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Broadband Green’s Function with Higher Order Low Wavenumber
Extractions for an Inhomogeneous Waveguide with Irregular Shape

Tien-Hao Liao1, *, Kung-Hau Ding2, and Leung Tsang3

Abstract—The method of broadband Green’s functions with low wavenumber extractions (BBGFL)
is used to calculate Green’s function for inhomogeneous waveguides filled with different dielectrics and
with irregular boundaries. To construct the BBGFL modal solutions, we derive governing equations
of the linear eigen-matrix problem and orthonormalization condition. In BBGFL, the Green’s function
is represented in modal expansions with convergence accelerated by higher order low wavenumber
extractions. To obtain a linear eigenvalue problem for the modes, we use two BBGFLs of rectangular
waveguides with two dielectric wavenumbers. The orthonormalized mode functions are used to construct
the Green’s function. Current wavenumber derivatives and Green’s function wavenumber derivatives are
computed by a single low wavenumber MoM impedance matrix. The wavenumber derivatives are used
to accelerate the convergence of modal summations to 6th order. Numerical results are illustrated and
compared with the direct MoM method of using free space Green’s function. Results show accuracies
and computation efficiencies for broadband simulations of Green’s functions.

1. INTRODUCTION

Green’s function is a fundamental concept in electromagnetics and is the system response due to a point
source [1–5]. In computational electromagnetics (CEM), the free space Green’s function is frequently
used. The free space Green’s functions do not satisfy boundary conditions. They are used to formulate
integral equations that satisfy boundary conditions. The integral equations are then solved to calculate
scattering solutions. We label this method as the “scattering method”. The scattering method needs
to be repeated whenever the frequency is changed which hinders its usage in broadband modeling and
simulations. Hence, it is useful to develop fast techniques for computing the Green’s function.

For the waveguide problem, the Boundary Integral-Resonant Mode Expansion (BIRME) method
with DC extractions was used to compute the modes of an arbitrary shaped homogeneous waveguides [6–
8]. Recently, we have developed a methodology which is called the Broadband Green’s Functions with
Low wavenumber extractions (BBGFL). We used the BBGFL method to calculate the Green’s function
over a broad frequency range for homogeneous waveguides with irregular geometries [9–15]. The BBGFL
method has also been applied to periodic structures [16–19]. In the BBGFL approach, we compute the
modal field solutions which satisfy the waveguide boundary conditions and thus contain all the multiple
scattering solutions. The broad band Green’s functions are expressed in terms of the computed modal
solutions. The solution of the Green’s function at every frequency is obtained by merely changing the
denominator in the modal summation expression.

There are four one-time set-up steps required in the BBGFL technique. (i) The modal field
solutions, eigenvalues, and eigenvectors are cast in a linear eigenvalue problem of relative small size
so that the eigenvalues and eigenvectors are solved simultaneously. (ii) The modal field solutions are
in a hybrid representation with a boundary integral part and a modal expansion part. The hybrid
representation give accurate field solutions. (iii) The normalizations of the modal field solutions are
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performed efficiently without requiring volumetric integration, and (iv) The low wavenumber extraction
is exercised to accelerate the convergence of modal summation. Using wavenumber derivative, we have
achieved a 6th order convergence for BBGFL [15]. Note that the 4 set-up steps are only performed once
and the BBGFL Green’s function is applicable for all frequencies by merely changing the denominator.

In this paper we use the BBGFL method for the problem of an inhomogeneous waveguide
filled with two different dielectrics. In classical waveguide problems, homogeneous waveguides of
separable geometry were solved extensively. However, inhomogeneous waveguides are seldom addressed
and analytical solutions are generally not possible. For BBGFL, the extension from homogeneous
waveguide to inhomogeneous is not trivial. The introduction of interface between different dielectrics
results in coupled formulation of integral equations and solutions are much more complicated than
the homogeneous case. Other complexities are in deriving the linear eigenvalue problem for the
solutions of mode wavenumbers and normalized modal fields for an inhomogeneous waveguide with
irregular shape. In the set-up steps, we use two rectangular waveguide Green’s functions with different
dielectric constants to derive the linear eigen-matrix equation. The integral equation on the dielectric
interface couples two different Green’s functions. The mode field solution is in a linear combination
of boundary integrals and the mode summations. For inhomogeneous waveguide mode normalization,
we derive new orthonormality condition that do require volumetric integrations. To accelerate the
convergence of modal summation, we develop the wavenumber derivative technique to achieve the 6th
order convergence.

This paper is organized as follows. In Section 2, the modal eigenvalues and field solutions and the
ortho-normalization of modes are derived. We also describe the method of spurious mode rejection. In
Section 3, we derive wavenumber derivatives for currents and Green’s functions to accelerate convergence
of modal convergence. In Section 4, Numerical results are illustrated. Comparisons are made with results
from direct MoM method and from HFSS. Conclusions are given in Section 5.

2. MODAL SOLUTIONS OF INHOMOGENEOUS WAVEGUIDE WITH IRREGULAR
SHAPE

An irregularly shaped waveguide S with Dirichlet boundary conditions is shown in Figure 1. The
waveguide is divided into two regions A1 and A2 with respective dielectrics, ε1 and ε2. The two regions

Figure 1. Irregular shaped inhomogeneous waveguide with Dirichlet boundary condition. Two
dielectrics are ε1 and ε2.
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are separated by the interface ∂S3. The boundaries for regions A1 and A2 are denoted by ∂S1 and ∂S2,
respectively. The boundary of waveguide S is ∂S = ∂S1 + ∂S2. The irregular part of ∂S is denoted by
σ. The normal unit vectors n̂1, n̂2, and n̂3 are shown for the respective boundaries ∂S1, ∂S2, and ∂S3

There are four one-time set-up steps required in the BBGFL technique.

2.1. Linear Eigen-Value Problem for Modal Solutions

The step 1 of setup is to derive a linear eigenvalue problem for modal solutions. The modal fields ψS(ρ̄)
are expressed as

ψS (ρ̄) =
{
ψS

1 (ρ̄) for ρ̄ in A1

ψS
2 (ρ̄) for ρ̄ in A2

(1)

where ψS
1 and ψS

2 obey the following wave equation (1) and boundary conditions (2) and (3).

∇2
tψ

S
ξ (ρ̄) + k2

ξψ
S
ξ (ρ̄) = 0 (2)

ψS
1 (ρ̄) = ψS

2 (ρ̄) ρ̄ on ∂S3

∂ψS
1 (ρ̄)
∂n

=
∂ψS

2 (ρ̄)
∂n

ρ̄ on ∂S3 (3)

ψS
ξ (ρ̄) = 0 ρ̄ on ∂S1,2

where ξ = 1, 2 and k2
2=

ε2
ε1
k2

1.
To obtain a linear eigenvalue problem, we use two Green’s functions gΩ(k1, ρ̄, ρ̄

′) and gΩ(k2, ρ̄, ρ̄
′)

of the rectangular waveguide Ω with wavenumber k1 and k2, respectively. Eq. (4) is the modal function
for the rectangular waveguide of size Lx by Ly.

ψΩ
α (ρ̄) =

2√
LxLy

sin
(
pπ

Lx

(
x+

Lx

2

))
sin

(
qπ

Ly

(
y +

Ly

2

))
(4)

where, p and q are modal index in x- and y-direction, and α is a combined mode index for the rectangle
waveguide Ω. By extracting a low wavenumber kΩ

ξL, Green’s function gΩ(kξ , ρ̄, ρ̄
′) is expressed as

gΩ
(
kξ, ρ̄, ρ̄

′) = gΩ
(
kΩ

ξL, ρ̄, ρ̄
′) +

∑
α

[
k2

ξ −
(
kΩ

ξL

)2
]
ψΩ

α (ρ̄)ψΩ
α (ρ̄′)

[
(kΩ

α )2 − k2
ξ

] [
(kΩ

α )2 −
(
kΩ

ξL

)2
] (5)

where ξ = 1, 2. Note that gΩ(kξ , ρ̄, ρ̄
′) is separated into a low wavenumber part and a broad band part.

Next, we apply Green’s theorems in regions A1 and A2 to construct the integral Eqs. (6) and (7),
respectively. ∫

σ

[−gΩ
(
k1, ρ̄, ρ̄

′) n̂′1 · ∇′
tψ

S
1

(
ρ̄′

)]
dl′ +

∫
∂S3

ψS
1

(
ρ̄′

)
(−n̂′3) · ∇′

tg
Ω

(
k1, ρ̄, ρ̄

′) dl′
−

∫
∂S3

gΩ
(
k1, ρ̄, ρ̄

′) (−n̂′3) · ∇′
tψ

S
1

(
ρ̄′

)
dl′ = 0 (6)∫

∂S3

ψS
2

(
ρ̄′

)
n̂′3 · ∇′

tg
Ω

(
k2, ρ̄, ρ̄

′) dl′ − ∫
∂S3

gΩ
(
k2, ρ̄, ρ̄

′) n̂′3 · ∇′
tψ

S
2

(
ρ̄′

)
dl′ = 0 (7)

Note that the integral equations are not on the entire boundary but only on the boundaries σ and ∂S3.
The rectangular waveguide Green’s functions in Eq. (5) are substituted into Eqs. (6) and (7). Solutions
are calculated by using MoM with pulse basis functions and point matching. We used small values of
kΩ

ξL for convergence of modal expansions and to facilitate mode normalizations. In addition, a higher
order integration quadrature is applied to compute the low wavenumber MoM solutions of gΩ(kΩ

ξL, ρ̄, ρ̄
′)

accurately. The low wavenumber Green’s functions are computed once only. Let ρ̄n be the center of
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the n-th patch and Δtn be the patch length. As shown in Eq. (8), the surface unknowns are fields on
interface ∂S3, xn, the normal derivatives of fields on interface ∂S3, yn, and the normal derivatives of
fields on boundary σ, zn.

xn = Δt∂S3
n ψS

(
ρ̄∂S3

n

)
n = 1, 2, . . . , N3

yn = Δt∂S3
n

[
n̂′3 · ∇′

tψ
S

(
ρ̄′

)]
ρ̄′=ρ̄

∂S3
n

n = 1, 2, . . . , N3 (8)

zn = Δtσn
[
n̂′1 · ∇′

tψ
S

(
ρ̄′

)]
ρ̄′=ρ̄σ

n
n = 1, 2, . . . , N0

where N3 is the number of patches on ∂S3, and N0 is the number of patches on σ.
There are a total of five integrals in Eqs. (6) and (7). In the following, we describe the evaluation

of the second integral of Eq. (6). Let β be the modal index of waveguide S and k1 = k1β . The surface
integral is tested at ρ̄∂S3

m which is in medium 1 and close to ∂S3. Then we have∫
∂S3

[
ψS

β

(
ρ̄′

)
n̂′3 · ∇′

tg
Ω

(
kS

1β, ρ̄
∂S3
m , ρ̄′

)]
dl′ =

∑
n

A
(1)L
3mnxβn +

∑
α

R
(1)L
3mαa

(1)L
βα (9)

where

A
(1)L
3mn =

1
Δt∂S3

n

∫
∂S

(n)
3

n̂3
′ · ∇t

′gΩ
(
kΩ

1L, ρ̄
∂S3
m , ρ̄′

)
dl′ (10)

a
(1)L
βα =

(
kS

1β

)2
− (

kΩ
1L

)2

(kΩ
α )2 −

(
kS

1β

)2

∫
∂S3

ψS
β

(
ρ̄′

)
n̂3

′ · ∇t
′ψΩ

α

(
ρ̄′

)
dl′ (11)

R
(1)L
3mα =

ψΩ
α

(
ρ̄∂S3

m

)
(kΩ

α )2 − (
kΩ

1L

)2 (12)

The superscript L in Eqs. (10)–(12) denotes the low wavenumber and the superscript (1) for the
observation in medium 1. On the right-hand side of Eq. (9), the low wavenumber part of gΩ gives
the first term, and the second term results from the modal contribution of ψΩ

α . The modal coefficient
a

(1)L
βα shows the coupling between the waveguide modes of ψS

β and ψΩ
α . Similar procedures are then

applied to the other two integrals in Eq. (6) with testing points in medium 1 and very close to ∂S3.
Expressions for the corresponding matrix elements are shown in Eqs. (13)–(16).

B
(1)L
3mn =

1
Δt∂S3

n

∫
∂S

(n)
3

gΩ
(
kΩ

1L, ρ̄
∂S3
m , ρ̄′

)
dl′ (13)

C
(1)L
3mn =

1
Δtσn

∫
σ(n)

gΩ
(
kΩ

1L, ρ̄
∂S3
m , ρ̄′

)
dl′ (14)

b
(1)L
βα =

(
kS

1β

)2 − (
kΩ

1L

)2

(kΩ
α )2 −

(
kS

1β

)2

∫
∂S3

ψΩ
α

(
ρ̄′

)
n̂3

′ · ∇t
′ψS

β

(
ρ̄′

)
dl′ (15)

c
(1)L
βα =

(
kS

1β

)2 − (
kΩ

1L

)2

(kΩ
α )2 −

(
kS

1β

)2

∫
σ
ψΩ

α

(
ρ̄′

)
n̂1

′ · ∇t
′ψS

β

(
ρ̄′

)
dl′ (16)

Similarly, modal coefficients b(1)Lβα and c
(1)L
βα show the coupling between the waveguide modes of ψS

β

and ψΩ
α . Next, we test Eq. (7) with points very close to ∂S3 in medium 2. Eqs. (17)–(21) are the

corresponding matrix elements.

A
(2)L
3mn =

1
Δt∂S3

n

∫
∂S

(n)
3

n̂′3 · ∇′
tg

Ω
(
kΩ

2L, ρ̄
∂S3
m , ρ̄′

)
dl′ (17)
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B
(2)L
3mn =

1
Δt∂S3

n

∫
∂S

(n)
3

gΩ
(
kΩ

2L, ρ̄
∂S3
m , ρ̄′

)
dl′ (18)

R
(2)L
3mα =

ψΩ
α

(
ρ̄∂S3

m

)
(kΩ

α )2 − (
kΩ

2L

)2 (19)

a
(2)L
βα =

(
kS

2β

)2
− (

kΩ
2L

)2

(kΩ
α )2 −

(
kS

2β

)2

∫
∂S3

ψS
β

(
ρ̄′

)
n̂′3 · ∇′

tψ
Ω
α

(
ρ̄′

)
dl′ (20)

b
(2)L
βα =

(
kS

2β

)2 − (
kΩ

2L

)2

(kΩ
α )2 −

(
kS

2β

)2

∫
∂S3

ψΩ
α

(
ρ̄′

)
n̂′3 · ∇′

tψ
S
β

(
ρ̄′

)
dl′ (21)

Last, we test Eq. (7) with points very close to σ in medium 1. Eqs. (22)–(25) are the corresponding
matrix components.

A
(1)L
0mn =

1
Δt∂S3

n

∫
∂S

(n)
3

n̂′3 · ∇′
tg

Ω
(
kΩ

1L, ρ̄
σ
m, ρ̄

′) dl′ (22)

B
(1)L
0mn =

1
Δt∂S3

n

∫
∂S

(n)
3

gΩ
(
kΩ

1L, ρ̄
σ
m, ρ̄

′) dl′ (23)

C
(1)L
0mn =

1
Δtσn

∫
∂S

(n)
3

gΩ
(
kΩ

1L, ρ̄
σ
m, ρ̄

′) dl′ (24)

R
(1)L
0mα =

ψΩ
α (ρ̄σ

m)

(kΩ
α )2 − (

kΩ
1L

)2 (25)

From Eqs. (10)–(25), we derive the coupled matrix equations in Eqs. (26)–(28).

A
(1)L

3 x̄β −B
(1)L

3 ȳβ − C
(1)L

3 z̄β = −R(1)L

3 ā
(1)L
β +R

(1)L

3 b̄
(1)L
β +R

(1)L

3 c̄
(1)L
β (26)

A
(2)L

3 x̄β −B
(2)L

3 ȳβ = −R(2)L

3 ā
(2)L
β +R

(2)L

3 b̄
(2)L
β (27)

A
(1)L

0 x̄β −B
(1)L

0 ȳβ − C
(1)L

0 z̄β = −R(1)L

0 ā
(1)L
β +R

(1)L

0 b̄
(1)L
β +R

(1)L

0 c̄
(1)L
β (28)

where we have put the surface unknowns, x̄β , ȳβ, and z̄β , on the left-hand side and the modal coefficients,
ā

(1)L
β , b̄(1)Lβ , c̄(1)Lβ , ā(2)L

β , and b̄
(2)L
β on the right-hand side. The indices in the superscript denote the

regions where the surface integrals are calculated. Let

J̄L
β =

[
x̄T

β ȳT
β z̄T

β

]T
(29)

and

v̄L
β =

[ [
ā

(1)L
β

]T [
ā

(2)L
β

]T [
b̄
(1)L
β

]T [
b̄
(2)L
β

]T [
c̄
(1)L
β

]T
]T

(30)

we form a matrix equation from Eqs. (26)–(28).

J̄L
β = M

L
v̄L
β (31)

where

M
L

=

⎡
⎢⎢⎢⎣
A

(1)L

3 −B(1)L

3 −C(1)L

3

A
(2)L

3 −B(2)L

3 0

A
(1)L

0 −B(1)L

0 −C(1)L

0

⎤
⎥⎥⎥⎦
−1 ⎡

⎢⎢⎢⎣
−R(1)L

3 0 R
(1)L

3 0 R
(1)L

3

0 −R(2)L

3 0 R
(2)L

3 0

−R(1)L

0 0 R
(1)L

0 0 R
(1)L

0

⎤
⎥⎥⎥⎦ (32)
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In Eq. (31), M
L

links the boundary unknowns in terms of modal coefficients.
Next, we proceed to derive a linear eigenvalue matrix equation for the modal coefficients by

expressing surface unknowns in terms of modal coefficients, ā(1)L
β , b̄(1)Lβ , c̄(1)Lβ , ā(2)L

β , and b̄
(2)L
β . For

the modal coefficient a(1)L
βα , after some algebraic manipulations, we obtain the following equation with

resonant wavenumber on the right-hand side.

D(1)L
αα a

(1)L
βα +

∑
n

Q
(1)L
3nα xβn = E

(1)L
ββ a

(1)L
βα (33)

where

Q
(1)L
3nα =

[
n̂′3 · ∇′

tψ
Ω
α (ρ̄′)

]
ρ̄′=ρ̄

∂S3
n

(kΩ
α )2 − (

kΩ
1L

)2 (34)

D(1)L
αα =

1

(kΩ
α )2 − (

kΩ
1L

)2 (35)

E
(1)L
ββ =

1(
kS

1β

)2 − (
kΩ

1L

)2
(36)

We note that Q(1)L
3nα only depends on the rectangular waveguide modes whileD(1)L

αα and E(1)L
ββ are elements

of diagonal matrices. In the matrix form, Eq. (33) is written as

D
(1)L

ā
(1)L
β +

[
Q

(1)L

3

]T

x̄β = E
(1)L

β ā
(1)L
β (37)

Similar procedures are further applied to the other four modal coefficients. We obtain the matrix
equation (38).

D
L
v̄L
β +

[
Q

L
]T

J̄L
β = E

L
v̄L
β (38)

where

D
L

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D
(1)L

0 0 0 0

0
ε2
ε1
D

(2)L
0 0 0

0

0

0

0

0

0

D
(1)L

0

0

0
ε2
ε1
D

(2)L

0

0

0

D
(1)L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

[
Q

L
]T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Q

(1)L

3

]T

0 0

ε2
ε1

[
Q

(2)L

3

]T

0 0

0

0

0

[
R

(1)L

3

]T

ε2
ε1

[
R

(2)L

3

]T

0

0

0

[
R

(1)L

0

]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)
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E
L

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E
(1)L

0 0 0 0

0 E
(1)L

0 0 0

0
0
0

0
0
0

E
(1)L

0
0

0

E
(1)L

0

0
0

E
(1)L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(41)

Substituting Eq. (31) into Eq. (38) yields the linear eigenvalue matrix equation.

P
L
v̄L
β = λL

β v̄
L
β (42)

where

P
L

= D
L

+
[
Q

L
]T

M
L

(43)

and the eigen-value λL
β is related to the corresponding mode wavenumber kS

1β .

kS
1β =

√(
kΩ

1L

)2 +
1
λL

β

(44)

Note that the above is a linear eigenvalue problem because the matrices are independent of the

eigenvalues. P
L

depends only on the low wavenumber kΩ
1L and waveguide Ω modes. On the other

hand, if the usual free space Green’s function is used with MoM, the eigenvalue problem becomes
nonlinear as the matrices depend on the eigenvalues. Nonlinear eigenvalue problems require calculating
the matrix elements for each iteration of the search.

2.2. Hybrid Representation of Modal Field Solutions

The modal functions, ψS
1β(ρ̄) and ψS

2β(ρ̄), in regions 1 and 2, are derived using Green’s theorems again
in regions A1 and A2.∫

∂S3

ψS
β

(
ρ̄′

)
n̂′3 ·∇′

tg
Ω
(
kΩ

1L, ρ̄, ρ̄
′) dl′−∫

∂S3

gΩ
(
kΩ

1L, ρ̄, ρ̄
′)n̂′3 ·∇′

tψ
S
β

(
ρ̄′

)
dl′+

∫
σ
gΩ

(
kΩ

1L, ρ̄, ρ̄
′)n̂′1 ·∇′

tψ
S
β

(
ρ̄′

)
dl′

−
∑
α

a
(1)L
βα ψΩ

α (ρ̄)

(kΩ
α )2 − (

kΩ
1L

)2 +
∑
α

b
(1)L
βα ψΩ

α (ρ̄)

(kΩ
α )2 − (

kΩ
1L

)2 +
∑
α

c
(1)L
βα ψΩ

α (ρ̄)

(kΩ
α )2 − (

kΩ
1L

)2 =
{
ψS

1β (ρ̄) ρ̄ ∈ A1

0 ρ̄ /∈ A1
(45)

−
∫

∂S3

ψS
β

(
ρ̄′

)
n̂′3 · ∇′

tg
Ω

(
kΩ

2L, ρ̄, ρ̄
′) dl′ + ∫

∂S3

gΩ
(
kΩ

2L, ρ̄, ρ̄
′) n̂′3 · ∇′

tψ
S
β

(
ρ̄′

)
dl′

+
∑

α

a
(2)L
βα ψΩ

α (ρ̄)

(kΩ
α )2 − (

kΩ
2L

)2 −
∑

α

b
(2)L
βα ψΩ

α (ρ̄)

(kΩ
α )2 − (

kΩ
2L

)2 =
{
ψS

2β (ρ̄) ρ̄ ∈ A2

0 ρ̄ /∈ A2
(46)

By discretizing the surface integral equations in Eqs. (45)–(46) and using surface current notations
x̄β, ȳβ, z̄β, Eqs. (45) and (46) are rewritten as

∑
n

A(1)L
mn xβn−

∑
n

B(1)L
mn yβn+

∑
n

C(1)L
mn zβn−

∑
α

a
(1)L
βα ψΩ

α (ρ̄)

(kΩ
α )2−(

kΩ
1L

)2 +
∑
α

b
(1)L
βα ψΩ

α (ρ̄)

(kΩ
α )2−(

kΩ
1L

)2 +
∑
α

c
(1)L
βα ψΩ

α (ρ̄)

(kΩ
α )2−(

kΩ
1L

)2

=
{
ψS

1β (ρ̄) ρ̄ ∈ A1

0 ρ̄ /∈ A1
(47)

−
∑
n

A(2)L
mn xβn+

∑
n

B(2)L
mn yβn+

∑
α

a
(2)L
βα ψΩ

α (ρ̄)

(kΩ
α )2−(

kΩ
2L

)2 −
∑

α

b
(2)L
βα ψΩ

α (ρ̄)

(kΩ
α )2−(

kΩ
2L

)2 =
{
ψS

2β (ρ̄) ρ̄ ∈ A2

0 ρ̄ /∈ A2
(48)

The surface currents, x̄β, ȳβ, z̄β, are calculated via solving Eq. (31), while the modal coefficients ā(1)L
β ,

ā
(2)L
β , b̄(1)Lβ , b̄(2)Lβ , c̄(1)Lβ are obtained from Eq. (42).
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2.3. Orthonormalization of Modal Fields

Let β and β′ be two different mode indices of waveguide S. The modal functions ψS
1β , ψS

1β′ , ψS
2β , and

ψS
2β′ satisfy the wave equation (2) with the respective modal wavenumbers kS

1β , kS
1β′ , kS

2β, and kS
2β′ .

Applying Green’s theorem and boundary condition (3), we obtain the orthogonality for β �= β′.∫∫
A1

ψS
1β (ρ̄)ψS

1β′ (ρ̄) dρ̄+
ε2
ε1

∫∫
A2

ψS
2β (ρ̄)ψS

2β′ (ρ̄) dρ̄ = 0 (49)

Setting β′ = β in (47) and (48) gives the mode normalization condition.∫∫
A1

∣∣ψS
1β (ρ̄)

∣∣2 dρ̄+
ε2
ε1

∫∫
A2

∣∣ψS
2β (ρ̄)

∣∣2 dρ̄ = 1 (50)

Further taking Laplacian on Eqs. (47) and (48) and using the conditions:(
kΩ

1L

)2 � (
kS

1β

)2
;

(
kΩ

1L

)2 � (
kΩ

α

)2
;

(
kΩ

2L

)2 � (
kS

2β

)2
; and

(
kΩ

2L

)2 � (
kΩ

α

)2
(51)

We derive the following normalization condition

1∣∣∣kS
1β

∣∣∣4
∑
α

(∣∣∣−a(1)L
βα + b

(1)L
βα + c

(1)L
βα

∣∣∣2 +
ε1
ε2

∣∣∣−a(2)L
βα + b

(2)L
βα

∣∣∣2) = 1 (52)

which can be easily and efficiently implemented. In numerical simulations, low wavenumbers kΩ
1L and

kΩ
2L used are about 10−6 while mode wavenumbers kS

1β , kS
2β, and kΩ

α are larger than 300. Thus the
conditions in Eq. (51) are satisfied. After modal coefficients being normalized, Eq. (31) is used to
find normalized surface currents. We can replace the modal coefficients and surface currents with the
normalized ones in Eqs. (47) and (48). Then we have the normalized hybrid expressions for the modal
functions.

2.4. Spurious Modes Rejection

Some of the eigenvalue solutions in the matrix equation (42) are spurious modes which are solutions of
wave equation (2) but not physically existent. We apply an efficient spurious mode rejection method
based on extinction theorem. Note that in Eq. (45), the left-hand side is zero when ρ̄ is outside A1.
This suggests that we can set a threshold to check whether the extinction theorem is observed. Similar
arguments apply to Eq. (46). The rejection of spurious modes is performed efficiently by using random
coarse sampling in the respective regions. A physical mode gives finite nonzero values at the correct
regions, and negligible values at other regions while spurious modes give non-small values in other
regions as well as outside the waveguide S.

3. ACCELERATED CONVERGENCE OF BROADBAND GREEN’S FUNCTIONS

Given a source at ρ̄′′ in region 1, the Green’s functions of waveguide S, gS
11(k1, ρ̄, ρ̄

′′) and gS
21(k2, ρ̄, ρ̄

′′)
are expressed in modal representations as

gS
11

(
k1, ρ̄, ρ̄

′′) =
∑

β

ψS
1β (ρ̄)ψS

1β (ρ̄′′)(
kS

1β

)2 − k2
1

(53)

gS
21

(
k2, ρ̄, ρ̄

′′) =
∑

β

ψS
2β (ρ̄)ψS

1β (ρ̄′′)(
kS

1β

)2 − k2
1

(54)

The above expressions are exact but with a second order convergence as 1/(kS
1β)2. The convergence is

poor when the field points are close to the source point.
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3.1. Green’s Functions with 4th Order Convergence

With the extractions of low wavenumber Green’s functions gS
11(k

S
1L, ρ̄, ρ̄

′′) and gS
21(k

S
2L, ρ̄, ρ̄

′′),
gS
11(k1, ρ̄, ρ̄

′′) and gS
21(k2, ρ̄, ρ̄

′′) are expressed as, respectively.

gS
11

(
k1, ρ̄, ρ̄

′′) = gS
11

(
kS

1L, ρ̄, ρ̄
′′) +

∑
β

[
k2

1 − (
kS

1L

)2
]
ψS

1β (ρ̄′′)[(
kS

1β

)2 − k2
1

] [(
kS

1β

)2 − (
kS

1L

)2
]ψS

1β (ρ̄) (55)

gS
21

(
k2, ρ̄, ρ̄

′′) = gS
21

(
kS

2L, ρ̄, ρ̄
′′) +

∑
β

[
k2

1 − (
kS

1L

)2
]
ψS

1β (ρ̄′′)[(
kS

1β

)2
− k2

1

] [(
kS

1β

)2
− (

kS
1L

)2
]ψS

2β (ρ̄) (56)

The modal summations in Eqs. (55) and (56) have an improved convergence rate of 1/(kS
1β)4. The low

wavenumber Green’s functions gS
11(k

S
1L, ρ̄, ρ̄

′′) and gS
21(k

S
2L, ρ̄, ρ̄

′′), are calculated by using direct MoM.
Using the Green’s theorem and boundary conditions in region 1, we derive the integral equation

for gS
11(k1, ρ̄, ρ̄

′′).

g0
(
k1, ρ̄, ρ̄

′′) +
∫

∂S1

J3

(
k1, ρ̄

′) g0 (
k1, ρ̄, ρ̄

′)dl′ + ∫
∂S3

J1

(
k1, ρ̄

′) n̂′3 · ∇′
tg0

(
k1, ρ̄, ρ̄

′)dl′
−

∫
∂S3

J2

(
k1, ρ̄

′) g0 (
k1, ρ̄, ρ̄

′)dl′ =
{
gS
11 (k1, ρ̄, ρ̄

′′) ρ̄ ∈ A1

0 ρ̄ /∈ A1
(57)

where the surface currents J1(k1, ρ̄
′) and J2(k1, ρ̄

′) are on ∂S3,

J1

(
k1, ρ̄

′) = gS
11

(
k1, ρ̄

′, ρ̄′′
)

(58)

J2

(
k1, ρ̄

′) = n̂′3 · ∇′
tg

S
11

(
k1, ρ̄

′, ρ̄′′
)

(59)

and J3(k1, ρ̄
′) is on ∂S1.

J3

(
k1, ρ̄

′) = n̂′1 · ∇′
tg

S
11

(
k1, ρ̄

′, ρ̄′′
)

(60)

In region 2, we derive similar integral equation for gS
21(k2, ρ̄, ρ̄

′′).

−
∫

∂S3

J1

(
k1, ρ̄

′) n̂′3 · ∇′
tg0

(
k2, ρ̄, ρ̄

′)dl′ + ∫
∂S3

J2

(
k1, ρ̄

′) g0 (
k2, ρ̄, ρ̄

′)dl′
+

∫
∂S2

J4

(
k2, ρ̄

′) g0 (
k2, ρ̄, ρ̄

′)dl′ =
{
gS
21 (k2, ρ̄, ρ̄

′′) ρ̄ ∈ A2

0 ρ̄ /∈ A2
(61)

where the surface current J4(k1, ρ̄
′) is on ∂S2.

J4

(
k2, ρ̄

′) = n̂′2 · ∇′
tg

S
21

(
k2, ρ̄

′, ρ̄′′
)

(62)

Setting k1 = kS
1L and ρ̄′ outside A1 in Eq. (57), we have

−g0
(
kS

1L, ρ̄, ρ̄
′′) =

∫
∂S1

J3

(
kS

1L, ρ̄
′) g0 (

kS
1L, ρ̄, ρ̄

′)dl′ + ∫
∂S3

J1

(
kS

1L, ρ̄
′) n̂′3 · ∇′

tg0
(
kS

1L, ρ̄, ρ̄
′)dl′

−
∫

∂S3

J2

(
kS

1L, ρ̄
′) g0 (

kS
1L, ρ̄, ρ̄

′)dl′ (63)

Similarly, let k2 = kS
2L, k1 = kS

1L, ρ̄′ be outside A2 in Eq. (61), we get

0 = −
∫

∂S3

J1

(
kS

1L, ρ̄
′) n̂′3 · ∇t

′
g0

(
kS

2L, ρ̄, ρ̄
′) dl′ + ∫

∂S3

J2

(
kS

1L, ρ̄
′) g0 (

kS
2L, ρ̄, ρ̄

′)dl′
+

∫
∂S2

J4

(
kS

1L, ρ̄
′) g0 (

kS
2L, ρ̄, ρ̄

′)dl′ (64)
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The coupled integral equations, Eqs. (63) and (64), are discretized using pulse basis function and point
matching method. We obtain the following matrix equation.

ZLJ̄L = ḡL (65)
In (65), the column vector J̄L contains surface currents,

J̄L =
[
J̄1 J̄2 J̄3 J̄4

]T (66)

and ZL is the impedance matrix with matrix elements,

ZL =

⎡
⎢⎢⎢⎢⎢⎢⎣

−A(1)L

M3 B
(1)L

M3 −C(1)L

M3 0

A
(2)L

M3 −B(2)L

M3 0 −C(2)L

M3

−A(1)L

M1

A
(2)L

M2

B
(1)L

M1

−B(2)L

M2

−C(1)L

M1

0

0

−C(2)L

M2

⎤
⎥⎥⎥⎥⎥⎥⎦

(67)

with the expressions of matrix elements given by

A
(1)L
M3,mn =

∫
∂S

(n)
3

n̂′3 · ∇′
tg0

(
kS

1L, ρ̄
∂S3
m , ρ̄′

)
dl′ (68)

B
(1)L
M3,mn =

∫
∂S

(n)
3

g0

(
kS

1L, ρ̄
∂S3
m , ρ̄′

)
dl′ (69)

C
(1)L
M3,mn =

∫
∂S

(n)
1

g0

(
kS

1L, ρ̄
∂S3
m , ρ̄′

)
dl′ (70)

A
(2)L
M3,mn =

∫
∂S

(n)
3

n̂′3 · ∇′
tg0

(
kS

2L, ρ̄
∂S3
m , ρ̄′

)
dl′ (71)

B
(2)L
M3,mn =

∫
∂S

(n)
3

g0

(
kS

2L, ρ̄
∂S3
m , ρ̄′

)
dl′ (72)

C
(2)L
M3,mn =

∫
∂S

(n)
1

g0

(
kS

2L, ρ̄
∂S3
m , ρ̄′

)
dl′ (73)

A
(1)L
M1,mn =

∫
∂S

(n)
3

n̂′3 · ∇′
tg0

(
kS

1L, ρ̄
∂S1
m , ρ̄′

)
dl′ (74)

B
(1)L
M1,mn =

∫
∂S

(n)
3

g0

(
kS

1L, ρ̄
∂S1
m , ρ̄′

)
dl′ (75)

C
(1)L
M1,mn =

∫
∂S

(n)
1

g0

(
kS

1L, ρ̄
∂S1
m , ρ̄′

)
dl′ (76)

A
(2)L
M2,mn =

∫
∂S

(n)
3

n̂′3 · ∇′
tg0

(
kS

2L, ρ̄
∂S2
m , ρ̄′

)
dl′ (77)

B
(2)L
M2,mn =

∫
∂S

(n)
3

g0

(
kS

2L, ρ̄
∂S2
m , ρ̄′

)
dl′ (78)

C
(2)L
M2,mn =

∫
∂S

(n)
1

g0

(
kS

2L, ρ̄
∂S2
m , ρ̄′

)
dl′ (79)

The column vector ḡL in (65) is given as

ḡL =
[
ḡ
(1)
3 0̄ ḡ

(1)
1 0̄

]T
(80)

where
g
(1)
3m = g0

(
k1, ρ̄

∂S3
m , ρ̄′′

)
(81)

g
(1)
1m = g0

(
k1, ρ̄

∂S1
m , ρ̄′′

)
(82)
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After solving J1(kS
1L, ρ̄

′), J2(kS
1L, ρ̄

′), J3(kS
1L, ρ̄

′), and J4(kS
2L, ρ̄

′) from Eq. (65), we use Eqs. (83) and (84)
to calculate the Green’s functions at low wavenumbers gS

11(k
S
1L, ρ̄, ρ̄

′′) and gS
21(k

S
2L, ρ̄, ρ̄

′′), respectively.

gS
11

(
kS

1L, ρ̄, ρ̄
′′) = g0

(
kS

1L, ρ̄, ρ̄
′) +

∫
∂S1

J3

(
kS

1L, ρ̄
′) g0 (

kS
1L, ρ̄, ρ̄

′)dl′
+

∫
∂S3

J1

(
kS

1L, ρ̄
′) n̂′3 · ∇′

tg0
(
kS

1L, ρ̄, ρ̄
′)dl′ − ∫

∂S3

J2

(
kS

1L, ρ̄
′) g0 (

kS
1L, ρ̄, ρ̄

′)dl′ (83)

gS
21

(
kS

2L, ρ̄, ρ̄
′′) =

∫
∂S2

J4

(
kS

1L, ρ̄
′) g0 (

kS
2L, ρ̄, ρ̄

′)dl′ − ∫
∂S3

J1

(
kS

1L, ρ̄
′) n̂′3 · ∇′

tg0
(
kS

2L, ρ̄, ρ̄
′)dl′

+
∫

∂S3

J2

(
kS

1L, ρ̄
′) g0 (

kS
2L, ρ̄, ρ̄

′)dl′ (84)

Note that kS
1L and kS

2L are chosen such that kΩ
1L � kS

1L � k and kΩ
2L � kS

2L � k. Eqs. (83) and (84) for
gS
11(k

S
1L, ρ̄, ρ̄

′′) and gS
21(k

S
2L, ρ̄, ρ̄

′′) are calculated only one time.

3.2. Wavenumber Derivatives for Green’s Functions with 6th Order Convergence

An algorithm with higher order convergence rate can reduce the required number of higher order modes
in mode summations. We have developed two methods for homogeneous irregular shape waveguide
Green’s functions with sixth order convergence [14, 15]. One is based on finite difference method [14]
and the other is based on the derivative of current with respect to wavenumber [15]. In this section, we
use the wavenumber derivative method to the inhomogeneous waveguide case.

We write Green’s functions gS
11(k

S
1 , ρ̄, ρ̄

′′) and gS
21(k

S
2 , ρ̄, ρ̄

′′) as follows.

gS
11

(
k1, ρ̄, ρ̄

′′) = gS
11

(
kS

1L, ρ̄, ρ̄
′′) +

[
k2

1 − (
kS

1L

)2
] [
∂gS

11 (k1, ρ̄, ρ̄
′′)

∂k2
1

]
k1=kS

1L

+
∑
β

[
k2

1 − (
kS

1L

)2
]2
ψS

1β (ρ̄′′)ψS
1β (ρ̄)[(

kS
1β

)2
− k2

1

] [(
kS

1β

)2
− (

kS
1L

)2
]2 (85)

gS
21

(
k2, ρ̄, ρ̄

′′) = gS
21

(
kS

2L, ρ̄, ρ̄
′′) +

[
k2

2 − (
kS

2L

)2
] [
∂gS

21 (k2, ρ̄, ρ̄
′′)

∂k2
2

]
k2=kS

2L

+
∑
β

[
k2

2 − (
kS

2L

)2
]2
ψS

1β (ρ̄′′)ψS
1β (ρ̄)[(

kS
1β

)2
− k2

2

] [(
kS

1β

)2
− (

kS
2L

)2
]2 (86)

where the Green’s functions are expressed in terms of the derivatives of Green’s functions at low
wavenumbers that are calculated using MoM.

The derivatives of Green’s functions are obtained from Eqs. (57) and (61). Let ρ̄ be inside A1 in
Eq. (57). Taking derivative with respective to wavenumbers and setting k1 = kS

1L yield[
∂gS

11 (k1, ρ̄, ρ̄
′′)

∂k2
1

]
k1=kS

1L

=
[
∂g0(k1, ρ̄, ρ̄

′′)
∂k2

1

]
k1=kS

1L

+
∫

∂S1

Jd
3L

(
kS

1L, ρ̄
′)g0(kS

1L, ρ̄, ρ̄
′)dl′+∫

∂S1

J3

(
kS

1L, ρ̄
′)[∂g0(k1, ρ̄, ρ̄

′)
∂k2

1

]
k1=kS

1L

dl′

+
∫

∂S3

Jd
1L

(
kS

1L, ρ̄
′) n̂′3 · ∇′

tg0
(
kS

1L, ρ̄, ρ̄
′)dl′ + ∫

∂S3

J1

(
kS

1L, ρ̄
′) [

∂n̂′3 · ∇′
tg0 (k1, ρ̄, ρ̄

′)
∂k2

1

]
k1=kS

1L

dl′

−
∫

∂S3

Jd
2L

(
kS

1L, ρ̄
′) g0 (

kS
1L, ρ̄, ρ̄

′)dl′ − ∫
∂S3

J2

(
kS

1L, ρ̄
′) [

∂g0 (k1, ρ̄, ρ̄
′)

∂k2
1

]
k1=kS

1L

dl′ (87)
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where

Jd
1L

(
kS

1L, ρ̄
′) =

[
∂J1 (k1, ρ̄

′)
∂k2

1

]
k1=kS

1L

(88)

Jd
2L

(
kS

1L, ρ̄
′) =

[
∂J2 (k1, ρ̄

′)
∂k2

1

]
k1=kS

1L

(89)

Jd
3L

(
kS

1L, ρ̄
′) =

[
∂J3 (k1, ρ̄

′)
∂k2

1

]
k1=kS

1L

(90)

Similarly, let ρ̄ be inside A2 in Eq. (61). Taking derivative with respective to wavenumbers and setting
k2 = kS

2L and k1 = kS
1L yield[

∂gS
21 (k2, ρ̄, ρ̄

′′)
∂k2

2

]
k2=kS

2L

=
∫

∂S2

Jd
4L

(
kS

2L, ρ̄
′)g0(kS

2L, ρ̄, ρ̄
′)dl′+∫

∂S2

J4

(
kS

1L, ρ̄
′)[∂g0(k2, ρ̄, ρ̄

′)
∂k2

2

]
k2=kS

2L

dl′

−
∫

∂S3

Jd
1L

(
kS

1L, ρ̄
′) n̂′3 · ∇′

tg0
(
kS

2L, ρ̄, ρ̄
′) dl′

−
∫

∂S3

J1

(
kS

1L, ρ̄
′) [

∂n̂′3 · ∇′
tg0 (k2, ρ̄, ρ̄

′)
∂k2

2

]
k2=kS

2L

dl′

+
∫

∂S3

Jd
2L

(
kS

1L, ρ̄
′)g0(kS

2L, ρ̄, ρ̄
′)dl′+∫

∂S3

J2

(
kS

1L, ρ̄
′)[∂g0(k2, ρ̄, ρ̄

′)
∂k2

2

]
k2=kS

2L

dl′ (91)

where

Jd
4L

(
kS

2L, ρ̄
′) =

[
∂J4 (k2, ρ̄

′)
∂k2

2

]
k2=kS

2L

(92)

To compute the derivatives of currents, we use the extended boundary conditions in Eqs. (57) and
(61). In Eq. (57), let ρ̄ be outside A1 and take wavenumber derivatives, we have

−
∫

∂S3

Jd
1L

(
kS

1L, ρ̄
′) n̂′3 · ∇′

tg0
(
kS

1L, ρ̄, ρ̄
′) dl′ + ∫

∂S3

Jd
2L

(
kS

1L, ρ̄
′) g0 (

kS
1L, ρ̄, ρ̄

′)dl′
−

∫
∂S1

Jd
3L

(
kS

1L, ρ̄
′) g0 (

kS
1L, ρ̄, ρ̄

′)dl′
=

[
∂g0 (k1, ρ̄, ρ̄

′′)
∂k2

1

]
k1=kS

1L

+
∫

∂S1

J3

(
kS

1L, ρ̄
′) [

∂g0 (k1, ρ̄, ρ̄
′)

∂k2
1

]
k1=kS

1L

dl′

+
∫

∂S3

J1

(
kS

1L, ρ̄
′) [

∂n̂′3 · ∇′
tg0 (k1, ρ̄, ρ̄

′)
∂k2

1

]
k1=kS

1L

dl′

−
∫

∂S3

J2

(
kS

1L, ρ̄
′) [

∂g0 (k1, ρ̄, ρ̄
′)

∂k2
1

]
k1=kS

1L

dl′ (93)

Similarly, let ρ̄ be outside A2 in Eq. (61) and take wavenumber derivatives, we obtain∫
∂S3

Jd
1L

(
kS

1L, ρ̄
′) n̂′3 · ∇′

tg0
(
kS

2L, ρ̄, ρ̄
′) dl′ − ∫
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∂k2

1

]
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1L
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(
kS
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−
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∂k2

1
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(
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′)dl′
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∫

∂S3
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(
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2
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(
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2L, , ρ̄
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′)

∂k2
2

]
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dl′

∫
∂S2

J4

(
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1L, , ρ̄
′) [

∂g0 (k2, ρ̄, ρ̄
′)
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2

]
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dl′ (94)
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Pulse basis function and point matching method are used to discretize the coupled integral equations (93)
and (94). We obtain the following matrix equation (95).

ZLJ̄
d
L = ḡd

L + Z
d

LJ̄L (95)

In Eq. (95), J̄d
L is the column vector containing all current derivatives,

J̄d
L =

[
J̄d

1L J̄d
2L J̄d

3L J̄d
4L

]T (96)

and Z
d

L is the matrix with matrix elements,

Z
d

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

A
d(1)L

M3 −Bd(1)L

M3 C
d(1)L

M3 0

−Ad(2)L

M3 B
d(2)L

M3 0 C
d(2)L

M3

A
d(1)L

M1

−Ad(2)L

M2

−Bd(1)L

M1

B
d(2)L

M2

C
d(1)L

M1

0

0

C
d(2)L

M2

⎤
⎥⎥⎥⎥⎥⎥⎦

(97)

with the expressions of matrix elements given by

A
d(1)L
M3,mn =

∫
∂S

(n)
3

[
∂n̂′3 · ∇′

tg0
(
k1, ρ̄

∂S3
m , ρ̄′

)
∂k2

1

]
k1=kS

1L

dl′ (98)

B
d(1)L
M3,mn =

∫
∂S

(n)
3

[
∂g0

(
k1, ρ̄

∂S3
m , ρ̄′

)
∂k2

1

]
k1=kS

1L

dl′ (99)

C
d(1)L
M3,mn =

∫
∂S

(n)
1

[
∂g0

(
k1, ρ̄

∂S3
m , ρ̄′

)
∂k2

1

]
k1=kS

1L

dl′ (100)

A
d(2)L
M3,mn =

∫
∂S

(n)
3

[
∂n̂′3 · ∇′

tg0
(
k2, ρ̄

∂S3
m , ρ̄′

)
∂k2

1

]
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1L

dl′ (101)

B
d(2)L
M3,mn =

∫
∂S

(n)
3

[
∂g0

(
k2, ρ̄

∂S3
m , ρ̄′

)
∂k2

1

]
k1=kS

1L

dl′ (102)

C
d(2)L
M3,mn =

∫
∂S

(n)
1

[
∂g0

(
k2, ρ̄

∂S3
m , ρ̄′

)
∂k2

1

]
k1=kS

1L

dl′ (103)

A
d(1)L
M1,mn =

∫
∂S

(n)
3

[
∂n̂′3 · ∇′

tg0
(
k1, ρ̄

∂S1
m , ρ̄′

)
∂k2

1

]
k1=kS

1L

dl′ (104)

B
d(1)L
M1,mn =

∫
∂S

(n)
3

[
∂g0

(
k1, ρ̄

∂S1
m , ρ̄′

)
∂k2

1

]
k1=kS

1L

dl′ (105)

C
d(1)L
M1,mn =

∫
∂S

(n)
1

[
∂g0

(
k1, ρ̄

∂S1
m , ρ̄′

)
∂k2

1

]
k1=kS

1L

dl′ (106)

A
d(2)L
M2,mn =

∫
∂S

(n)
3

[
∂n̂′3 · ∇′

tg0
(
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∂S2
m , ρ̄′

)
∂k2

1

]
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1L

dl′ (107)

B
d(2)L
M2,mn =

∫
∂S

(n)
3

[
∂g0

(
k2, ρ̄

∂S2
m , ρ̄′

)
∂k2

1

]
k1=kS

1L

dl′ (108)
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C
d(2)L
M2,mn =

∫
∂S

(n)
1

[
∂g0

(
k2, ρ̄

∂S2
m , ρ̄′

)
∂k2

1

]
k1=kS

1L

dl′ (109)

The column vector ḡd
L in (95) is defined as

ḡd
L =

[
ḡ

d(1)L
3 0̄ ḡ

d(1)L
1 0̄

]T
(110)

where

g
d(1)L
3m =

[
∂g0

(
k1, ρ̄

∂S3
m , ρ̄′′

)
∂k2

1

]
k1=kS

1L

(111)

g
d(1)L
1m =

[
∂g0

(
k1, ρ̄

∂S1
m , ρ̄′′

)
∂k2

1

]
k1=kS

1L

(112)

We note that J̄L and ZL in Eq. (95) are the same as those given in Eqs. (66) and (67), respectively. Thus
both currents J̄L and current derivatives J̄d

L have the same low wavenumber impedance matrices. After
solving J̄L and J̄d

L, we use Eqs. (87) and (91) to evaluate wavenumber derivative of Green’s functions
at any location ρ̄.

4. NUMERICAL RESULTS

The dimensions of waveguide S in Figure 1 are Lx = Ly = 500mils. The rectangular cut σ has widths
Wx = 100 mils and Wy = 250 mils. The waveguide S is filled with two lossless dielectrics ε1 = 4.41ε0
and ε2 = 2.25ε0. The horizontal interface ∂S3 is at y = −50 mils. Perfect electric conductor (PEC)
boundaries of TM modes, corresponding to Dirichelt boundary conditions are imposed on ∂S1 and ∂S2.

4.1. Resonant Frequencies and Modal Functions

We first illustrate the modal solutions of the irregularly shaped waveguide S including resonant
frequencies and normalized mode fields. We use 390ψΩ

α ’s, α = 1, 2, . . . , 390, to form the matrix elements

of P
L

in (41), and set the low wavenumber kΩ
1L equal to 10−6(fΩ

L = 22.72 Hz). From the eigen-values

of P
L
, we calculate the resonant wavenumbers kS

1β and resonant frequencies. Table 1 shows the first
10 resonant frequencies for the modes of waveguide S. We also compare the results of direct MoM and
HFSS. The results of BBGFL are in good agreement with the other two methods.

Table 1. First 10 resonant frequencies of waveguide S.

β BBGFL MoM HFSS

1 9.40 GHz 9.40 GHz 9.40 GHz
2 14.76 GHz 14.76 GHz 14.76 GHz
3 15.64 GHz 15.65 GHz 15.64 GHz
4 19.21 GHz 19.21 GHz 19.21 GHz
5 20.67 GHz 20.68 GHz 20.67 GHz
6 22.15 GHz 22.15 GHz 22.15 GHz
7 23.56 GHz 23.56 GHz 23.55 GHz
8 25.80 GHz 25.80 GHz 25.80 GHz
9 26.16 GHz 26.16 GHz 26.16 GHz
10 27.82 GHz 27.82 GHz 27.82 GHz
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The eigen-vector v̄L
β in Eq. (42) has the expansion coefficients of modal functions which are used to

construct modal field functions. The modal function ψS
β of waveguide S consists of ψS

1β of region 1 and
ψS

2β of regions 2. Figure 2 shows the first five normalized modal functions. The results of ψS
1β , in the top

row, and ψS
2β , in the middle row, are in agreement with the extinction theorem. The modal functions

ψS
β are smooth across the dielectric interface ∂S3 when ψS

1β and ψS
2β are combined in the bottom row

of Figure 2.

Figure 2. First 5 modal functions, from left to right. Top row: ψS
1β; Middle row: ψS

2β ; and Bottom
row: ψS

β .

In Figure 3, we plot the first 10 modal surface currents z̄β on σ using BBGFL and compare with
those computed using the direct MoM. The BBGFL results are in good agreement with those of direct
MoM, even at locations near the corner as denoted by the dot line. We compare the modal surface
currents x̄β and ȳβ on the interface ∂S3 with those of MoM in Figures 4 and 5, respectively. The
BBGFL results are in good agreement with MoM.

Figure 3. First 10 modal surface current of z̄β on σ. (dot line for the corner).
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Figure 4. First 10 modal surface current of x̄β on ∂S3 (dielectric interface).

Figure 5. First 10 modal surface current of ȳβ on ∂S3 (dielectric interface).

4.2. Spatial Responses of Green’s Functions

The Green’s function gS
11 are computed using Eqs. (53), (55), and (85) corresponding to the 2nd, 4th,

and 6th order convergence, respectively. Similarly, Eqs. (54), (56), and (86) are for gS
21. Let the source

point be at (30, 20) mils in A1. The low wavenumbers are chosen to be kS
1L = 10 and kS

2L = 7.14
corresponding to frequency fS

L = 22.72 MHz.
In Figure 6, we show the Green’s function of waveguide S at 20 GHz along a vertical line at x = −50

mils. The dotted line denotes the location of dielectric interface ∂S3. The results of gS
11 are on the right

hand side of the dotted line, while gS
21 are on the left side. With 7 modal functions used in the modal

summations, the 6th order results show the best agreement with MoM.
In Figure 7, the Green’s function of waveguide S is plotted along a vertical line cross the source

location. The 6th order BBGFL results are the closest to MoM results. The inset figure shows the good
agreement between the 6th order BBGFL and MoM solutions near the source point. It clearly indicates
that the usual modal summation of 2nd order has poor convergence when the observation point is close
to the source point. The singular field behavior near the source location cannot be captured using finite
number of modes in the second order modal representation. On the other hand, the low wavenumber
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Figure 6. A vertical cut at x = −50mils
for Green’s functions comparison with the target
frequency of 20 GHz. 7 modal functions are applied
for modal summations in 2nd, 4th, and 6th.

Figure 7. A vertical cut at x = 30 mils for
Green’s functions comparison with the target
frequency of 20 GHz. 7 modal functions are
applied for modal summations in 2nd, 4th, and
6th.

parts included in the 4th order and 6th order BBGFL results account for the low wavenumber solutions
of MoM. The hybrid representations give good agreement with a relatively few numbers of modes.

In Figure 8 we show the contributions of low wavenumber terms, gS
11(k

S
1L, ρ̄, ρ̄

′′) and gS
21(k

S
2L, ρ̄, ρ̄

′′),
wavenumber derivative terms, [k2

1 − (kS
1L)2][∂gS

11(k1,ρ̄,ρ̄′′)
∂k2

1
]k1=kS

1L
and [k2

2 − (kS
2L)2][∂gS

21(k2,ρ̄,ρ̄′′)
∂k2

2
]k2=kS

2L
, and

modal summation on the right hand side of Eqs. (85) and (86) to the BBGFL Green’s function of 6th
order. Near the source point, a peak is observed for the low wavenumber term. The other two terms are
smooth over the source. The low wavenumber parts included in the 4th order and 6th order BBGFL
expressions capture the singularity of waveguide Green’s function.

Figure 8. A vertical cut at x = 30 mils for the
Green’s function decomposition of 6th order. 7
modal functions are applied to modal summation
at 20 GHz.

Figure 9. A vertical cut at x = 30 mils for the
fraction contribution in Green’s function of 6th
order. 7 modal functions are applied to modal
summation at 20 GHz.
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A decomposition of BBGFL of 6th order is defined in Eq. (113).

C6th
term =

∣∣∣gS,term
ξ1

∣∣∣∣∣∣gS,Low
ξ1

∣∣∣ +
∣∣∣gS,Der

ξ1

∣∣∣ +
∣∣∣gS,Mod

ξ1

∣∣∣ (113)

where ξ = 1, 2. In Figure 9, we compare the fractional contributions of low wavenumber, wavenumber
derivative, and modal summation terms. Both the low wavenumber and wavenumber derivative terms
show high contributions near the source than those of the modal summation. This shows that the higher
order extraction improves the convergence around the source location. Since the low wavenumber is very
low, the low wavenumber term contributions are significant near the source but decrease with distance
away from the source. In Figure 10, we compare the contribution of individual mode to the 2nd, 4th,
and 6th order BBGFLs at 20 GHz. The waveguide modes with frequencies higher than the operating
frequency are evanescent modes. Others are propagation modes. The figure shows that the 6th order
BBGFL have the least contributions from evanescent modes. The use of low wavenumber extraction in
BBGFL reduces the need of higher order modes.

Figure 10. Individual contribution of β mode within modal summation. The target frequency is
20 GHz (dash line).

A significant feature of BBGFL is that the higher order BBGFL requires less number of modes in
modal summation. We use MoM as reference and define the error.

errorBBGFL (β) =

∣∣∣gS,BBGFL
11 (β) − gS,MoM

11

∣∣∣∣∣∣gS,MoM
11

∣∣∣ (114)

Figure 11 shows the comparison of convergence with respect to the number of modes among 2nd, 4th,
and 6th order BBGFLs for a single observation point close to the source. The 6th order BBGFL has
10 modes and the error is 2%. The error of 4th order BBGFL is about 5%. The 2nd order BBGFL has
poor convergence around the source.

4.3. Broadband Response

BBGFL is efficient for broadband simulations, particularly in situations with multiple resonances. The
broadband responses are shown in Figure 12. The results of BBGFLs (2nd, 4th, and 6th order) using
7 modes in modal summations are compared with those of MoM. The results of BBGFL are in good
agreement with MoM. For frequencies approaching 20 GHz, the results start to deviate from MoM. With
the same number of modal functions, the 6th order BBGFL gives the best agreement with MoM.
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Figure 11. Convergence test w.r.t. number of β modes for a single point close to the source at 20 GHz.
MoM is applied as reference.

Figure 12. Frequency response of Green’s functions for a single point close to the source. 7 modal
functions are applied to modal summation.

Table 2. Simulation time.

BBGFL, 6th order MoM
Find resonant modes and

apply normalization
30.78 (sec)

2000 ∗ 2.209 = 4418 (sec)Spurious modes rejection 6.61 (sec)
Low wavenumber extraction
& Wavenumber derivative

3.03 (sec)

Broadband computation 2000 ∗ 0.00186 = 3.72 (sec)
Total 44.14 (sec)
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Table 2 shows the CPU for the 6th order BBGFL and MoM. BBGFL has a one-time overhead
including (i) calculations of modal functions and resonance frequencies, (ii) normalization, (iii) rejection
of spurious modes, and (iv) low wavenumber extraction and wavenumber derivative. The bulk overhead
falls on finding resonant modes. Improving CPU time is our ongoing study. For 2000 frequency points,
the 6th order BBGFL shows 100 times faster than MoM. The computations were performed using Intel
Core i5@1.8 GHz with 8 GB memory.

5. CONCLUSIONS

The BBGFL method has been applied to the inhomogeneous waveguide of the TM case to calculate
broadband Green’s functions. Low wavenumber extractions of two gΩ are used to form linear eigen-
value equation. To construct Green’s function gS , a single low frequency is applied to low wavenumber
extraction and wavenumber derivative of currents and Green’s functions. Results are in good agreement
with the results of direct MoM. The 6th order BBGFL has less contribution from evanescent modes in
modal summation, thus reducing the need of computing higher order modes.

Classically Green’s function of waveguide only exists for separable geometry such as circular
waveguide and rectangular waveguide. For inhomogeneous waveguide, Green’s functions only exist for
concentric circular layering. The merit of BBGFL is that it has widened the domain of Green’s function
to cover inhomogeneous waveguides and waveguides of irregular shape. An attractive merit of BBGFL
is the broadband nature of the solutions since the results with varying frequencies are accomplished
by merely changing the denominator. We are studying the extensions to the 3D case. Similar
methodology has been used in periodic structures [17, 18, 20]. Recently there are works on Green’s
functions of resonant nano-structures [21] at close to resonant frequencies and piecewise homogeneous
lossy waveguide [22].
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