
Progress In Electromagnetics Research C, Vol. 91, 1–13, 2019

Electromagnetic Wave Scattering from an Infinite Periodic Array
of Hollow Conducting Circular Cylinders of Finite Length

Hongchang An1 and Akira Matsushima2, *

Abstract—An effective numerical technique is demonstrated for the plane wave scattering from an
infinite periodic array of hollow circular cylinders of finite length. The cylinders are made of infinitely
thin perfect conductor and allocated in the axial direction. We formulate the boundary value problem
into a set of integral equations for the unknown electric current densities flowing in the circumferential
and longitudinal directions. Employment of the Galerkin method allows us to solve simultaneous linear
equations for the expansion coefficients of the unknown current, from which we can find the field
distributions in both far and near regions. The procedure of analytical regularization makes the linear
system into the Fredholm second kind that is contributory to stable and rapidly convergent results.
Resonance is detected as abrupt changes in the total scattering cross sections for each grating mode,
and it is accompanied by the formation of circular cavity mode pattern in the cylinder.

1. INTRODUCTION

A hollow cylinder of finite length having circular cross section is one of the fundamental shapes in wave
scattering problems and has been treated by a lot of analytical and numerical methods. The Wiener-
Hopf technique, which had been originally applicable to only semi-infinite geometries, was extended
to a finite circular cylinder with acoustically hard boundary [1] or electromagnetically conducting
one [2, 3]. On the other hand, spread of high-speed digital computers activated the development of
various numerical approaches, the important one of which is to reduce the boundary value problems
into integral equations for unknown surface current density functions [4–7]. Here, the discretization
scheme is based on the methods of moments [8], and efficiency and reliability of the solution depend on
the skills of processing kernel and unknown functions. In this respect, the treatment by Lucido et al. [7]
is particularly excellent, where the system of linear equations has the form of the Fredholm second kind
as the result of analytical regularization procedure [9].

Besides an isolated body, an infinite number of cylinders periodically allocated in the axial direction
also constitute an interesting and attractive system of scatterers, considering that such structures are
simple models of antennas with slot arrays [10] or corrugated surfaces [11, 12], as well as metamaterial
absorbers [13–15]. As a semi analytical solution, the method of Riemann-Hilbert boundary value
problem was applied to an axially periodic array of hollow conducting cylinders as an eigenvalue
problem without excitation [16]. The present paper deals with the same structure but the scatterers
are illuminated by a plane electromagnetic wave. Following the analytical regularization scheme, one
of the present authors developed the singular integral equation method using weighted Chebyshev
polynomials as basis functions to the two-dimensional problems of infinite [17] and finite [18] periodic
strips in addition to the waveguide diaphragms [19]. Though the array of cylinders that we take up in
the present paper has a three-dimensional geometry, the axial symmetry along with the cylindrical wave
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expression of a plane wave permits us to solve two-dimensional problems for radial and axial directions
repeatedly for each azimuthal order.

The organization of the paper is as follows. Section 2 is devoted to derive a set of integral equations
for the surface current densities, and it is numerically solved by means of the Galerkin method in
Section 3. The analytical regularization is introduced in the same section. Section 4 discusses numerical
results, in view of convergence, surface current density, scattering cross sections in relation to circular
cavity resonance. Hereafter the time factor ejωt will be omitted throughout.

2. DERIVATION OF INTEGRAL EQUATIONS

2.1. Formulation of the Problem

As illustrated in Fig. 1(a), an infinite number of hollow circular cylinders with radius a and length w
are coaxially arrayed in the z direction with period d in the vacuum of the electric constants ε0 and μ0.
The cylinders are assumed to be perfectly conducting (PEC) and infinitely thin. The axial symmetry
allows us to restrict the wavenumber vector ki of an incident plane wave (Ei,Hi) to being parallel to
the xz plane as shown in Fig. 1(b). This vector is written as ki = −ixβ0 + izγ0 with β0 = k sin θi

and γ0 = k cos θi, where iu is the u-directed unit vector, k = ω
√

ε0μ0 = 2π/λ a wavenumber, and λ a
wavelength. The incident field is given by

Ei(r) = (ix cos θi sin δi − iy cos δi + iz sin θi sin δi) e−jki·r, Hi(r) = ki × Ei(r)/kZ, (1)

where r = ixx + iyy + izz = iρρ + izz is a position vector in the rectangular and cylindrical coordinate
systems, and Z =

√
μ0/ε0 is the wave impedance. The polarization angles δi = 0 and δi = π/2

correspond to the TE- and TM-waves, respectively, regarding to the z axis.

(a) (b)

Figure 1. Geometry of the problem. (a) Coaxially periodic array of hollow circular cylinders. (b) An
incident plane wave, incidence and polarization angles, and the unit vectors.

Let us decompose the total field as (E,H) = (Ei,Hi) + (Es,Hs), where the superscript s concerns
the unknown scattered field. The periodicity condition Fu(r + izd) = e−jγ0dFu(r) for any field
components Fu enables us to deal with one unit cell, say |z| < d/2. Taking account of the continuity of
(Ei,Hi) everywhere, we can express the boundary conditions as

[iρ × Es(r)]ρ=a+0
ρ=a−0 = 0 (|z| < d/2),

iρ × E(r)|ρ=a±0 = 0 (|z| < w/2),
Js(φ, z) = 0 (w/2 < |z| < d/2)

⎫⎬
⎭ (0 ≤ φ < 2π), (2)

where Js(φ, z) = [iρ × Hs(r)]ρ=a+0
ρ=a−0 is the surface current density.
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2.2. Expressions of the Field and Current

The Fourier series is an effective tool for separating the variables of electromagnetic fields in the present
cylindrical structure. Using the indices m and p in the φ and z directions, respectively, we express the
u-component of the field Fu (u = ρ, φ, z) and the surface current density Js

u (u = φ, z) as(
Fu(r)

Js
u(φ, z)

)
=

∞∑
m=−∞

(
Fu,m(ρ, z)
Js

u,m(z)

)
ejmφ,

(
Fu,m(ρ, z)
Js

u,m(z)

)
=

∞∑
p=−∞

(
Fu,mp(ρ)

Js
u,mp

)
e−jγpz, (3)

where γp = γ0 + 2pπ/d. The scattered field for the outside region ρ > a that satisfies the Helmholtz
equation and the radiation condition is expressed as

⎛
⎜⎜⎜⎜⎜⎝

Es
ρ,mp(ρ)

Es
φ,mp(ρ)

Es
z,mp(ρ)

ZHs
ρ,mp(ρ)

ZHs
φ,mp(ρ)

ZHs
z,mp(ρ)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(mk/β2
pρ)H(2)

m (βpρ) (γp/jβp)H
(2)′
m (βpρ)

(jk/βp)H
(2)′
m (βpρ) (mγp/β

2
pρ)H(2)

m (βpρ)
0 H

(2)
m (βpρ)

(γp/jβp)H
(2)′
m (βpρ) −(mk/β2

pρ)H(2)
m (βpρ)

(mγp/β
2
pρ)H(2)

m (βpρ) (k/jβp)H
(2)′
m (βpρ)

H
(2)
m (βpρ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

J ′
m(βpa)A1mp

Jm(βpa)A2mp

)
, (4)

where Jm(·) and H
(2)
m (·) are the Bessel function and Hankel function of the second kind, respectively,

and the propagation constant is βp = (k2 − γ2
p)1/2 (Re βp ≥ 0, Im βp ≤ 0). The symbols Asmp

denotes the unknown modal coefficients, where s = 1 and s = 2 correspond to the TE- and TM-waves,
respectively, with respect to z. On the other hand, the field in the inside region ρ < a is written by
replacing the functions (Jm, J ′

m,H
(2)
m ,H

(2)′
m ) in Eq. (4) with (H(2)

m ,H
(2)′
m , Jm, J ′

m). These expressions,
inside and outside the cylinder, automatically satisfy the first condition in Eq. (2), i.e., the continuity
of the tangential electric field on the boundary ρ = a.

Applying Eq. (4) into the definition of surface current density and using the orthogonality of the
functions ejγpz in the interval |z| < d/2, we obtain the relations among the unknowns as

A1mp = (jπZβpa/2)Js
φ,mp, A2mp = (−πZβpa/2k)

[
(mγp/βpa)Js

φ,mp + βpJ
s
z,mp

]
(5)

with Js
u,mp = (1/d)

∫ w/2
−w/2 Js

u,m(z) ejγpz dz, in which the range of integration is limited to the cylinder
length due to the third condition in Eq. (2), i.e., the absence of current in the vacuum.

With regard to the incident field in Eq. (1), the transformation of a plane wave into an ensemble
of cylindrical waves gives⎛

⎜⎜⎜⎜⎜⎜⎝

Ei
ρ,mp(ρ)

Ei
φ,mp(ρ)

Ei
z,mp(ρ)

ZH i
ρ,mp(ρ)

ZH i
φ,mp(ρ)

ZH i
z,mp(ρ)

⎞
⎟⎟⎟⎟⎟⎟⎠

=
jmβ0δp0

k

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(mk/β2
0ρ)Jm(β0ρ) (γ0/jβ0)J ′

m(β0ρ)
(jk/β0)J ′

m(β0ρ) (mγ0/β
2
0ρ)Jm(β0ρ)

0 Jm(β0ρ)
(γ0/jβ0)J ′

m(β0ρ) −(mk/β2
0ρ)Jm(β0ρ)

(mγ0/β
2
0ρ)Jm(β0ρ) (k/jβ0)J ′

m(β0ρ)
Jm(β0ρ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(

cos δi

sin δi

)
. (6)

Here, the appearance of Kronecker’s delta δp0 stems from the z dependence e−jγ0z.

2.3. Integral Equations

We have not yet used the second expression of Eq. (2), i.e., the perfect conductor condition. Combining
it with Eqs. (3)–(6), we are led to the set of integral equations for the surface current density as

2πkZ

∫ w/2

−w/2

(
Gφφ,m(z, z′) Gφz,m(z, z′)
Gφz,m(z, z′) Gzz,m(z, z′)

)(
Js

φ,m(z′)
Js

z,m(z′)

)
dz′ =

(
Ei

φ,m0(a)

Ei
z,m0(a)

)
e−jγ0z

(|z| < w/2; m = 0,±1,±2, . . .), (7)
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where the kernel functions are given by(
Gφφ,m(z, z′)
Gφz,m(z, z′)
Gzz,m(z, z′)

)
=

a

4d

∞∑
p=−∞

⎛
⎝ Cφφ,mp

(m/k2a2)Cφz,mp

(1/k2a2)Czz,mp

⎞
⎠ e−jγp(z−z′) (8)

with ⎧⎪⎨
⎪⎩

Cφφ,mp = J ′
m(βpa)H(2)′

m (βpa) + (mγp/kβpa)2Jm(βpa)H(2)
m (βpa),

Cφz,mp = γpaJm(βpa)H(2)
m (βpa),

Czz,mp = β2
pa2Jm(βpa)H(2)

m (βpa).
(9)

3. NUMERICAL ANALYSIS

3.1. Galerkin’s Method

Let us solve the integral equations (7) numerically by means of the Galerkin method that is one version of
the method of moments [8]. Taking account of the behavior of surface current density near the conductor
edges, we express the unknown functions in terms of the expansion coefficients fu,mn′ (u = φ,m) as(

Js
φ,m(z)

Js
z,m(z)

)
≈ 1

2π2Z

∞∑
n′=0

j−n′
(

fφ,mn′ T̃n′(2z/w)
fz,mn′ Ũn′(2z/w)

)
e−jγ0z (|z| < w/2; m = 0,±1,±2, . . .), (10)

where the basis functions

T̃n(ζ) = Tn(ζ)/
√

1 − ζ2, Ũn(ζ) =
√

1 − ζ2 Un(ζ)/(n + 1) (11)

are the weighted forms of the Chebyshev polynomials of the first kind Tn(·) and second kind Un(·).
We substitute Eq. (10) into Eq. (7), multiply the upper and lower expressions by

(jn/πw) T̃n(2z/w) ejγ0z and (jn/πw) Ũn(2z/w) ejγ0z (n = 0, 1, . . .), respectively, and integrate them
from z = −w/2 to w/2. This procedure leads us to the set of simultaneous linear equations as

∞∑
n′=0

(
Gφφ,mnn′ Gφz,mnn′
Gφz,mn′n Gzz,mnn′

)(
fφ,mn′
fz,mn′

)
=
(

Ei
φ,mn

Ei
z,mn

)
(n = 0, 1, . . . ; m = 0,±1,±2, . . .), (12)

where the system and excitation elements are given by the double and single integrals, respectively, as(
Gφφ,mnn′
Gφz,mnn′
Gzz,mnn′

)
=

jn−n′
k

π2w

∫ w/2

−w/2

∫ w/2

−w/2

⎛
⎝ T̃n(2z/w) T̃n′ (2z′/w)Gφφ,m(z, z′)

T̃n(2z/w) Ũn′ (2z′/w)Gφz,m(z, z′)
Ũn(2z/w) Ũn′ (2z′/w)Gzz,m(z, z′)

⎞
⎠ ejγ0(z−z′) dz′ dz (13)

and (
Ei

φ,mn

Ei
z,mn

)
=

jn

πw

∫ w/2

−w/2

(
T̃n(2z/w)Ei

φ,m0(a)
Ũn(2z/w)Ei

z,m0(a)

)
dz. (14)

In order to evaluate the integrals in Eqs. (13) and (14), we normalize the range of integration by
z = wt/2 and make use of the formulas∫ 1

−1
T̃n(t) e−jζt dt = πj−nJn(ζ),

∫ 1

−1
Ũn(t) e−jζt dt =

πj−n

ζ
Jn+1(ζ) (15)

with limiting procedures Jn(ζ) → δn0 and Jn+1(ζ)/ζ → δn0/2 as ζ → 0. At first, combination of
Eqs. (14), (15), and (6) gives(

Ei
φ,mn

Ei
z,mn

)
=

jmδn0

2

(
jJ ′

m(β0a) (mγ0/kβ0a)Jm(β0a)
0 (β0/2k)Jm(β0a)

)(
cos δi

sin δi

)
. (16)

On the other hand, though Eq. (13) could be handled in a similar manner by using Eq. (15), such
straightforward treatment spoils the numerical stability while solving Eq. (12). This is caused by the
singularities originating from the infinite sums in Eq. (8) as z → z′, and is called the relative convergence
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phenomenon [20]. We will overcome this difficulty by means of the analytical regularization in the next
subsection.

Solving Eq. (12) numerically by retaining 0 ≤ n′ ≤ N , 0 ≤ n ≤ N and −M ≤ m ≤ M , we can
obtain the surface current density by Eq. (10). Application of this result into Eq. (5) leads us to the
modal coefficients as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
A1mp =

jβpaw

8d

∞∑
n=0

fφ,mnJn

(pπw

d

)
,

A2mp = − 1
8kd

[
mγpw

∞∑
n=0

fφ,mnJn

(pπw

d

)
+

β2
pad

pπ

∞∑
n=0

fz,mnJn+1

(pπw

d

)]
.

(17)

3.2. Analytical Regularization

Let us extract the singularities from the elements in Eq. (13) and separate them into the dominant and
compensative parts, the former of which includes Kronecker’s delta δnn′ . This procedure modifies the
set of equations (12) into the form of Fredholm second kind, and makes the numerical solution stable
and convergent.

Taking into account the behavior of the propagation constants and cylindrical functions in Eq. (9)
as |p| → ∞, we define the modified coefficients by subtracting the asymptotic parts as

C̃φφ,mp = Cφφ,mp − jκmd/2|p|π2a,

C̃φz,mp = Cφz,mp − j sgn(p)/π,
C̃zz,mp = Czz,mp − 2|p|a/jd

⎫⎬
⎭ (p �= 0),

C̃φφ,mp = 0(p−2),
C̃φz,mp = 0(p−2),
C̃zz,mp = 0(p0)

⎫⎬
⎭ (|p| → ∞) (18)

with κm = 1− (m/ka)2. With the aid of Eq. (18), the infinite sums in Eq. (8) are decomposed into two
types of sums. The first type is written in terms of C̃φφ,mp, C̃φz,mp, and C̃zz,mp, and the convergence of
these sums is accelerated compared with the original ones in Eq. (8). The second type, with regard to
the second terms in the right hand side of Eq. (18), is analytically evaluated by using the formulas

∞∑
p=−∞
(p �=0)

( 1/|p|
sgn(p)
|p|

)
e−jpζ =

⎛
⎝ −2 log[2 sin(|ζ|/2)]

−j cot(ζ/2)
−(1/2) csc2(ζ/2)

⎞
⎠ ∼

⎛
⎝ −2 log |ζ|

2/jζ
−2/ζ2 − 1/6

⎞
⎠ (ζ → 0). (19)

Note that the sums with respect to sgn(p)e−jpζ and |p|e−jpζ hold in the sense of distributions. As a
result, the elements in Eq. (13) are decomposed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gφφ,mnn′ =
jn−n′

kaw

16π2d

∫ 1

−1

∫ 1

−1

⎡
⎢⎢⎣ κmd

jπ2a
log |t − t′| + Cφφ,m0 +

∞∑
p=−∞
(p �=0)

C̃φφ,mp e−jpπw(t−t′)/d

+
κmd

jπ2a
Fφφ(t − t′)

]
T̃n(t) T̃n′(t′) dt′ dt,

Gφz,mnn′ =
mjn−n′

w

16π2kad

∫ 1

−1

∫ 1

−1

⎡
⎢⎢⎣ 2d

π2w(t − t′)
+ Cφz,m0 +

∞∑
p=−∞
(p �=0)

C̃φz,mp e−jpπw(t−t′)/d

+
1
π

Fφz(t − t′)
]

T̃n(t) Ũn′(t′) dt′ dt,

Gzz,mnn′ =
jn−n′

w

16π2kad

∫ 1

−1

∫ 1

−1

⎡
⎢⎢⎣ j4ad

π2w2(t − t′)2
+ Czz,m0 +

∞∑
p=−∞
(p �=0)

C̃zz,mp e−jpπw(t−t′)/d

+
ja

d
Fzz(t − t′)

]
Ũn(t) Ũn′(t′) dt′ dt,

(20)
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where we introduced the singularity-free functions as

Fφφ(t) = log
(

2
t

sin
πwt

2d

)
, Fφz(t) = cot

πwt

2d
− 2d

πwt
, Fzz(t) = csc2 πwt

2d
− 4d2

π2w2t2
. (21)

The double integrals in Eq. (20), from term to term, are evaluated as follows.
• Regarding the logarithmic and Cauchy type singularities and the hypersingularity, analytical

treatment is given by making use of the formulas⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

−1

∫ 1

−1
T̃n(t) T̃n′(t′) log |t − t′| dt′ dt = −π2δnn′ ×

{
log 2 (n = 0)
1/2n′ (n = 1, 2, . . .)

,∫ 1

−1

∫ 1

−1

T̃n(t) Ũn′(t′)
t − t′

dt′ dt =
π2δn n′+1

2(n′ + 1)
,∫ 1

−1

∫ 1

−1

Ũn(t) Ũn′(t′)
(t − t′)2

dt′ dt = − π2

2(n′ + 1)
δnn′ .

(22)

The appearance of Kronecker’s delta is of considerable merit which contributes to the stability and
convergence of the numerical solution of Eq. (12).

• The integrals concerning e−jpπw(t−t′)/d are analytically evaluated by using Eq. (15) and expressed
in terms of the Bessel functions, say Jn(pπw/d). The limiting procedure is applied for p = 0. The
terms for −P ≤ p ≤ P are retained in the numerical computation.

• The functions in Eq. (21) are finite and smooth even when t → 0, and thereby accurately integrated
by means of the quadrature formulas of the Gauss-Chebyshev type with L nodes as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ 1

−1

F (t)√
1 − t2

dt ≈ π

L

L∑
l=1

F

(
cos

(2l − 1)π
2L

)
,

∫ 1

−1

√
1 − t2 F (t) dt ≈ π

L + 1

L∑
l=1

sin2 lπ

L + 1
F

(
cos

lπ

L + 1

)
.

(23)

3.3. Scattering and Extinction Cross Sections

The total scattering cross section per unit region σt is defined by dividing the radiated power
(1/2)Re{∫ d/2

−d/2

∫ π
−π [Es(r) × Hs∗(r)]ρ>a · iρ ρ dφ dz} by the incident power density W i = 1/2Z. By

using Eq. (4) and carrying out the integrations, the result is arranged in the form

σt =
∑

p
(Re βp>0)

(
σTE

p + σTM
p

)
, (24)

where the modal scattering cross sections are computed by(
σTE

p

σTM
p

)
=

4kd

β2
p

∞∑
m=−∞

(
J ′2

m(βpa)|A1mp|2
J2

m(βpa)|A2mp|2
)

. (25)

The power conservation is expressed by Re{∫ d/2
−d/2

∫ π
−π [E(r) × H∗(r)]ρ>a · iρ ρ dφ dz} = 0. Taking

account of the fact that the integral with respect to Ei(r) × Hi∗(r) vanishes, we obtain the optical
theorem σt = σe, where the extinction cross section is given by

σe = − 1
2W i

Re

(∫ π

φ=−π

∫ d/2

z=−d/2

{[
Ei(r) × Hs∗(r)

]
+
[
Es(r) × Hi∗(r)

]}
ρ>a

· iρ ρ dφ dz

)

= −4d
β0

Re

{ ∞∑
m=−∞

[
J ′

m(β0a)A1m0 cos δi + Jm(β0a)A2m0 sin δi
]}

. (26)
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4. NUMERICAL RESULTS

4.1. Convergence

Numerical computations were carried out by making a Fortran code with the aid of the libraries for
special functions and LU decomposition. We have introduced four truncation numbers N , M , P , and
L, which must be appropriately chosen in order to yield convergent results. The numbers except N are
determined in the following way.

• The number M is fixed at M ≈ 9 + 1.07 ka − 16/(2 + ka) (0 ≤ ka ≤ 100), which is noted as
Eq. (12) in Ref. [21] as the 0.1%-error criterion. This is based on the Debye asymptotic expansion
of cylindrical functions which appears in the scattering problems with regard to cylinders.

• Combination of Eqs. (15) and (18) tells us that the double integrals concerning
(C̃φφ,mpT̃n(t)T̃n′(t′), C̃φz,mpT̃n(t)Ũn′(t′), C̃zz,mpŨn(t)Ũn′(t′)) × e−jpπw(t−t′)/d in (20) behave as
O(p−3) as |p| → ∞. Taking account that |∑32

p=1 p−3/
∑∞

p=1 p−3| = 0.99961, we can reasonably
set as P = 32 on the permission of 0.04%-error.

• Owing to both the analytical view and numerical experiment, number L is selected as L = [N/2]+4,
where [ζ] is the largest integer not exceeding ζ. In fact, the quadrature formulas in Eq. (23) yield
exact values if the function F (t) is a polynomial of the order 2L−1 or less. The bias “+4” is added
by considering that the functions Fφφ(t), Fφz(t), and Fzz(t) in Eq. (21) are not finite polynomials
but in the class C∞.

Figure 2 shows the logarithmic plot of errors in the total scattering cross sections computed from
Eqs. (24), (25), and (17) as functions of the truncation number N . The values w/λ and P are selected
in two ways, and the other truncation numbers M and L are determined in the manner mentioned in
the previous paragraph. The error curves are, except some dips due to the overshoot, decreased on
the whole as N increases, which tells that the relative convergence is avoided. The errors saturate for
N ≥ 12 since M and P are fixed: for larger M and P the error would begin to saturate at larger
N . As expected, the decrement of errors is faster for the shorter cylinder (w = 0.5λ) and the larger
truncation number (P = 32). There is no appreciable difference in the degree of errors between TE-
and TM-incidences. Note that the error on the optical theorem defined by εopt = 2 |σt − σe|/|σt + σe|
is always satisfied on the machine epsilon level, i.e., less than 10−15 at double precision processing [22].

(a) (b)

Figure 2. Normalized truncation errors log10 |σt(N)/σt(2N)−1| as functions of the truncation number
N . The parameters are a = 0.5λ, w/d = 0.5, θi = 45◦, M = 9, and L = [N/2] + 4. (a) TE-incidence
δi = 0◦; (b) TM-incidence δi = 90◦.



8 An and Matsushima

4.2. Surface Current Density

Figure 3 shows the amplitude of the surface current density normalized by the incident magnetic field
strength for three different values of the period d, where the radius a and the length w are fixed at one
wavelength. The computation is based on Eq. (10) after solving the simultaneous equations (12). The
observation point moves along the line segment on the illuminated side ρ = a and φ = 0. For TE- and
TM-incidences, the dominant φ and z components are depicted, respectively, which exhibit appropriate
edge behaviors thanks to the weighting factors [1−(2z/w)2]∓1/2. The z component in Fig. 3(b) resemble
a standing wave having two loops with an average value 2 corresponding to the physical optics current.
For a suggestive confirmation, we appended the curves for an isolated cylinder [7] marked as d → ∞. As
the period d is increased, meaning that adjacent cylinders move away, the curve gradually approaches
the one for the isolated case.

(a) (b)

Figure 3. Amplitude of the normalized surface current density |Js
u(0, z)|/|Hi| (u = φ, z) observed along

the line segment joining two edge points (ρ, φ, z) = (a, 0,±w/2). The parameters are a = w = λ and
θi = 45◦. The description d → ∞ means an isolated cylinder, the data for which is taken from Fig. 3
of [7]. (a) φ component at TE-incidence δi = 0◦; (b) z component at TM-incidence δi = 90◦.

4.3. Scattering Cross Section

From the viewpoint of far field, we show in Fig. 4 the modal scattering cross sections computed from
Eqs. (24), (25), and (17) normalized by the rectangular area composed of the period d and the diameter
2a. At normal incidence where θi = 90◦, the cutoff wavelengths for the 0th, ±1st, and ±2nd order
modes correspond to d/λ = 0, 1, and 2, respectively. Emerging higher order mode causes the abrupt
change in the curve for lower order mode, which is called Wood’s anomaly [23]. Generally speaking,
the co-polarization in solid curves is stronger than the cross-polarization in dotted ones: the exception
is the range 1.7 < d/λ < 2 in Fig. 4(a).

Figure 5 shows the normalized scattering cross sections for each mode as functions of normalized
radius of cylinders at both TE- and TM-incidences. At d = 1.5λ and θi = 90◦, the grating modes of the
dominant 0th order and the degenerated higher ±1st orders are propagating. All the curves repeat peaks
and dips at uneven intervals as a/λ changes. This phenomenon is examined in detail by taking account
of the excited circular waveguide modes: each cylinder play a role of an open type circular resonator.
The data for the cutoff wavelengths given in Table 1 help us to interpret the points of appearance of
resonances. Such points nearly agree with TM01,11 waveguide modes in Fig. 5(b) (the inset marks a
and b), whereas the resonances seen in Fig. 5(a) (the inset marks a, b, c, d, e, and f) are a little shifted
from the cutoff of TE11,21,01,31 modes. This discord is due to the formation of different cavity modes,
which will be discussed in the next subsection in view of the near fields. Note that the curves for 0th
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(a) (b)

Figure 4. Normalized modal scattering cross sections σTE,TM
p /2ad (p = 0,±1,±2) as functions of d/λ.

The parameters are a/d = 0.1, w/d = 0.6, and θi = 90◦. (a) TE-incidence δi = 0◦; (b) TM-incidence
δi = 90◦.

(a) (b)

Figure 5. Normalized mode scattering cross sections σTE,TM
p /2ad (p = 0,±1) as functions of a/λ. The

parameters are d = 1.5λ, w/d = 0.75, and θi = 90◦. The arrows pointing to abscissas denote the cutoff
of circular waveguide modes presented in Table 1. (a) TE-incidence δi = 0◦; (b) TM-incidence δi = 90◦.

Table 1. Data for the cutoff of circular waveguide modes. Zeros relating to the Bessel function are
such that J ′

m(ξ′mn) = 0 and Jm(ξmn) = 0 for TEmn and TMmn modes, respectively. The ratio of radius
to cutoff wavelength is given by a/λc,mn = ξ′mn/2π (ξmn/2π).

Waveguide mode TE11 TE21 TE01 TE31 TM01 TM11

ξ′mn (ξmn) 1.841 3.054 3.832 4.201 2.405 3.832

a/λc,mn 0.293 0.486 0.610 0.669 0.383 0.610



10 An and Matsushima

(TM) and ±1st (TM) modes in Fig. 5(b) behave as O((a/λ)−1/2) in the limit a/λ → 0. This means
that the scattering cross section σTM

0,±1 itself diminishes in the order of a1/2 for thin cylinders.

4.4. Near Field Distribution at Resonance

Figure 6 shows the time averaged amplitude of the axial total magnetic field component which was
computed from Eqs. (4), (6), and (17) after solving the simultaneous equations (12). Six values of a/λ
are chosen from the resonant points in Fig. 5(a) at TE-incidence, where we observe waveguide mode-like
patterns inside the circular cross section regions. The PEC boundary condition states that the magnetic
field shows no variation in the radial direction on the cylindrical surface, which we can roughly see from
the images. In order to examine the resonance quantitatively, we recall that the resonant wavelength of
a circular resonator is given by (See, e.g., Eq. (6.53) of Ref. [24])

a

λr,mn	
=

√(
a

λc,mn

)2

+
(

�a

2w

)2

. (27)

(a) (b) (c)

(d) (e) (f)

Figure 6. Amplitude of the axial total magnetic field normalized by the incident one on the xy-plane,
|Hz(x, y, 0)|/|Hi|, at TE-incidence. The parameters are the same as those in Fig. 5(a). The range of
amplitude is written as “0 (black) — maximum (white)” on the top of each map. (a) a = 0.268λ; (b)
a = 0.372λ; (c) a = 0.464λ; (d) a = 0.574λ; (e) a = 0.635λ; (f) a = 0.772λ.
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Table 2. Resonant points in Fig. 5 and corresponding circular cavity modes.

Inset marks in Fig. 5(a)|(b) a b c d e f a b
Cavity modes TE110 TE111 TE210 TE010 TE211 TE011 TM010 TM110

a/λ in Fig. 5 0.268 0.372 0.464 0.574 0.635 0.772 0.388 0.604
a/λr,nm	 from Eq. (27) 0.293 0.327 0.486 0.610 0.542 0.680 0.383 0.610
Shift: |1 − λ/λr,nm	| 9% 12% 5% 6% 15% 12% 1% 1%

Applying � = 1, d ≈ 1.5λr,mn1, and w/d = 0.75 into Eq. (27), we obtain a/λr,mn1 ≈ 1.116(a/λc,mm).
These resonance data, as well as the names of configured cavity modes, are gathered in Table 2. The
relative shifts from the theoretical λr,nm	 toward the actual λ are at most 9% and 15% for � = 0 and
� = 1, respectively. Though this discrepancy is not so small due to the end effect and low Q-factor of
the cylinders, the above interpretation is helpful in comprehending the resonance properties.

Figure 7 was drawn in a similar fashion as Fig. 6 by replacing the electric field with the magnetic
one in order to study Fig. 5(b). Two resonant values of a/λ are selected. We easily observe that
the axial electric field almost vanishes as depicted in black on the surface of a cylinder, that is, the
PEC boundary condition is satisfied. As shown in Table 2, the resonant wavelength λ is confidently
anticipated by using that of a circular cavity λr,n10 with only 1%-shift. This advantage is probably
because the axial current flow urges the electromagnetic field to be localized inside the cylinder.

(a) (b)

Figure 7. Amplitude of the axial total electric field normalized by the incident one on the xy-plane,
|Ez(x, y, 0)|/|Ei|, at TM-incidence. The parameters are the same as those in Fig. 5(b). (a) a = 0.388λ;
(b) a = 0.604λ.

5. CONCLUSION

A powerful numerical solution has been demonstrated for the scattering of electromagnetic waves from an
infinite periodic array of perfectly conducting cylinders of finite length. The boundary value problem is
reduced to a set of integral equations for induced surface current density functions. The Galerkin method
is employed to lead simultaneous linear equations for expansion coefficients of the current densities in
terms of Chebyshev polynomials with weighting factors corresponding to the edge conditions. To attain
the stability and fast convergence in the numerical processing, we apply the analytical regularization to
the matrix elements. Verifying the far and near fields, we relate the abrupt changes in scattering cross
section with the waveguide mode resonances.
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The present work was limited to treating perfectly conducting scatterers; however, the extension of
the material into metals, semiconductors, dielectric silver is much more interesting [25, 26] since another
type of resonance is expected due to the effect of conductivity. Among them, noble metals such as gold
and silver are the object of plasmonics in the visual light range, and the factor of resonance thereat is
not only the periodicity and cavity geometry but also the excited plasmon surface waves. The use of
impedance type boundary conditions [27] enables us to solve the problem of noble metal cylinders as
done for periodically allocated disks [28]. This content will be reported in the near future.
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