
Progress In Electromagnetics Research C, Vol. 90, 195–208, 2019

Theoretical and Experimental Investigation of Ferrite-Loaded
Waveguide for Ferrimagnetism Characterization

Hsin-Yu Yao, Wei-Chen Chang, Li-Wen Chang, and Tsun-Hsu Chang*

Abstract—This work proposes an approach to retrieve the ferrite’s electromagnetic properties in a
single compact configuration, simpler than the traditional measurement systems. The ferrite under test
is fully inserted into a rectangular waveguide with a magnetic bias. The complex scattering parameters
are theoretically analyzed under the consideration of modal effect at isotropy-anisotropy interfaces.
Extraordinarily sharp Fano resonances are observed in the scattering spectrums, originating from the
multimode interference inside the magnetized ferrite. There is good agreement among theoretical,
experimental, and full-wave simulation results. This model can be further utilized to simultaneously
retrieve all ferrite properties, including permittivity (ε), saturation magnetization (4πMs), and magnetic
linewidth (ΔH) from the measured scattering parameters, facilitating the designs and applications of
ferrite devices.

1. INTRODUCTION

Ferrite materials with DC (direct current) magnetic biases have been studied for decades due to their
promising applications in microwave region, such as isolators [1–3], circulators [4–6], phase shifter [7, 8],
and high-density magnetic recording media [9]. To design these devices, the permittivity and the
gyrotropic permeability of magnetized ferrites, must be known in advance. The perturbation method is
commonly used to measure permittivity (ε) [10]. The saturation magnetization (4πMs) is usually tested
using the magnetometer method [11]. The cavity method is adapted to characterize the ferrite’s line
width (ΔH) and gyromagnetic ratio [12, 13]. These methods are quite narrowband in nature. Besides,
different parameters have to be obtained using different experimental setups. There is a pressing need
to measure all the key parameters in a single compact configuration without sample destruction. Quasi-
optical system can characterize the ferrite’s properties over a broadband. It is constructed by two horns
respectively connecting to a source and a detector [14–17]. However, the required sample sizes must be
much larger than beam sizes (about several cm2 for microwave) in order to minimize edge diffraction [14].
This causes a lot of difficulties not only in the sample preparation but also in the uniformity of applied
bias, leading to significant errors in the retrieved results.

On the other hand, rectangular waveguides partially or fully loaded with materials under test
are frequently adopted for permittivity [18] and permeability [19–26] characterizations. Two major
advantages are addressed here. Firstly, since electromagnetic (EM) wave is well confined within
waveguides, edge diffraction is absent and the required sample size is shrunk down to the waveguide
dimensions. As a consequence, sample preparation is easier and the required areas of bias fields with
sufficient uniformity can be greatly reduced [19–21]. Secondly, the scattering parameters could be
explicitly measured by network analyzers with reliable calibrations [19–21]. This feature implies that
more accurate data could be obtained as compared with the aforementioned quasi-optical systems [14–
17], in which the impedance mismatching between horns and free space is difficult to calibrate.
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Unfortunately, most of ferrite-loaded waveguide systems are difficult to analyze [26]. It significantly
increases the difficulty in permittivity and permeability retrieval processes. To this end, a part of
previous efforts focused on a configuration of vertical-slab ferrites partially inserted inside rectangular
waveguides, biased in the direction perpendicular to waveguide width [20, 21]. The eigenmodes’
properties and the corresponding scattering parameters have been studied in [20] and further employed
for characterization in [21]. Nevertheless, as ferrite slabs were partially inserted, how to precisely
locate their positions and how to exquisitely control magnetic-bias profiles become tough issues in
real measurements. Alternative scheme was proposed in [22–25], in which a rectangular waveguide is
fully loaded with a magnetized sample. This configuration is much easier to assemble with less error in
sample’s location and better control of bias field, superior to the partially loaded systems [20, 21]. In [22],
waveguide system with a single bulk magnetized sample was investigated. Although a model based on
waveguide eigenmode expansion (mode matching) has been developed to solve scattering parameters,
it cannot treat the case with ferrite due to high chromatic complexity in susceptibility. On the other
hand, Tsutsumi et al. studied the case with Yttrium Iron Garnet (YIG) ferrite film that was grown on a
bulk substrate and then sealed by a waveguide [23, 24]. An analysis method based on Fourier expansion
(plane-wave expansion) was proposed for mode matching at boundaries. However, since these plane
waves (as basis set) are not the eigenmodes of rectangular waveguide, the solution can be obtained only
approximately and this method is relatively inefficient for retrieval. Besides, such thin-film configuration
inherently suffers from non-negligible uncertainties for ferrite characterization owing to the presence of
additional substrate and the mere perturbation effect of ultra-thin sample under test.

In this work, we consider a bulk ferrite standing alone within a rectangular waveguide. A rigorous
model is developed to analyze the scattering process at an air-ferrite interface and an air-ferrite-air
system. Based on the ferrite permittivity and gyrotropic permeability, the behaviors of new TE0n

eigenmodes (including their dispersions, attenuations and field profiles) under the presence of magnetized
ferrite are completely discussed. Multimode coupling at air-ferrite interface and multimode interference
in air-ferrite-air system are then analyzed, which give a clear picture of how higher-order modes are
excited and interfere with the fundamental mode. With this knowledge, an analytical expression of
the measurable scattering parameters for air-ferrite-air system is derived. We validate this model by
examining a commercially available bulk YIG ferrite fully inserted within a standard X-band waveguide
(8.00 GHz–12.00 GHz) and biased with a DC magnetic field (1000 Oe). The scattering parameters are
calculated, which show perfect agreement with the experimental results and the simulation obtained
from the full-wave solver (High-Frequency Structure Simulator, HFSS). This work lays the groundworks
for fast and compact ferrite characterization in the microwave region.

2. NEW TEM EIGENMODE CHARACTERISTICS IN A MAGNETICED
FERRITE-LOADED WAVEGUIDE

When a DC magnetic field (HDCŷ) is applied on a ferrite, randomly oriented unpaired spins would
be aligned to precess around the bias, forming a net magnetization parallel to the bias [26, 29]. The
precession frequency (ω0) is μ0γHDC, where μ0 is the vacuum permeability and γ represents the charge to
mass ratio of electron. Once the bias is strong enough to align all dipoles, the increase of magnetization
gets saturated, resulting in a saturation magnetization (Msŷ). Since an unsaturated ferrite material is
typically lossy for microwave [26, 30], in the following all samples are assumed to be at saturated state.

As an EM wave propagates in a biased ferrite, its AC (alternating current) magnetic field ( �HAC)
would induce an additional magnetization ( �MAC). We assume | �HAC| � HDC to ensure a perturbation
effect of AC field on the dipole precession motion forced by the DC field. Since the dipole precession
breaks the isotropic spatial symmetry, the susceptibility (↔χ) that relates the additional magnetization
( �MAC) to the AC magnetic field ( �HAC) turns anisotropic [22–26, 30]. Such susceptibility implies an
anisotropic permeability (↔μ) described by a second-rank tensor:

←→μ = μ0

[
μr 0 iκr

0 1 0
−iκr 0 μr

]
, (1)
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where ω is the carrier frequency of EM wave, and ωm ≡ μ0γMs. The damping factor, α = μ0γΔH/2ω,
is determined by the susceptibility linewidth ΔH of magnetic resonance. Note that the permeability
tensor shown in Eq. (1) is for the case biased in ŷ direction.

(a) (b) (c)

Figure 1. (a) Schematic diagram of a rectangular waveguide (with yellow metallic walls) fully loaded
with a ferrite (gray region) biased in ŷ direction (HDC). The waveguide width (height) is a (b). (b)
An EM wave is incident from the empty waveguide (white region, denoted by EWG) to the waveguide
filled with ferrite (gray region, denoted by FWG), passing through a single air-ferrite interface. (c) An
EM wave passes through an air-ferrite-air system. A FWG (region II) is embedded between two EWGs
at input (region I) and output (region III) sides. Note that the metallic walls in both (b) and (c) are
not shown for clearness.

Figure 1(a) shows an infinitely-long rectangular waveguide fully filled by a ferrite with an external
DC bias field (HDCŷ). We consider only TEFWG

m0 mode (“FWG” labels the quantities in the ferrite-
loaded waveguide), whose EFWG

z,m0 = 0 (TE mode) and all field components are invariant with respect to
y (∂/∂y = 0). Substitute in Eq. (1) into Maxwell’s equations, yielding

HFWG
x,m0 =

−1
ωμe

(
βFWG

m EFWG
y,m0 +

κr

μr

∂EFWG
y,m0

∂x

)
, (2)

HFWG
z,m0 =

−i

ωμe

(
κr

μr
βFWG

m EFWG
y,m0 +

∂EFWG
y,m0

∂x

)
, (3)

(
∂2

∂x2
+ k2

T,m

)
EFWG

y,m0 = 0, (4)

where μe ≡ μ0[(μ2
r − κ2

r)/μr], kT,m =
√

μeεω2 − (βFWG
m )2, ε is the complex permittivity of ferrite, and

βFWG
m is the propagation constant. The other two field components (EFWG

x,m0 and HFWG
y,m0 ) are strictly zero.

As shown in Eq. (4), EFWG
y,m0 satisfies the Helmholtz wave equation and serves as the generating function.

The general solution of EFWG
y,m0 can be obtained by imposing the boundary conditions (EFWG

y,m0 = 0 at
x = 0 and x = a due to metals), giving

EFWG
y,m0 =

iωμ0

kT,m
H0 sin kT,mx eiβFWG

m z, (5)
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with kT,m = mπ/a, which is related to the geometrical cutoff frequency. Substituting Eq. (5) into
Eqs. (2) and (3) gives

HFWG
x,m0 =

iμ0

μe
H0

(
−βFWG

m

kT,m
sin kT,mx− κr

μr
cos kT,mx

)
eiβFWG

m z, (6)

HFWG
z,m0 =

iμ0

μe
H0

(
κr

μr

βFWG
m

kT,m
sin kT,mx + cos kT,mx

)
eiβFWG

m z (7)

We note that the formulas of the transverse wave number (kT,m), �EFWG
m0 field (�EFWG

m0 = EFWG
y,m0 ŷ), and

�BFWG
m0 field ( �BFWG

m0 = ↔
μ · �HFWG

m0 ) are identical to their isotropic counterparts: TEEWG
m0 mode in the

empty waveguide (“EWG” labels the quantities in the empty waveguide) [26]. However, �HFWG
m0 field

(HFWG
x,m0 x̂ + HFWG

z,m0 ẑ) obviously deviates from its isotropic counterpart ( �HEWG
m0 = HEWG

x,m0 x̂ + HEWG
z,m0 ẑ)

owing to the anisotropic permeability tensor. The propagation constant of TEFWG
m0 is

βFWG
m =

√
μeεω2 − k2

T,m =

√
μeεω2 −

(mπ

a

)2
, (8)

which is determined by the effective permeability μe = μ0(μ2
r − κ2

r)/μr rather than μr or κr.
In the following, a commercially available ferrite [Pacific Ceramics, Inc. (product #: 39-1780B)]

with relative permittivity (ε/ε0) = 14.9, loss tangent (tan δ) = 10−4, saturation magnetization
(4πMs) = 1780 gauss, and linewidth (ΔH) = 25 Oe, is chosen to demonstrate the ferrimagnetism
and the corresponding dispersion of fundamental mode (TEFWG

10 ). The DC magnetic bias field (HDC)
is 1000 Oe, implying a precession frequency (ω0/2π) of 2.80 GHz. Figs. 2(a) and 2(b) demonstrate the
frequency responses of μr (diagonal) and κr (off-diagonal), respectively. Both Re[μr] and Re[κr] show
gyromagnetic resonances at 2.80 GHz, matching the dipole precession frequency. On the other hand, the
magnetic losses manifested in Im[μr] and Im[κr] rapidly increase at the resonance and gradually decrease

(a)

(b)

(c)

(d)

Figure 2. Ferrimagnetism of the biased YIG ferrite versus frequency. (a) μr, (b) κr, (c) μe, and (d)
βFWG

1 . For all figures, the black solid (red dashed) curves represent the real (imaginary) parts. The
blue dashed curve in (d) is the pure real propagation βEWG

1 of TEEWG
10 mode in the empty X-band

waveguide.
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to their half maximums at 2.76 GHz and 2.83 GHz, implying a narrow magnetic resonant bandwidth of
0.07 GHz (Δω/2π ≈ μ0γΔH). The effective permeability (μe) that truly governs wave propagation in
the biased ferrite is demonstrated in Fig. 2(c). We observe a strong blue shift of resonance from 2.80 GHz
(ω0/2π) to 4.66 GHz [

√
ω0(ω0 + ωm)/2π], because not only μr but also κr would jointly modulate the

eigenmode characteristics.
Figure 2(d) demonstrates the propagation constant (βFWG

1 ) of fundamental TEFWG
10 mode in the

ferrite-loaded X-band rectangular waveguide. The width (a) and the height (b) of X-band waveguide
are 22.86 mm and 10.16 mm, respectively. The dispersion of TEEWG

10 in the empty X-band waveguide
(βEWG

1 ) is delineated in Fig. 2(d) by the blue dashed curve. Strong resonance in βFWG
1 is observed near

4.66 GHz, analogous to the behavior of μe [Fig. 2(c)]. Below this resonant frequency, Re[βFWG
1 ] rapidly

increases as frequency increases (with positive slope), revealing normal dispersion and slow-light effect.
When the frequency increases across 4.66 GHz, Re[βFWG

1 ] decreases until 6.98 GHz, corresponding to
anomalous dispersion and fast-light effect. From 4.66 GHz to 6.98 GHz, Im[βFWG

1 ] is several orders of
magnitude larger than that in the normal-dispersion region, implying very strong attenuation. Such
high attenuation majorly attributes to two loss mechanisms. Around 4.66 GHz, loss is dominated
by magnetic-resonance absorption. Since both |Re[μe]| and |Im[μe]| are large, strong magnetic loss
guarantees Re[βFWG

1 ] �= 0 [Eq. (8)]. This indicates that the mode could still propagate and meanwhile
is quickly dissipated due to the resonant absorption.

As the operating frequency goes slightly beyond the resonant frequency (5.00 GHz–7.90 GHz),
Re[μe] is negative and shows a magnitude much greater than |Im[μe]|, suggesting the disappearance of
magnetic resonance. However, the large negative Re[μe] with negligible Im[μe] turns βFWG

1 into nearly
pure imaginary {Re[βFWG

1 ] ≈ 0, Eq. (8)}, making the mode become evanescent (non-propagable).
This results in an additional stopband from 5.00 GHz to 7.90 GHz. The loss mechanism for this
range is consequently governed by return loss, which fundamentally differs from the absorption loss
around 4.66 GHz–5.00 GHz. When the operating band is far from the resonance and the stopband,
for example from 8.50 GHz to 12.00 GHz, TEFWG

10 mode becomes propagable with relatively weak
attenuation {Re[βFWG

1 ] � Im[βFWG
1 ], the inset of Fig. 2(d)}, showing normal dispersion. It is

important to emphasize that the anomalous dispersion with high attenuation at 4.66 GHz–7.90 GHz
would significantly reduce the strength of transmitting signal from the ferrite. This feature is useful
for the applications in broadband filters or switches [23–25], however, such high loss would seriously
increase the difficulty in measurement for ferrite characterization owing to the sensitivity limitation.
On the contrary, the two special features for far-resonance operation from 8.50 GHz to 12.00 GHz —
the normal dispersion and the weak attenuation, make this band more suitable for measurement. The
following analyses will therefore focus on 8.50 GHz–12.00 GHz (X-band region).

The transverse magnetic fields of TEFWG
10 forward (backward) wave [denoted as HFWG,+

x,10 (HFWG,−
x,10 )]

are demonstrated in Fig. 3 by the black solid curves (red solid curves). Four representative frequencies
at 8.50 GHz [Fig. 3(a)], 9.50 GHz [Fig. 3(b)], 10.50 GHz [Fig. 3(c)], and 11.50 GHz [Fig. 3(d)] are
selected for demonstration. The counterparts in the empty waveguide are illustrated by the blue
dashed curves (TEEWG,+

10 forward wave, HEWG,+
x,10 ) and the green dashed curves (TEEWG,−

10 backward
wave, HEWG,−

x,10 ) for comparison. Notice that the transverse electric fields in the presence (EFWG
y,10 )

and the absence of the magnetized ferrite (EEWG
y,10 ) are unchanged so that they are not shown here.

A few observations of Fig. 3 can be made: firstly, both HFWG,+
x,10 and HFWG,−

x,10 in the ferrite-loaded
waveguide are frequency dependent, because μr and κr are highly dispersive. Secondly, both HFWG,+

x,10

and HFWG,−
x,10 would not become zero at the waveguide boundaries (x = 0 and x = a), whereas those

in the empty waveguide (HEWG,+
x,10 and HEWG,-

x,10 ) would. Although HFWG
x,10 �= 0 at x = 0 and x = a,

BFWG
x,10 [∝ (μrH

FWG
x,10 + iκrH

FWG
z,10 )] is zero on all metal walls. Thirdly, HFWG,+

x,10 (HFWG,−
x,10 ) significantly

differs from HEWG,+
x,10 (HEWG,−

x,10 ) for near-resonance operation (∼ 8.50 GHz), while they are close to each
other for far-resonance operation (∼ 11.50 GHz). The deviation between HFWG

x,10 and HEWG
x,10 results

from the anisotropism, which is manifested by how far μr and κr deviate from 1 and 0, respectively
(Fig. 2). Finally, although the forward and backward waves in the ferrite-loaded waveguide share the
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(a)

(b)

(c)

(d)

Figure 3. Normalized magnetic fields of TEFWG
10 mode (HFWG

x,10 ) and TEEWG
10 mode (HEWG

x,10 ). For
forward wave (denoted by “+” sign in superscript), HFWG,+

x,10 (HEWG,+
x,10 ) is shown by the black solid

curve (blue dashed curve), while for backward wave (denoted by “−” sign in superscript), HFWG,−
x,10

(HEWG,−
x,10 ) is shown by the red solid curve (green dashed curve). (a) At 8.50 GHz. (b) At 9.50 GHz. (c)

At 10.50 GHz. (d) At 11.50 GHz.

same propagation constant (|βFWG
1 |), their magnetic fields (HFWG,+

x,10 and HFWG,−
x,10 ) show antisymmetric

spatial distributions in x with a 180◦ phase difference. This feature implies the forward energy flux
(∝ Re[EFWG

y,10 HFWG,+∗
x,10 ]) and the backward energy flux (∝ Re[EFWG

y,10 HFWG,−∗
x,10 ]) transport the energy at

different spatial channels in the ferrite-loaded waveguide.

3. MODAL ANALYSIS FOR A SINGLE AIR-FERRITE INTERFACE

In this section, the scattering behaviors of a fundamental TEEWG
10 mode at an air-ferrite interface

(incident from the empty waveguide) are studied [Fig. 1(b)]. Multiple modes with the same symmetry
as the incoming TEEWG

10 mode, on both sides of the interface, will be excited in order to meet boundary
conditions. It is so-called the modal effect [20–28]. In the ferrite-loaded waveguide multiple TEFWG

m0
modes will be excited as the transmitted wave, whereas the reflected wave at the empty waveguide is
composed of multiple TEEWG

n0 modes. The boundary conditions at the interface (z = 0) require

EEWG
y,10 +

∞∑
n=1

EEWG
y,n0 rn =

∞∑
m=1

EFWG
y,m0 tm, (9)

HEWG
x,10 −

∞∑
n=1

HEWG
x,n0 rn =

∞∑
m=1

HFWG
x,m0 tm, (10)

where tm is the field transmission coefficient of TEFWG
m0 and rn is the field reflection coefficient of TEEWG

n0 .
Substituting the eigenmode electric and magnetic fields {EFWG

y,m0 in Eq. (5), HFWG
x,m0 in Eq. (6), and EEWG

y,n0
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(HEWG
x,n0 ) in [26]} into Eqs. (9) and (10) gives

sin
πx

a
+

∞∑
n=1

1
n

sin
nπx

a
rn =

∞∑
m=1

1
m

sin
mπx

a
tm, (11)

βEWG
1 sin

πx

a
−

∞∑
n=1

βEWG
n

n
sin

nπx

a
rn =

μ0

μe

∞∑
m=1

(
βFWG

m

m
sin

mπx

a
+

κr

μr

π

a
cos

mπx

a

)
tm. (12)

Multiplying Eq. (11) by sin(pπx/a), integrating from x = 0 to a, and using the trigonometric
orthogonality yields

δp1 + rp = tp, (13)

where δ represents the Kronecker delta symbol. Applying the same calculation to Eq. (12) gives

βEWG
1 δp1 − βEWG

p rp =
μ0

μe

(
βFWG

p tp +
κr

μr

2
a

∞∑
m=1

Ipm tm

)
, (14)

in which Ipm = [p2/(p2 − m2)](1 − cos pπ cos mπ). For numerical calculation we must truncate the
summation in Eq. (14) to N , i.e., the total number of eigenmodes considered in the expansion. In the
present analysis, the total numbers of modes considered at both sides of interface are assumed equal.
In principle, the larger the N is, the more accurate the result is at the expense of long computation
time. Substituting rp from Eq. (13) into Eq. (14) gives a set of equations for solving tm

N∑
m=1

Mpm tm = 2βEWG
1 δp1, (15)

where Mpm is

Mpm =
(

μ0

μe
βFWG

p + βEWG
p

)
δpm +

μ0

μe

κr

μr

2
a
Ipm.

Based on tm and rn, the transmittance (Tm) and reflectance (Rn) can be calculated from Poynting
vectors as Tm = Re[(βFWG*

m μ0)/(βEWG
1 μ∗

em
2)] × |tm|2 and Rn = Re[(βEWG*

n )/(βEWG
1 n2)] × |rn|2,

respectively.
In what follows, the modal effect at an air-ferrite interface is analyzed with N = 20, which is found

to be sufficient for converged results. The bias and the ferrite characteristics are identical to those
selected in Sec. 2. Fig. 4(a) shows |tm| of the first eight TEFWG

m0 modes (1 ≤ m ≤ 8) in the ferrite-loaded
waveguide, while Fig. 5(b) demonstrates |rn| of the first eight TEEWG

n0 modes (1 ≤ n ≤ 8) in the empty

(a) (b)

Figure 4. (a) |tm| of the first eight excited TEFWG
m0 modes (1 ≤ m ≤ 8, the solid curves) at the

ferrite-loaded side Transmittance T1 of TEFWG
10 mode is shown in the dashed curve. (b) |rn| of the first

eight excited TEEWG
n0 modes (1 ≤ n ≤ 8, the solid curves) at the empty side Reflectance R1 of TEEWG

10
mode (the only propagating mode) is shown in the dashed curve.
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(a) (b)

Figure 5. Normalized transverse electric and magnetic field profiles at the both sides of air-ferrite
interface. (a) At 8.50 GHz for near-resonance operation. (b) At 11.50 for far-resonance operation.
Color codes: black solid (|EFWG

y |), green dashed (|HFWG
x |), red dots (|EEWG

y |), and blue triangles
(|HEWG

x |).

waveguide. Notably, |tm| with 9 ≤ m ≤ 20 and |rn| with 9 ≤ n ≤ 20 are all smaller than −20 dB and
thus are not shown for clarity.

Comparing Figs. 4(a) and 4(b), we find that if m = n �= 1, |rn| is equal to |tm|. As explained,
TEEWG

n0 and TEFWG
m0 possess the identical transverse electric field (EEWG

y,n0 = EFWG
y,m0 ) as long as their

mode orders are equal (m = n). Since the superposed transverse electric field must continue, the more
the higher-order TEEWG

n0 mode is excited at the empty side, the more the TEFWG
m0 mode (m = n > 1)

will be correspondingly coupled out at the ferrite-loaded side. However, |t1| and |r1| are not necessarily
so due to the involvement of the incident wave. Three waves — the incident TEEWG

10 , the reflected
TEEWG

10 , and the transmitted TEFWG
10 work together to ensure the continuity of transverse electric field.

As demonstrated in Fig. 3, the magnetic field of TEFWG
10 mode (HFWG

x,10 ) differs from that of the
incoming TEEWG

10 mode (HEWG
x,10 ), especially for relatively near-resonance operation [e.g., 8.50 GHz to

9.00 GHz, Fig. 3(a)]. Therefore, considerable higher-order modes in the ferrite-loaded waveguide must
be excited together with the fundamental TEFWG

10 mode to meet the continuity of transverse magnetic
field. It can be seen that |t3| = −7.15 dB and |t4| = −7.57 dB at 8.50 GHz, both of which are greater
than |t1| (−8.27 dB). This indicates that TEFWG

30 and TEFWG
40 modes dominate the modal coupling rather

than TEFWG
10 mode. On the contrary, HFWG

x,10 strongly resembles HEWG
x,10 for far-resonance operation [e.g.,

10.00 GHz to 12.00 GHz, Fig. 3(d)]. As HEWG
x,10 highly overlaps with HFWG

x,10 rather than any other HFWG
x,m0

with m > 1, only the fundamental TEFWG
10 mode dominates the coupling (|t1| = −5.30 dB) and all

higher-order TEFWG
m0 modes are strongly suppressed to below −10 dB.

The transmittance of TEFWG
10 mode (T1) and the reflectance of TEEWG

10 mode (R1) are illustrated
by the dashed curves in Figs. 4(a) and 4(b), respectively. Although higher-order TEFWG

m0 and TEEWG
n0

modes will be excited most of them (except TEFWG
20 ) are evanescent and hence cannot carry power due

to below-cutoff operation. Thus, Tm with m ≥ 2 and Rn with n ≥ 2 are all below −20 dB, not shown for
clearness. Note that the total transmission power (∼ T1 < −3 dB) is less than the total reflected power
(R1 > −3 dB) for the whole X band. The high reflection mainly results from the large permittivity of
ferrite which leads to serious impedance mismatching between TEFWG

10 mode and TEEWG
10 mode.

Figures 5(a) and 5(b) show the profiles of superimposed transverse fields at 8.50 GHz (near-
resonance operation) and 11.50 GHz (far-resonance operation), respectively. The superposed electric
field |Ey| at the ferrite-loaded (empty) side is illustrated by the black solid curve (red dots) and the
superposed magnetic field |Hx| at the ferrite-loaded (empty) side is illustrated by the green dashed
curve (blue triangles). As expected, |Ey| and |Hx| are continuous at the air-ferrite interface, verifying
the validity of the present theory.
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4. MODAL ANALYSIS FOR AN AIR-FERRITE-AIR SYSTEM

In this section, we extend the modal analysis to study the scattering problem in an air-ferrite-air system
[Fig. 1(c)], which is a more realistic configuration for ferrite characterization. When the incident TEEWG

10
mode impinges on the air-to-ferrite interface (z = 0, B1), it would be partially reflected and partially
transmitted. When the injected signal (composed of multiple TEFWG

q0 modes) propagates through the
ferrite over a thickness L (region II) and reaches the ferrite-to-air interface (z = L, B2), it would also be
partially reflected and partially transmitted. The reflected part subsequently bounces back and forth
between the two interfaces, forming a sequence of consecutive reflection echoes. In steady state, the
total forward-wave field and backward-wave field inside the ferrite are built up. Similar to the analysis
in Sec. 3, the continuities of Ey and Hx at z = 0 respectively require
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and the continuities of Ey and Hx at z = L respectively require
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in which rn, fp, bp, and tm respectively represent the field reflection coefficient (TEEWG−
n0 in region I),

forward-wave coefficient (TEFWG+
p0 in region II), backward-wave coefficient (TEFWG−

p0 in region II), and
field transmission coefficient (TEEWG+

m0 in region III). Multiplying both Eqs. (16) and (18) by sin(qπx/a),
integrating them from x = 0 to a and employing the trigonometric orthogonality for solving the forward-
wave and backward-wave coefficients, we obtain
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q L
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Substituting Eqs. (20) and (21) into Eqs. (17) and (19), and repeating the similar procedure to remove
sine functions by trigonometric orthogonality, we can express rn in terms of tm
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and get a set of equations for solving tm:

N∑
m=1
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1 δq1 (23)

where Mqm could be decomposed into several sub-matrices (Mqm ≡ Xqδqm + Yqm + Zqm) with
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Note that “Imn” in Eqs. (22) to (27) is defined in Sec. 3. Likewise, the summations in Eqs. (22) and
(23) are truncated to N The overall scattering parameters can be calculated by using Eqs. (22) to (27);
an example would be demonstrated and discussed in the next section.

5. EXPERIMENTAL SETUP, RESULTS, AND DISCUSSIONS

An experiment was conducted to validate the theory developed in Sec. 4. The standard X-band
rectangular waveguide was fabricated by oxygen-free copper and then spitted in half, each of which
has identical “L” shape [Fig. 6(a)]. A YIG ferrite [Fig. 6(b)] was chosen as the sample under test,
purchased from Pacific Ceramics, Inc. (product #: 39-1780B) with properties prescribed in Sec. 2. The
four side walls of the ferrite were plated by copper in order to eliminate the air gaps between sample
and waveguide. The ferrite was then enclosed by the two L-shaped waveguide components completely,
forming a loaded waveguide [Fig. 6(c)]. This configuration is easy to assemble and disassemble, making
this experiment reproducible and repeatable.

(a) (c)(b) (d)

Figure 6. (a) Empty waveguide composed of two L-shaped components. (b) YIG ferrite with cooper
coating on its side walls. (c) Ferrite-loaded waveguide system. (d) Overall experimental setup. Part I:
performance network analyzer. Part II: flexible coaxial cables. Part III: X-band adapters. Part IV:
Ferrite-loaded waveguide system shown in (c). Part V: electromagnet.

A photograph of the overall experimental setup is demonstrated in Fig. 6(d). Part I is the
performance network analyzer (PNA, Aglient Technologies E8363B), which was connected with two
identical 2.4 mm coaxial cables (parts II-1 and II-2) operated in the coaxial TEM mode. The two cables
were connected with two well-calibrated adapters (parts III-1 and III-2) which are able to convert the
TEM signal from PNA to TEEWG

10 mode in X-band rectangular waveguide and vice versa. The pre-
described ferrite-loaded waveguide was placed in between the two adapters for measurement (part IV).
A commercial electromagnet (part V) was used to provide uniform DC magnetic bias. The relation
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(a)

(b)

(c)

(d)

Figure 7. (a) Transmittance |t1|2. (b) Transmitted phase φt1 + βEWG
1 L. (c) Reflectance |r1|2. (d)

Reflected phase φr1. Color codes: black solid curves (theory), red dashed curves (HFSS simulation),
and blue circles (experiment). The transmittance and reflectance in the unbiased case are illustrated
by the dashed-dotted curves in (a) and (b), respectively.

between the bias and the applied current of electromagnet was pre-tested by a Gauss meter in the
absence of sample Then, the electromagnet was adjusted to provide about 1000 Oe under the presence
of the ferrite. According to our measurement, the applied DC bias within the ferrite was 1021±30 Gauss
with acceptable uniformity. The scattering parameters [t1 ≡ |t1| exp(iφt1) and r1 ≡ |r1| exp(iφr1)] were
then recorded by PNA with 10 averages. The transmittance (|t1|2) and transmitted phase (φt1+βEWG

1 L)
are shown by the blue dots in Figs. 7(a) and 7(b), respectively. The reflectance (|r1|2) and reflected
phase (φr1) are demonstrated by the blue dots in Figs. 7(c) and 7(d), respectively.

On the other hand, Eqs. (22) and (23) with N = 20 were used to calculate the theoretical values,
which are illustrated in Fig. 7 by the black solid curves. Besides, the transmittance and reflectance in
the unbiased case (HDC = 0 and Ms = 0) are respectively illustrated in Figs. 7(a) and 7(c) by the green
dashed-dotted curves for comparison. The full-wave solver (High-Frequency Structure Simulator, HFSS)
was adopted for simulation, which are demonstrated by the red dashed curves in Fig. 7. As shown, three
results (experiment, theory, and simulation) have good agreement. It confirms the validity of the present
theory and further suggests that our model can be utilized to retrieve all ferrite properties of interest
based on the measurable scattering coefficients. Four advantages of such a characterization system
are addressed here. Firstly, the allowed bandwidth for measurement is broader than the traditional
cavity method [10–13]. Secondly, all the ferrites’ electromagnetic physical quantiles, including complex
permittivity (ε), saturation magnetization (4πMs), and magnetic linewidth (ΔH) can be simultaneously
measured in one single compact setup [Fig. 6(d)] without destruction. It could not be achieved by the
previous methods [10–13]. Thirdly, since the ferrite under test is fully inserted in a waveguide, the
required sample size is minimized to waveguide dimension. It guarantees precise control of sample
location and easy-to-achieve uniform magnetic bias. Finally, all components used in measurement can
be well calibrated, which is very important for high-precision characterization.

In regard to the results shown in Fig. 7, interesting switching phenomena are observed. In the
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presence of bias, a clear constructive-interference peak appears around 10.58 GHz, leading to high
transmittance (−0.32 dB) and low reflectance (−28.31 dB). It is referred to an “on state”. Such resonant
transmission disappears when the bias field is turned off, leading to a relatively low transmittance
less than −7 dB (∼ 20%). It is referred to an “off state”. The switching behavior results from the
fact that the effective permeability (μe) of ferrite is strongly suppressed to below 0.6 [Fig. 2(c)],
nearly half of 1 when the bias is turned on. Since the round-trip phase changes {2Re[βFWG

1 ]L,
βFWG

1 =
√

μeεω2 − (mπ/a)2} for TEFWG
10 mode propagating inside the biased and the unbiased ferrite

have great difference, the multiple-reflection interference conditions change significantly. Besides, we
observe very sharp changes of transmittance and reflectance at 10.04 GHz when the bias is applied.
This additional resonant peak mainly originates from the modal effect and the multimode interference
(TEFWG

10 and TEFWG
20 , the only two propagating modes in the ferrite-loaded waveguide), which therefore

is not observed in the unbiased case. Similar multimode interference effects have been observed in
multimode fibers and high-contrast gratings [31–33]. Through properly controlling the multimode
excitation and propagating length, either multimode destructive interference or constructive interference
can be achieved, leading to additional stopbands [31, 32] or passbands [31, 32] (like Fano-resonance
behavior in the present case around 10.04 GHz), respectively. This interesting feature can be further
utilized to design tunable broadband (or narrowband) microwave filters.

6. CONCLUSION

A rectangular waveguide fully loaded with a biased ferrite is proposed to investigate the multimode
scattering behaviors of an anisotropic magnetic system. Eigenmode characteristics (TEFWG

m0 ) in such an
anisotropic waveguide are explicitly analyzed. Strong magnetic resonant absorption and stopband effect
are observed, which should be carefully avoided in future characterizations or device designs. In addition,
the eigenmode electric field profile is invariant in the presence and absence of bias, while the magnetic
field profile changes significantly due to the anisotropic permeability tensor of biased ferrite. Based on
these eigenmodes’ properties, the scattering coefficients for an EM wave (TE10 mode) passing through
both a single air-ferrite interface and an air-ferrite-air system are analyzed under the consideration
of modal effect. The excitation of higher-order modes is demonstrated, and the underlying physics
is explained. This work provides an in-depth understanding of ferrite-loaded anisotropic waveguide
system, which shows a feasibility for fast and compact ferrite characterization.
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