂V,V

0 |r1×s, and ZZZV,∂V
ε |s×r2, clusters r1, r2 ∈ ∂V and s ∈ V .

Output: ZSVS = Z∂V,∂V
ε ⊕ (ZZZ∂V,V

0 ⊗ZZZV,∂V
ε )

1: MulAdd(Z∂V,∂V
ε |∂V×∂V , ZZZ∂V,V

0 |∂V×V , ZZZV,∂V
ε |V×∂V , ∂V , ∂V , V )

2: function MulAdd(Z∂V,∂V
ε |r1×r2 , ZZZ∂V,V

0 |r1×s, ZZZV,∂V
ε |s×r2, r1, r2, s)

3: if (Z∂V,∂V
ε |r1×r2 ∈ {H or R}) and (ZZZ∂V,V

0 |r1×s ∈ H) and (ZZZV,∂V
ε |s×r2 ∈ H) then

4: for all ri children of r1 do
5: for all rj children of r2 do
6: for all sk children of s do
7: if Z∂V,∂V

ε |r1×r2 ∈ H then
8: MulAdd(Z∂V,∂V

ε |ri×rj , ZZZ∂V,V
0 |ri×sk

,
ZZZV,∂V

ε |sk×rj , ri, rj, sk)
9: else if Z∂V,∂V

ε |r1×r2 ∈ R then
10: Z ′ ∂V,∂V

ε |ri×rj=GetPartR(Z∂V,∂V
ε |r1×r2)

{GetPartR returns a part of matrix Z∂V,∂V
ε in R-format corresponding to ri × rj child

of r1 × r2}
11: MulAdd(Z ′ ∂V,∂V

ε |ri×rj , ZZZ∂V,V
0 |ri×sk

,
ZZZV,∂V

ε |sk×rj , ri, rj, sk)
12: UpdatePartR(Z∂V,∂V

ε |ri×rj , Z
′ ∂V,∂V
ε |ri×rj)

{UpdatePartR rewrites part of matrix Z∂V,∂V
ε corresponding to ri × rj with Z ′ ∂V,∂V

ε }
13: end if
14: end for
15: end for
16: end for
17: else if Z∂V,∂V

ε |r1×r2 ∈ F then
18: if ZZZ∂V,V

0 |r1×s ∈ H then
19: H-ApproxF(F ← ZZZ∂V,V

0 |r1×s) {Fig. 5(a)}
20: else if ZZZ∂V,V

0 |r1×s ∈ R then
21: convert ZZZ∂V,V

0 |r1×s to F
22: end if
23: if ZZZV,∂V

ε |s×r2 ∈ H then
24: H-ApproxF(F ← ZZZV,∂V

ε |s×r2)
25: else if ZZZV,∂V

ε |s×r2 ∈ R then
26: convert ZZZV,∂V

ε |s×r2 to F
27: end if
28: Z∂V,∂V

ε |r1×r2+ = ZZZ∂V,V
0 |r1×s ×ZZZV,∂V

ε |s×r2 {näıve}
29: else if (Z∂V,∂V

ε |r1×r2 ∈ {H or R}) and (ZZZ∂V,V
0 |r1×s /∈ H or ZZZV,∂V

ε |s×r2 /∈ H) then
30: FmtMulAdd(Z∂V,∂V

ε |r1×r2 , ZZZ∂V,V
0 |r1×s, ZZZV,∂V

ε |s×r2, r1, r2, s)
31: end if
32: return
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Hence, for any of ZZZ∂V,V
0 |r1×s or ZZZV,∂V

ε |s×r2 in H-format, they will be converted to the F using H-
ApproxF (M ←M ′′′) in Fig. 5(a) and then näıve multiplication is performed on the two F-blocks.

Algorithm 2 Formatted multiplication (at leaves) and addition

Inputs: matrices Z∂V,∂V
ε |r1×r2 , ZZZ∂V,V

0 |r1×s, and ZZZV,∂V
ε |s×r2, clusters r1, r2 ∈ TS and s ∈ TV .

Output: Z∂V,∂V
ε |r1×r2 = Z∂V,∂V

ε |r1×r2 ⊕ (ZZZ∂V,V
0 |r1×s ⊗ZZZV,∂V

ε |s×r2)

Require: (Z∂V,∂V
ε |r1×r2 ∈ {H or R}) and (ZZZ∂V,V

0 |r1×s /∈ H or ZZZV,∂V
ε |s×r2 /∈ H)

1: function FmtMulAdd(Z∂V,∂V
ε |r1×r2 , ZZZ∂V,V

0 |r1×s, ZZZV,∂V
ε |s×r2, r1, r2, s)

FORMATTED MULTIPLICATION:
2: if (ZZZ∂V,V

0 |r1×s ∈ R) or (ZZZV,∂V
ε |s×r2 ∈ R) then {the result of multiplication Z ′∂V,∂V

ε |r1×r2 is stored
as R}

3: if ZZZ∂V,V
0 |r1×s ∈ H then

4: Z ′ ∂V,∂V
ε |r1×r2 = HmulR(ZZZ∂V,V

0 |r1×s,ZZZ
V,∂V
ε |s×r2)

{Fig. 6}
5: else if ZZZV,∂V

ε |s×r2 ∈ H then
6: Z ′ ∂V,∂V

ε |r1×r2 = RmulH(ZZZ∂V,V
0 |r1×s,ZZZ

V,∂V
ε |s×r2)

{Fig. 6}
7: else
8: Z ′ ∂V,∂V

ε |r1×r2 = ZZZ∂V,V
0 |r1×s ·ZZZV,∂V

ε |s×r2

9: end if
10: else if (ZZZ∂V,V

0 |r1×s ∈ F) or (ZZZV,∂V
ε |s×r2 ∈ F) then {Z ′∂V,∂V

ε |r1×r2 is stored as F}
11: if ZZZ∂V,V

0 |r1×s ∈ H then
12: H-ApproxF(F ← ZZZ∂V,V

0 |r1×s) {Fig. 5(a)}
13: end if
14: if ZZZV,∂V

ε |s×r2 ∈ H then
15: H-ApproxF(F ← ZZZV,∂V

ε |s×r2) {Fig. 5(a)}
16: end if
17: Z ′ ∂V,∂V

ε |r1×r2 = ZZZ∂V,V
0 |r1×s ·ZZZV,∂V

ε |s×r2

18: end if
FORMATTED ADDITION:

19: if (Z∂V,∂V
ε |r1×r2 ∈ H) and (Z ′ ∂V,∂V

ε |r1×r2 ∈ F) then
20: H-ApproxF(Z ′ ∂V,∂V

ε |r1×r2 → Z∂V,∂V
ε |r1×r2)

{Fig. 5(a)}
21: else if (Z∂V,∂V

ε |r1×r2 ∈ H) and (Z ′ ∂V,∂V
ε |r1×r2 ∈ R) then

22: H-ApproxR(Z ′ ∂V,∂V
ε |r1×r2 → Z∂V,∂V

ε |r1×r2)
{Fig. 5(b)}

23: end if
24: if Z∂V,∂V

ε |r1×r2 ∈ H then
25: TrunH+H

k′′←k+k′(Z∂V,∂V
ε |r1×r2 , Z

′ ∂V,∂V
ε |r1×r2)

{Fig. 7(b)}
26: else {Z∂V,∂V

ε |r1×r2 ∈ R}
27: if Z

′ ∂V,∂V
ε |r1×r2 ∈ F then

28: convert Z
′ ∂V,∂V
ε |r1×r2 to R

29: end if
30: TrunR+R

k′′←k+k′(Z∂V,∂V
ε |r1×r2 , Z

′ ∂V,∂V
ε |r1×r2)

{Fig. 7(a)}
31: end if
32: return Z∂V,∂V

ε |r1×r2
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Figure 6. Recursive function RmulH X(R,H) performing formatted multiplication of R- and H-blocks
and storing the result in R-format. The recursive function HmulR (H,R) is defined similarly with an
opposite order of operations. Here, to simplify the depiction, the depth of H-matrix is considered to be
L = 1. In general, H-blocks of various depths occur.
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Figure 7. Procedures to re-compress the addition of two matrices. (a) Function
TrunR+R

k′′←k+k′(Z∂V,∂V
ε |r1×r2, Z

′ ∂V,∂V
ε |r1×r2, τH) for addition and truncation of two matrices in R-format.

(b) Recursive function TrunH+H
k′′←k+k′(Z∂V,∂V

ε |r1×r2 , Z
′ ∂V,∂V
ε |r1×r2, τH) for addition and truncation of two

H-matrices. Again, to simplify the depiction, the depth of H-matrices in (b) is considered to be L = 1.
The resultant compressed blocks with revealed rank k′′ are represented as dashed blocks.

As it is shown in Algorithm 2, after formatted multiplication the formatted addition is performed.
Before adding the multiplication result matrix Z ′ ∂V,∂V

ε |r1×r2 to the matrix of Z∂V,∂V
ε |r1×r2 , the format

of Z∂V,∂V
ε |r1×r2 is checked (lines 19–31, Algorithm 2):

• If Z∂V,∂V
ε |r1×r2 ∈ H the structure of Z ′ ∂V,∂V

ε |r1×r2 , which is in either F or R format, is converted to
the hierarchical structure of Z∂V,∂V

ε using H-ApproxF (M → M ′′′) or H-ApproxR (M → M ′′′) in
Fig. 5, respectively (lines 20 and 22, Algorithm 2). After matching the structures, we add these two
H-matrices and then compress the new created H-matrix using TrunH+H

k′′←k+k′ (. . . ) function (line 25,
Algorithm 2). As shown in Fig. 7(b), this recursive function adds two H-matrices and then re-
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compresses R-blocks from rank k + k′ to rank k′′ using rSVD [51, 7.1.1] based on the predefined
H-arithmetic tolerance τH in the new H-matrix.

• If Z∂V,∂V
ε |r1×r2 ∈ R, the structure of Z

′ ∂V,∂V
ε |r1×r2 is converted toR when it is in F-format (line 28,

Algorithm 2). Then, two R-blocks of Z∂V,∂V
ε |r1×r2 and Z

′ ∂V,∂V
ε |r1×r2 are added and compressed

through TrunR+R
k′′←k+k′ (. . . ) function with H-arithmetic tolerance τH in Fig. 7(a) (line 30,

Algorithm 2).

5. MEMORY AND COMPUTATIONAL COMPLEXITY ANALYSIS FOR H-MATRIX
SVS-EFIE

To derive the expressions for computational complexity and storage requirements, we define the sparsity
constant [31] CS×V

sp for a given interaction tree TS×V , as

CS×V
sp := max

⎧⎪⎨
⎪⎩

(a)︷ ︸︸ ︷
max
r1∈TS ,

�=0,...,L

#{s ∈ TV : r1 × s ∈ L(TS×V , �)},

(b)︷ ︸︸ ︷
max
s∈TV ,

�=0,...,L

#{r1 ∈ TS : r1 × s ∈ L(TS×V , �)}

⎫⎪⎬
⎪⎭

(9)

where the term (a) in Eq. (9) is the maximum number of interaction blocks r1 × s at the leaf level
associated with an observer cluster r1 ∈ TS , and the term (b) in Eq. (9) is the maximum number
of interaction blocks r1 × s at the leaf level associated with a source cluster s ∈ TV among all levels
� = 0, . . . , L of interaction tree TS×V . Here, L(TS×V , �) is the set of leaves at the �th level, and L is the
number of levels of TS×V . The largest of these two counts is the sparsity constant CS×V

sp of TS×V .
As an example, for theH-matrix structure in Fig. 3 the number of interaction blocks r1×s associated

with the observer cluster r1 = S
(3)
1 at level 3 is:

#
{
s ∈ TV : S

(3)
1 × s ∈ L(TS×V , 3)

}
= #

{
S

(3)
1 ×

{
V

(3)
1 , V

(3)
2 , V

(3)
3 , V

(3)
4

}}
= 4 (10)

Also, at the same level � = 3, the number of interaction blocks r1 × s associated with the observer
cluster r1 = S

(3)
3 is:

#
{

s ∈ TV : S
(3)
3 × s ∈ L(TS×V , 3)

}
= #

{
S

(3)
3 ×

{
V

(3)
1 , V

(3)
2 , V

(3)
3 , V

(3)
4 , V

(3)
5 , V

(3)
6

}}
= 6 (11)

After computing this counts for all observer clusters r1 ∈ TS in each level, the maximum number of
these counts among all four levels of this H-matrix is 6 for term (a) in Eq. (9). Analogously, for term
(b) in Eq. (9), this maximum number among all source clusters s ∈ TV in each level of the H-matrix is
6. So, the sparsity constant CS×V

sp for H-matrix in Fig. 3 is maximum between the two counts (a) and
(b) in Eq. (9), which is 6.

Since in the interaction tree TV×S the domain and range are merely switched compared to the
interaction tree TS×V , and its sparsity constant is:

CV×S
sp = CS×V

sp = Csp (12)

To simplify the notation,M(·) will be used for asymptotic memory requirement inH-matrix format,
whileMR(·) and MF (·) are for the memory required by all R- and F-blocks, respectively.

5.1. Memory Complexity for SVS-EFIE H-Matrices

The memory usage to store volume-to-surface ZZZ∂V,V
0 and surface-to-volume ZZZV,∂V

ε discretized operators
can be derived analogously to the ones for the square H-matrix [31, 32].
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To compute the storage for the rectangular H-matrix ZZZ∂V,V
0 of the size P × 3N , the storage of R-

and F-blocks is analyzed, separately. Since all F-blocks exist only at the leaf level and the number of
them scales linearly with the size of the matrix [31], the storage MF is estimated as O(n2

min(N + P )),
with nmin × nmin being the size of the full leaf blocks.

On the other hand, rank deficient bth R-block of size m(�)×n(�) at the �th level is stored as ABH

in Eq. (5), where matrix A is of size m(�) × k∂V,V
b , and matrix BH is of size k∂V,V

b × n(�). Therefore,
its storage is k∂V,V

b (m(�) + n(�)). Since, there are at most 2�Csp interaction blocks at the �th level
in the case of bisection based partitioning and considering sparsity constant definition in Eq. (9), the
complexity to store all R-blocks for ZZZ∂V,V

0 can be approximated as

MR
(
ZZZ∂V,V

0

)
≤

LS∑
�=0

2�Cspk
∂V,V
max m(�) +

LV∑
�=0

2�Cspk
∂V,V
max n(�), (13)

where LS is the number of levels in TS and LV the number of levels in TV for the ZZZ∂V,V
0 interaction

tree TS×V , b = 1, . . . , NR, and k∂V,V
max is the maximum rank revealed (e.g., by ACA) among all NR

R-blocks of ZZZ∂V,V
0 . Here, we assume k∂V,V

max to only weakly increase across the levels, hence, implying
quasi-dynamic simulation scenarios, in which the structure does not exceed several wavelengths in size.
Since m(�) = P/2� and n(�) = 3N/2� are the sizes of the row and column of each R-block at the �th
level, respectively, and LS = O(log P ) and LV = O(log N), Eq. (13) is simplified to

MR
(
ZZZ∂V,V

0

)
≤ Cspk

∂V,V
max

(
P

LS∑
�=0

1 + 3N
LV∑
�=0

1

)
= O(k∂V,V

max P log P ) +O(k∂V,V
max N log N). (14)

Therefore, the storage M(ZZZ∂V,V
0 ) is dominated by the storage of its R-blocks in Eq. (14)

M
(
ZZZ∂V,V

0

)
=MR

(
ZZZ∂V,V

0

)
+MF

(
ZZZ∂V,V

0

)
= O(k∂V,V

max (P log P + N log N)) +O(n2
min(N + P ))

= O(k∂V,V
max P log P ) +O(k∂V,V

max N log N),
(15)

where for simplicity k∂V,V
max is assumed to be of O(nmin). Note that since the H-matrix structure of ZZZV,∂V

ε

is a transpose of ZZZ∂V,V
0 , asymptotically its storage is the same

M
(

ZZZV,∂V
ε

)
= O(kV,∂V

max P log P ) +O(kV,∂V
max N log N). (16)

For P ×P matrix Z∂V,∂V
ε , the expression for the memory requirement can be derived by simplifying

Eq. (15) for a square H-matrix case:

M(Z∂V,∂V
ε ) = O(k∂V,∂V

max P log P ). (17)

where k∂V,∂V
max is the maximum rank revealed (e.g., by ACA) among all R-blocks of ZZZ∂V,∂V

ε .

5.2. Computational Complexity of H-GMRES Based Iterative Solver

The number of operations NMVP (complexity) of the MVP for an H-matrix can be bounded by the
memory required to store the H-matrix itself [32, Lemma 2.5]

NMVP(Z) ≤M(Z), Z ∈ {Z∂V,∂V
ε ,ZZZV,∂V

ε ,ZZZ∂V,V
0 } (18)

Therefore, the computational complexity for H-GMRES based solver for SVS-EFIE is composed
of three MVPs with the corresponding discretized integral operators:

NH-GMRES = Nit

(
NMVP(ZZZV,∂V

ε ) +NMVP(ZZZ∂V,V
0 ) +NMVP(Z∂V,∂V

ε )
)

= Nit (O(kmaxP log P ) +O(kmaxN log N)) ,
(19)

where Nit is the number of iterations required for GMRES to converge to a prescribed tolerance.
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5.3. Computational Complexity of H-LU Based Direct Solver

As discussed in Section 4, H-LU based direct solver has three steps, the setup ofH-matrix ZSVS involving
formatted multiplication and addition of H-matrices Z∂V,∂V

ε ⊕ZZZ∂V,V
0 ⊗ZV,∂V

ε , H-LU decomposition, and
backsubstitution. Below, we estimate computational complexity of these steps.

5.3.1. Formatted Multiplication ZZZ∂V,V
0 ⊗ZZZV,∂V

ε

As shown in Eq. (8), the complexity to setup ZSVS can be estimated through formatted multiplication
and addition of H-matrices. To simplify the analysis, at first the truncation functions TrunH+H

k′′←k+k′

(. . . ) and TrunR+R
k′′←k+k′ (. . . ) in Algorithm 2 will be considered as a simple copying of the data without

any re-compression, so k′′ = k + k′ in Fig. 7. For this scenario, the formatted multiplication of two sub-
blocks ZZZ∂V,V

0 |r1×s ⊗ZZZV,∂V
ε |s×r2 in Algorithm 1, line 30 (see also lines 4 and 6 of Algorithm 2) becomes

the exact multiplication ZZZ∂V,V
0 |r1×s ×ZZZV,∂V

ε |s×r2 in H-matrix format.
So, in Algorithm 2, each leaf block r1 × r2 at the jth level resulting from the multiplication

ZZZ∂V,V
0 |r1×s ×ZZZV,∂V

ε |s×r2 is performed with

(
ZZZ∂V,V

0 |r1×s ×ZZZV,∂V
ε |s×r2

)
|r1×r2 =

ι∑
�=0

( ∑
s∈U(r1×r2,�)

ẐZZ
∂V,V

0 |r1×s × ẐZZ
V,∂V

ε |s×r2

)
, (20)

where ι ∈ [0, L] which L is the depth of H-matrices ZZZ∂V,V
0 and ZZZV,∂V

ε . Also,

U(r1 × r2, �) =
{

s ∈ T
(�)
V : {R�(r1)× s ∈ TS×V and s×R�(r2) ∈ L(TV×S)}

or {R�(r1)× s ∈ L(TS×V )and s×R�(r2) ∈ TV×S}
}

,

(21)

and

V =
·⋃

�=0,...,ι

·⋃
s∈U(r1×r2,�)

s. (22)

In Eq. (21), R�(r1) is the relative of cluster r1 (ancestor (� < j), self (� = j), or descendant (� > j)) at

�th level, and L(TV×S) is a leaf of the TV×S interaction tree. Hence, in Eq. (20) sub-block ẐZZ
∂V,V

0 |r1×s,

or sub-block ẐZZ
V,∂V

ε |s×r2 , or both are in the leaf level of the corresponding interaction tree and are stored
as R- or F-blocks.

Since F-blocks have the size of at most nmin × nmin, H-matrix-matrix product with them requires
nmin MVPs, while the exact H-matrix-matrix product with an R-block involves k MVPs. Therefore,
to compute ZZZ∂V,V

0 |r1×s × ZZZV,∂V
ε |s×r2 in Eq. (20) at any level � will require at most max (kmax, nmin)

MVPs, where kmax is the maximum rank revealed for ZZZ∂V,V
0 and ZZZV,∂V

ε . Without loss of generality if
kmax ≥ nmin, the complexity N to compute the product of sub-blocks ZZZ∂V,V

0 |r1×s and ZZZV,∂V
ε |s×r2 can

be estimated as

N
(
ZZZ∂V,V

0 |r1×s∈L(TS×V ,�) ×ZZZV,∂V
ε |s×r2∈(TV ×S ,�)

)
≤ k∂V,V

max NMVP(ZZZV,∂V
ε |s×r2∈(TV ×S ,�))

(18)

≤ k∂V,V
max M(ZV,∂V

ε |s×r2∈(TV ×S ,�)), k∂V,V
max ≥ nmin

(23)
Similarly,

N
(
ZZZ∂V,V

0 |r1×s∈(TS×V ,�) ×ZZZV,∂V
ε |s×r2∈L(TV ×S ,�)

)
≤ kV,∂V

max M(ZZZ∂V,V
0 |r1×s∈(TS×V ,�)), kV,∂V

max ≥ nmin (24)

The overall complexity to multiply ZZZ∂V,V
0 and ZZZV,∂V

ε can be calculated by analyzing the interaction
tree TS×V × TV×S = TS×S resulting from the multiplication. By considering all resultant leaf blocks
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r1 × r2 ∈ L(TS×S, j) at the jth level of Eq. (20), j = 1, . . . , LS , the complexity estimate is

N (ZZZ∂V,V
0 ×ZZZV,∂V

ε ) ≤
LS∑
j=0

∑
r1×r2∈L(TS×S ,j)

×
L∑

�=0

∑
s∈U(r1×r2,�)

N
(

ẐZZ
∂V,V

0 |r1×s × ẐZZ
V,∂V

ε |s×r2

)
(25)

where L is the depth of H-matrices ZZZ∂V,V
0 and ZZZV,∂V

ε . By substituting Eqs. (23) and (24) into Eq. (25),
it can be written as:

N (ZZZ∂V,V
0 ×ZZZV,∂V

ε ) ≤
LS∑
j=0

∑
r1×r2∈L(TS×S ,j)

L∑
�=0

∑
s∈U(r1×r2,�)

(
kV,∂V

max M(ZZZ∂V,V
0 |r1×s) + k∂V,V

max M(ZZZV,∂V
ε |s×r2)

)
,

(26)
Considering the definition in Eq. (22) for the union of all the volume clusters s contributing to
formation of the destination block r1×r2 the operation count

∑L
�=0

∑
s∈U(r1×r2,�)(k

V,∂V
max M(ZZZ∂V,V

0 |r1×s)+

k∂V,V
max M(ZZZV,∂V

ε |s×r2)) in the summation over the volume clusters s in Eq. (26) can be simplified by
considering the root cluster V containing all volume basis/testing functions, yielding

N (ZZZ∂V,V
0 ×ZZZV,∂V

ε ) ≤
LS∑
j=0

∑
r1×r2∈L(TS×S ,j)

(
kV,∂V

max M(ZZZ∂V,V
0 |r1×V ) + k∂V,V

max M(ZZZV,∂V
ε |V×r2)

)
(27)

On the other hand, for each level j, the total number of leaf blocks r1 × r2 ∈ L(TS×S, j) in
the resultant interaction tree TS×S is bounded by 2jCS×S

sp in case of bisection based partitioning
and considering sparsity constant definition in Eq. (9). Here, 2j is the total number of observer
clusters r1 or source clusters r2 at the jth level of interaction tree TS×S . Therefore, in Eq. (27) the
number of operations (estimated via memory use) in summations

∑
r1×r2∈L(TS×S ,j)M(ZZZ∂V,V

0 |r1×V ) and∑
r1×r2∈L(TS×S,j)M(ZZZV,∂V

ε |V×r2) required for computation of the resultant leaf clusters r1×r2 at level j

can be replaced by the operation count CS×S
sp (M(ZZZ∂V,V

0 |∂V×V )+M(ZV,∂V
ε |∂V×V )) over the root cluster

∂V containing all the surface RWG basis/testing functions. So, Eq. (27) can be rewritten as:

N (ZZZ∂V,V
0 ×ZZZV,∂V

ε ) ≤
LS∑
j=0

CS×S
sp

(
kV,∂V

max M(ZZZ∂V,V
0 |∂V ×V ) + k∂V,V

max M(ZZZV,∂V
ε |V×∂V )

)
(28)

Here, M(ZZZ∂V,V
0 |∂V×V ) and M(ZZZV,∂V

ε |V×∂V ) can simply be replaced by M(ZZZ∂V,V
0 ) and M(ZV,∂V

ε )
denoting the memory use for storage of the H-matrices ZZZ∂V,V

0 and ZZZV,∂V
ε , respectively. Then, by

recalling that the depth of the surface tree is LS = O(log P ) and introducing the maximum rank kmax

for blocks of either ZZZ∂V,V
0 or ZZZV,∂V

ε (i.e., kmax = max (k∂V,V
max , kV,∂V

max )), Eq. (28) becomes

N (Z∂V,V
0 ×ZZZV,∂V

ε ) ≤ LSCS×S
sp kmax

(
M(ZV,∂V

ε ) +M(Z∂V,V
0 )

)
. (29)

Recalling the estimates for memory use Eqs. (15) and (16) we finally get the estimate for operation
count in the exact multiplication of the H-matrices

N (ZZZ∂V,V
0 ×ZZZV,∂V

ε ) = O
(
k2

maxP log2 P
)

+O
(
k2

maxN log N log P
)
. (30)

Note that the formatted multiplication ZZZ∂V,V
0 ⊗ZZZV,∂V

ε requires the truncation based on the prescribed
H-arithmetic tolerance τH of small singular values resulting from addition of the R-blocks. For that, the
rSVD with the complexity of O(n(�) + m(�))k2 + O(k3) [51, 7.1.1] is used throughout the Algorithm 2
leaving the complexity estimate of Eq. (30) correct for the formatted multiplication as well (i.e.,
N (ZZZ∂V,V

0 × ZZZV,∂V
ε ) � N (ZZZ∂V,V

0 ⊗ ZZZV,∂V
ε )) provided kmax is relatively small compared to P and N

and can be considered to be independent of them.
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5.3.2. Formatted Addition ZZZ∂V,∂V
ε ⊕ (ZZZ∂V,V

0 ⊗ZZZV,∂V
ε )

Next, the complexity of the formatted addition of two H-matrices of the size P×P required to form ZSVS

by adding Z∂V,∂V
ε and the result of ZZZ∂V,V

0 ⊗ZZZV,∂V
ε in Eq. (8) has to be considered. For formatted addition

of the square H-matrices, the estimate for number of operations is O(k2
maxP log P )+O(k3

maxP ) [31]. The
total complexity for setting up the ZSVS is composed of the complexity of the formatted multiplication
in Eq. (30) and the formatted addition as

N (ZSVS) = O
(
k2

maxP log2 P
)

+O
(
k2

maxN log N log P
)

+ O(k3
maxP ) (31)

One can see that for the problems of electrically moderate sizes with bounded rank, the complexity for
setting up the ZSVS is dominated by the complexity of the formatted multiplication in Eq. (30).

5.3.3. H-LU Decomposition and Back Substitution

To solve the matrix equations, H-LU decomposition and back substitution are applied to ZSVS. Since
ZSVS is a square H-matrix of the size P ×P , the time complexity for the H-LU decomposition and back
substitution are O(k3

maxP log2 P ) and O(k3
maxP log P ), respectively [31].

6. NUMERICAL RESULTS

To validate the accuracy of the H-matrix SVS-EFIE solver, we performed comparison of its numerical
solutions against the analytic Mie series [52] and the results obtained using FEKO commercial solver [53]
for several scattering problems. The performance of the SVS-EFIE solver for the timing and memory
requirements is shown to corroborate the asymptotic complexities derived in Section 5. In all the
numerical results, we considered the tolerance for H-matrix compression τH to be the same as the
truncation tolerance of the ACA algorithm τACA. So, for brevity τ = τACA = τH is used throughout
Section 6. The optimal values of the admissibility criterion η and leafsize nmin are usually problem
dependent and chosen empirically. The H-matrix parameters in the paper are the optimized values
for η = {1, 2, 3, 4, 5} and nmin = {8, 16, 32, 64} sets in all numerical examples. It was observed that all
combinations of these parameters are working well for the proposed solver. However, to balance between
memory use and CPU time we run the numerical example for different parameters and empirically find
that η = 4 and nmin = 16 provide better time and memory performance for certain numerical examples
of this paper.

6.1. Dielectric Sphere

In the first example, we consider scattering on a dielectric sphere of radius R = 0.1m and relative
dielectric permittivity ε = 1.5 excited by a radial dipole with the dipole moment I� = 1[A ·m].

To demonstrate the behavior of the error in H-matrix accelerated MoM solution of SVS-EFIE and
its reduction with the decrease of ACA truncation threshold τ , we consider dielectric sphere excitation
by a z-directed electric dipole at 3GHz situated above the north pole of the sphere 0.4m away from
the origin. The behavior of the average relative error (δ) of both H-matrix accelerated MoM solution
and direct MoM solution of the SVS-EFIE [40] with respect to the Mie series solution is depicted as
a function of τ in Fig. 8 for three different mesh densities, h = λ/10, λ/20, and λ/30, h being the
characteristic size of mesh elements. The results demonstrate that H-matrix accelerated MoM solution
with τ ≤ 10−3 does not produce any substantial increase in accuracy compared to the direct MoM
solution. On the other hand, the compression ratio (CR) of the overall MoM memory use in SVS-EFIE
is shown for different τ in Table 1, where

CR =
(

1− Mem. H-matrix SVS-EFIE
Mem. direct MoM SVS-EFIE [40]

)
× 100%. (32)

From Fig. 8 and Table 1 it can be seen that the proposed solver has a good compression for τ = 10−3

with an acceptable error level. So, the ACA truncation threshold is set to τ = 10−3 for the other
examples of this paper.
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Table 1. Memory compression ratio (32) for the H-matrix accelerated MoM solution of the SVS-EFIE
for the dielectric sphere excitation problem with different mesh densities (h = λ/10, λ/20, and λ/30).

τ CR% (h = λ/10) CR% (h = λ/20) CR% (h = λ/30)

10−1 62 87 93
10−2 48 82 90
10−3 31 75 86
10−4 7 55 80
10−5 0 20 63

ACA truncation threshold (τ)

τ

Figure 8. Average relative error δ of both H-matrix accelerated MoM solution for dielectric sphere
excitation problem with different mesh densities (h = λ/10, λ/20, and λ/30) with respect to the Mie
series solution as a function of ACA truncation tolerance τ . The error in the direct MoM solution of
SVS-EFIE [40] is shown for reference.

To analyze the H-matrix acceleration performance for MoM solution with large number of degrees
of freedom (DoF), we examine the memory usage by theH-matrices and CPU time used for pertinentH-
matrix operations in comparison with those in the direct MoM solution [40]. For this study, the dielectric
sphere with mesh density h = λ/10 over the frequency range from 4GHz to 10GHz is considered.

In Fig. 9(a), the memory usage for Z∂V,∂V
ε is demonstrated as a function of number of RWG basis

functions P . Its H-matrix MoM scaling behaves as O(P log P ) confirming the theoretical estimates
in Eq. (17). In addition, the memory requirement of ZZZ∂V,V

0 and ZZZV,∂V
ε is also depicted in Fig. 9(b)

with respect to the total number of surface and volume DoFs X = 3N + P . It can be seen that
the numerically observed memory scaling of O(N log N) +O(P log P ) for H-matrix MoM confirms the
theoretical estimates in Eqs. (15) and (16).

Next, in Figs. 9(c) and (d), the time required to fill the compressed H-matrices is plotted.
Fig. 9(c) shows the time to fill Z∂V,∂V

ε that behaves as O(P log P ) for H-matrix solver. Also, the
CPU time to fill ZZZ∂V,V

0 and ZZZV,∂V
ε is plotted as a function of total number of surface and volume

DoFs X = 3N + P in Fig. 9(d). One can observe fill time complexities of O(N log N) + O(P log P )
which is of the same order as the memory use complexity in Eqs. (15) and (16). In addition, the
set up time for creating ZSVS as a part of the H-LU direct method is depicted in Fig. 9(e) with the
complexity of O(N log N log P ) +O(P log2 P ) which confirms the theoretical analysis in Eq. (31). The
time complexities for H-LU decomposition and back-substitution are also plotted in Fig. 9(f) with
scaling of O(P log2 P ) and O(P log P ), respectively [31].

For the same scattering problem, the computational time using H-GMRES iterative method is
plotted in Fig. 9(g). In the first study, the number of iterations is fixed to Nit = 1000 and the time
is plotted in blue triangles as a function of number of DoFs leading to Nit(O(N log N) + O(P log P ))
scaling. In the second study, to show the convergence behavior of H-GMRES iterative SVS-EFIE, the
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iterative solver tolerance is set to 10−6, and the solution time is depicted in red crosses in the same
figure.

In this study, the dielectric sphere having ε = 1.5 has a relatively small electrical radius ranging
from R = 1.6λ to R = 4λ in the considered frequency range from 4GHz to 10GHz. Therefore, the
maximum rank will be approximately constant for all H-matrices [50] in the entire frequency range.
It can be seen from Figs. 9(a)–(f) that the memory requirement and CPU time scale according to the
constant rank assumption.
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Figure 9. Scaling behavior of both H-matrix (dashed lines) and direct (solid lines) MoM SVS-EFIE
for the dielectric sphere with mesh density h = λ/10 across the frequency range from 4GHz to 10GHz.
(a) Memory for Z∂V,∂V

ε . (b) Memory for ZZZ∂V,V
0 and ZZZV,∂V

ε . (c) Set up time for Z∂V,∂V
ε . (d) Set up

time for Z∂V,V
0 and ZZZV,∂V

ε . (e) Set up time for ZSVS as a part of H-LU-based direct solver. (f) Solution
time for H-LU-based direct method (H-LU factorization and back substitution). (g) Solution time for
H-GMRES-based iterative method (fixed Nit = 1000 and fixed residual 10−6 cases).
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6.2. Dielectric NASA Almond

In order to show the behaviour of SVS-EFIE solution for a non-smooth geometry featuring a sharp
corner, we consider an accelerated MoM solution for the analysis of a dipole radiation near NASA
almond [54] target at 3GHz. The target has a relative permittivity ε = 12 and a size of 0.252m,
0.0976m, and 0.0325m along x, y, and z axii, respectively. The model is excited by the electric dipole
directed along the short axis of the almond (z axis in Fig. 10) and situated on the long axis (x axis in
Fig. 10) 0.8528m away from almond’s tip. The electric dipole moment is I� = 1[A ·m]. In this example,
the number of triangles in the MoM discretization on the boundary ∂V is M = 11, 994, the number
of edges is P = 17, 991, and the number of tetrahedrons in the volume V is N = 191, 440 which leads
to 592, 311 number of volumetric and surface DoFs. Distribution of the magnitude of the total electric
field using accelerated SVS-EFIE is depicted in Fig. 10. In order to validate theH-matrix MoM solution
of SVS-EFIE, MoM solution via surface equivalence principle (SEP) for the same radiation problem is
obtained using FEKO commercial software [53]. The magnitudes of the total electric fields along the x
and y axes of the almond are depicted in the same Fig. 10 for both the H-matrix based MoM solution
of SVS-EFIE and MoM solution from FEKO with an observed good agreement between the two.

-matrix SVS-EFIE

3.5e− 7

2.6e− 7

1.7e− 7

8.8e− 8

1.0e− 9

|E | (V / m)
-matrix SVS-EFIE vs. FEKO (MoM-SEP)

|E
|(

V
/m

)

x (m) y (m)

z

x

y

Figure 10. Magnitude of the total electric field at 3GHz inside the dielectric NASA almond model
with the relative dielectric permittivity ε = 12. A 3-D representation of the total electric field obtained
from H-matrix SVS-EFIE is in the left plot. The distribution of the magnitude of the total electric field
along the x and y axes for the H-matrix SVS-EFIE and FEKO solutions are shown in the right plots.

6.3. Austin Benchmark Suite for Computational Bioelectromagnetics

Another example considers the scattering problems on a human head sized sphere and a human body
sized spheroid from Austin Benchmark Suite [17]. Both models are filled with a tissue-equivalent
homogeneous material [55] with frequency dependent relative dielectric permittivity and conductivity
as listed in Table 2. The sphere has a radius of R = 0.108m, and the spheroid model has minor
and major axes of 0.344m, and 1.76m, respectively, with its major axis aligned with the z-axis. The
scattering problem is solved at three frequencies in the UHF band: 402MHz, 900MHz, and 2.45GHz.

Table 2. Values of tissue-equivalent material relative dielectric permittivity and conductivity [55].

402MHz 900MHz 2.45GHz

εr σ εr σ εr σ

44.7 0.87 41.5 0.97 39.2 1.80

6.3.1. Homogeneous Human Head-Sized Sphere

The model is excited by the same dipole used for dielectric sphere example in Section 6.1 that is situated
above the north pole of the sphere 0.4m away from the origin. Distribution of the computed field is
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Figure 11. Magnitude of the total electric field inside the human head-sized sphere produced by a
z-directed electric dipole situated at x′ = 0m, y′ = 0m, z′ = 0.4m obtained by the H-matrix solver
at (a) 900MHz (b) 2.45GHz. The relative error distribution with respect to the Mie series solution is
shown in (c) and (d).

depicted in Fig. 11 at 900MHz and 2.45GHz. In this example, the number of triangles in the MoM
discretization on the boundary ∂V is M = 17, 262, the number of edges is P = 25, 893, and the number
of tetrahedrons in the volume V is N = 263, 309 that leads to total 815, 820 number of DoFs. The
numerical solutions of the radiation problem obtained using the proposed method at 900MHz and
2.45GHz are shown in Figs. 11(a) and (b), respectively. The relative error between the H-matrix SVS-
EFIE solution and the Mie series solution is depicted in Figs. 11 (c) and (d) for 900MHz and 2.45GHz,
respectively. The average relative error in the solution at 900MHz is below 0.006 with a standard
deviation of 0.002. Also, the solution of the same problem at 2.45GHz has an average error of 0.049
with a standard deviation of 0.018.

6.3.2. Homogeneous Human Body-Sized Spheroid

The spheroid model is excited by a uniform z-polarized plane-wave traveling in the +x-direction. In
this example, the number of triangles in the MoM discretization on the boundary ∂V is M = 15, 804;
the number of edges is P = 23, 706; and the number of tetrahedrons in the volume V is N = 206, 431
which leads to 642, 999 number of DoFs. Distribution of the magnitude of the total electric field using
H-matrix accelerated MoM solution of SVS-EFIE is depicted in Fig. 12 for 402MHz and 900MHz. The
magnitude of the total electric field along the x and z axes are also depicted in the same Fig. 12 for the
case of H-matrix based MoM solution of SVS-EFIE and FEKO’s MoM solution with an observed good
agreement between the two.
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Figure 12. Magnitude of the total electric field inside the human body-sized spheroid produced by a
uniform ẑ-polarized plane-wave traveling in the +x direction at 402 MHz and 900 MHz obtained by the
H-matrix SVS-EFIE. The distribution of the magnitude of total electric field along the x and z axes
for H-matrix SVS-EFIE and FEKO solutions are shown in the right.
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7. CONCLUSION

A new H-matrix based direct and iterative algorithms are developed for the fast Method of Moments
(MoM) solution of the Surface-Volume-Surface Electric Field Integral Equation (SVS-EFIE). The new
computational framework allows for the iterative solution of 3-D scattering and radiation problems on
homogeneous non-magnetic dielectrics with O(N log N)+O(P log P ) CPU time and memory complexity
and their direct solution with O(N log N log P ) + O(P log2 P ) CPU time and O(N log N) + O(P log P )
memory complexity for problems of moderate electrical size, N being the number of tetrahedrons in
the volume and P being the number of surface unknowns produced by the MoM discretization. The
H-matrix arithmetics used to form and operate with the rectangular matrices produced by the MoM
discretization of SVS-EFIE is described in details, as well as the associated computational and memory
complexity estimates. The proposed accelerated method is shown to provide an efficient compression
of the MoM impedance matrix which leads to significant reduction of the memory usage and the CPU
time. Solution of the 3-D scattering problems of moderate electrical sizes which feature large number of
associated degrees of freedom is demonstrated for both the dielectrics with low loss levels and the
biological tissues exhibiting substantial loss. The method is particularly effective for the solution
of scattering and radiation problems in bioelectromagnetics which require computation of the fields
throughout the volume of the objects.
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