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Evaluation and Minimization of Cramer-Rao Bound for Conformal
Antenna Arrays with Directional Emitters for DOA-Estimation

Yuri Nechaev1, Ilia Peshkov2, *, and Natalia Fortunova2

Abstract—The Cramer-Rao lower bound (CRLB) for calculating errors and accuracy of direction-of-
arrival (DOA) estimation is discussed for a number of planar waves arriving on an antenna array. It
is well known that the geometry of antenna arrays imposes restrictions on the performances of the
direction-of-arrival estimation. In particular, the influence of the directivity factor of the individual
antenna elements on the accuracy of the DOA estimation of the radio emission sources for circular
(cylindrical), cubic and spherical antenna arrays consisting of the directional antenna elements is
investigated. The directivity factor of antenna elements is changed within wide limits in order to
determine the values at which the high accuracy of the direction-finding can be achieved. It is shown
that further increasing the directivity factor of each antenna element makes the mean square error in the
determination of the coordinates of the signals increase as well. The exact expression for the Cramer-
Rao lower bound for the DOA-estimation variance calculation depending on the antenna directivity
and the geometry is presented. The obtained exact equation shows the most important factors that
the direction-of-arrival estimation accuracy is dependent on. A technique of obtaining antenna arrays
with optimal directional elements locations is proposed. Those arrays allow increasing DOA estimation
accuracy by several times.

1. INTRODUCTION

Direction-of-arrival estimation of signal sources takes a great interest in such tasks as radars, sonars,
and wireless communications [1–6] by using linear antenna arrays. The arrays are simple to implement
and understand, but they are not able to execute simultaneous direction-of-arrival estimation in three-
dimensional space, i.e., azimuth and elevation [7]. Planar and conformal antenna arrays are capable of
overcoming this problem [8–10]. Additionally, many papers assume that the antennas are isotropic [1–
10]. Many conformal volume antenna arrays consist of rectangular patch-antenna elements as a rule,
which have directivity factor greater than 1. So considering the influence of the directivity factor of a
particular antenna element on performances of DOA-estimation is of serious interest. Therefore, the
paper focuses on researching three-dimensional conformal antenna arrays such as cylindrical, cubic,
sphere, and cone configurations using the MUSIC method. However, the results of comparative
computer simulation can be interpreted as a special case; therefore, an instrument is highly needed
such as the Cramer-Rao lower bound which is independent of implementation features.

In papers [11, 12], the problem of obtaining the Cramer-Rao lower bound for the azimuth and
elevation DOA-estimation using antenna arrays with directional elements is considered. However, these
works do not give an exact expression taking into account the position of the source together with
the directivity factor of each antenna element. The following is an improved and expanded matrix-
vector expression of the Cramer-Rao lower bound taking into account the aforementioned shortcomings.
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Additionally, the obtained equation will be very helpful for analyzing the important factors which
determine the DOA-estimation accuracy by using antenna arrays of these kinds. Impact on these
factors will help us to generate such configuration that will have better characteristics for accuracy and
resolution of DOA methods such as MUSIC. Although the idea of optimum antenna elements placements
is not new [13, 14], the presented paper allows estimating and analyzing any antenna array composed of
directional sensors manually. Additionally, it takes into account the influence of the directivity factor
on DOA estimation, and the further obtained equations are simple to realize and use.

2. BUILDING AN ANTENNA ARRAY

2.1. Cubic Antenna Array

Figure 1 shows an array of N rectangular directional elements distributed in space, forming a cubic
antenna array. Let us consider the narrow-band signal s(t) on the carrier frequency of ω0 with the
angular coordinates θ and ϕ with respect to the x-, y- and z-axes, respectively, i.e., θ is related to the
azimuth and ϕ related to the vertical planes. Thus, the task of radio direction-finding is to estimate θ
and ϕ coordinates. It requires the model of the antenna array.

(b)(a)

(d)(c)

Figure 1. The antenna arrays schemes.

Let us denote gi(ω, θ, ϕ) gain depending on the frequency and direction. Then the analytical signal
at the array output is [10]:

a(ω, θ, λ) =
[
g1(ω, θ, λ)ejkrT

1 g2(ω, θ, λ)ejkrT
2 . . . gN (ω, θ, λ)ejkrT

N

]
(1)

where k = 2π
λ (kx, ky, kz) = (sinϕ cos θ, sinϕ sin θ, cosϕ) is the wave number, describing the rate of

change of the phase of the propagating wave in directions x, y, z. rTn = (xn, yn, zn)T is the radius-vector
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to the n-th antenna and gn(θ, and ϕ) is the gain coefficient of the n-th element. Therefore, the steering
vector of the antenna array can be expressed as follows:

a(θ, ϕ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(θ, ϕ+ ϕ1)ejkrT
1

g2(θ, ϕ)ejkrT
2

g3(θ + θ3, ϕ)ejkrT
3

g4(θ + θ4, ϕ)ejkrT
4

g5(θ + θ5, ϕ)ejkrT
5

g6(θ, ϕ− ϕ6)ejkrT
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1

(
θ, ϕ+

π

2

)
ejk[0,0,0]T

g2(θ, ϕ)ejk[ λ
4
,0,λ

4
]T

g3

(
θ +

π

2
, ϕ
)
ejk[0,−λ

4
,λ
4
]T

g4(θ + π, ϕ)ejk[−λ
4
,0,λ

4
]T

g5

(
θ +

3π
2
, ϕ

)
ejk[0,λ

4
,λ
4
]T

g6

(
θ, ϕ− π

2

)
ejk[0,0,λ

2
]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The construction of the steering vector of the cubic antenna array has been carried out in such a
way that the first element is located at the origin of coordinates, i.e., rT1 = [0, 0, 0]T , and is directed
by the radiating element along the z-axis, so it has the radiation maximum in the angle of elevation
shifted by +π/2. In the above-mentioned model, the gain coefficient gn(θ, ϕ) depends on the azimuth
ϕ coordinate and the angle of elevation θ of the observer. In addition, it is assumed that the radiation
maximum is reached at θ = 0◦ and ϕ = 0◦, and the minimum at ϕ = 90◦, θ = 0◦, or ϕ = 90◦, θ = 90◦,
as shown in the following math model of power directivity pattern in the far-field assuming that the
antennas are perfectly matched and lossless [11]:

G (θ, ϕ) =
D

22m
(1 + sin (ϕ− γϕn ))m

(
1 + cos

(
θ − γθn

))m
, n = 0, 1, . . . , N − 1 (3)

where γϕn and γθn are shifts in the elevation and azimuth planes of n-th antenna, respectively, then
g =

√
G (θ, ϕ).

The second element has the radius-vector rT2 =
[
λ
4 , 0,

λ
4

]T , because the width of each radiator is
half-wavelength. The locations of other radiators are calculated in a similar way.

2.2. Half-Dodecahedron Antenna Array

Figure 1(b) shows the antenna array in the form of a half-dodecahedron, and the length of the side is
equal to λ/2. The half-dodecahedron has two parameters: the radii of the incircle and circumcircle,
which are respectively equal to rin = 1, 1λ/2 and rout = 1, 4λ/2. In total, there are six elements, with
five around the circumference. The angle between them is 72◦. The angle between the upper face and
any lateral one (antenna elements) is 116◦.

Then, the steering vector of the antenna array can be expressed as:

a(θ, ϕ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(θ, ϕ+ ϕ1)ejkrT
1

g2(θ + θ2, ϕ+ ϕ2)ejkrT
2

g3(θ + θ3, ϕ+ ϕ3)ejkrT
3

g4(θ + θ4, ϕ+ ϕ4)ejkrT
4

g5(θ + θ5, ϕ+ ϕ5)ejkrT
5

g6(θ + θ6, ϕ+ ϕ6)ejkrT
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1

(
θ, ϕ+

π

2

)
ejkRz(0)[0,0,rin]T

g2

(
θ +

π

2.5
, ϕ+

π

6.8

)
ejkRz( π

2.5)[0,rout,
rin
2

]T

g3

(
θ + 2

π

2.5
, ϕ+

π

6.8

)
ejkRz(2 π

2.5)[0,rout,
rin
2

]T

g4

(
θ + 2

π

2.5
, ϕ+

π

6.8

)
ejkRz(3 π

2.5)[0,rout,
rin
2

]T

g5

(
θ + 4

π

2.5
, ϕ+

π

6.8

)
ejkRz(4 π

2.5)[0,rout,
rin
2

]T

g1

(
θ + 5

π

2.5
, ϕ+

π

6.8

)
ejkRz(5 π

2.5)[0,rout,
rin
2

]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where Rz (θ) =

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦ is the rotation matrix around the z-axis, simplifying the

construction.
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2.3. Cylindrical Antenna Array

Here, the steering vector of m-th radio emission source on the n-th antenna element (Fig. 1(c)) in terms
of the azimuth and elevation angles, as well as the position of the array elements becomes:

a(θ, ϕ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(θ, ϕ)ejkrT
1

g2(θ + θ2, ϕ)ejkrT
2

g3(θ + θ3, ϕ)ejkrT
3

g4(θ + θ4, ϕ)ejkrT
4

g5(θ + θ5, ϕ)ejkrT
5

g6(θ + θ6, ϕ)ejkrT
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(θ, ϕ)ejkRz(0)[0,rcirc,
λ
4
]T

g2

(
θ +

2π
N
,ϕ

)
ejkRz( 2π

N )[0,rcirc,
λ
4
]T

g3

(
θ + 2

2π
N
,ϕ

)
ejkRz(2 2π

N )[0,rcirc,
λ
4
]T

g4

(
θ + 3

2π
N
,ϕ

)
ejkRz(3 2π

N )[0,rcirc,
λ
4
]T

g5

(
θ + 4

2π
N
,ϕ

)
ejkRz(4 2π

N )[0,rcirc,
λ
4
]T

g1

(
θ + 5

2π
N
,ϕ

)
ejkRz(5 2π

N )[0,rcirc,
λ
4
]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where rcirc =
√

3
2
λ
2 . The conical array can be considered as a special case of the cylindrical antenna

array (Fig. 1(d)). In this case, the conical array will consist of two tiers of the cylindrical antenna array,
and each of them will contain N = 3 elements. In this case, the radius of the lower tier is greater than
the radius of the upper tier, i.e., rcirc1 > rcirc2, and there are patch antennas turn in the ϕ plane. Thus,
the steering vector of the conical array becomes:

a(θ, ϕ) =
[

acirc1(θ, ϕ)
acirc2(θ, ϕ)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1

(
ϕ, θ +

π

6.8

)
ejkRz(0)rT

1

g2

(
ϕ+

2π
N
, θ +

π

6.8

)
ejkRz( 2π

N )rT
1

g3

(
ϕ+ 2

2π
N
, θ +

π

6.8

)
ejkRz(2 2π

N )rT
1

g4

(
ϕ, θ +

π

6.8

)
ejkRz(0)rT

2

g5

(
ϕ+

2π
N
, θ +

π

6.8

)
ejkRz( 2π

N )rT
2

g6

(
ϕ+ 2

2π
N
, θ +

π

6.8

)
ejkRz(2 2π

N )rT
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where r1 =
[

0 rcirc1
λ
4

]T and r2 =
[

0 rcirc2
3λ
4

]T .
As we can see, there is no gap between the elements with considered dimensions of the radiators in

all configurations of antenna arrays. However, it is possible to achieve such radii to find approximately
the same area of antenna elements. In all cases, the number of antenna elements is N = 6.

3. THE CRAMER-RAO LOWER BOUND FOR ANTENNA ARRAYS WITH
DIRECTIONAL ELEMENTS

Suppose that we have a vector x̃ (t), forming a stationary Gaussian process with zero mean having
moments of the this kind:

E
{
�x(t)�xH(t)

}
= Rδij =

(
ASAH + σ2I

)
δij (7)

where S is the signal correlation matrix, A the steering matrix, σ2 the noise power, and noise is Gaussian
as well.

The likelihood function of the i.i.d. samples x̃ (t1) , . . . x̃ (tN ) is expressed as the negative log-
likelihood function:

l
(
θ,S, σ2

)
= N log |R| + −

N∑
i=1

xH (ti)R−1x (ti) = log |R| + Tr
{
R−1R̂

}
(8)
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where | . . . | — the matrix determinant.
The Cramer-Rao lower bound (CRLB) is an important measurement parameter which shows how

well a method works. Suppose that η̂ is unbiased estimation of the parameter vector η0, i.e., E {η̂} = η0

based on samples XN , then the lower bound:

E
{

(η̂ − η0) (η̂ − η0)
T
}
≥
[
−E

{
∂2 log p (XN |η)

∂η∂ηT

}]−1

(9)

The compact expression for CRLB for P parameters of M signals is easily deduced from Eq. (9).
For the case if only one parameter (p = 1) is associated with each signal (as an example: azimuth
angle), the CRLB can be written [15]:

BSTO =
σ2

2N
�
[
Tr
{(

DHP⊥
AD
)
◦ (SAHR−1AS

)T}]−1
(10)

where ◦ — element-wise multiplication, D is the matrix of derivatives of the steering vectors in Eqs. (2)–
(6), and P⊥

A is the orthogonal projection onto the null space AH . An idea in [15] is used to adopt CRLB
of Eq. (10) to an arbitrary number of signals and their parameters (first of all, azimuth and elevation
DOA). First we need to define Dθ, Dϕ [10]:

Dθ,ϕ =

[
∂a (θ1, ϕ1)

∂η

∣∣∣∣
η=θ1,ϕ1

, . . . ,
∂a (θd, ϕd)

∂η

∣∣∣∣
η=θd,ϕd

]
(11)

Thus, the covariance matrix of error of 3D DOA estimation:

BSTO =
σ2

2N
�
[
Tr

{[
Λ1 Λ2

Λ3 Λ4

]
◦
[

Ξ Ξ
Ξ Ξ

]T}]−1

(12)

where Λ1 = DH
θ P⊥

ADθ, Λ2 = DH
θ P⊥

ADϕ, Λ3 = DH
ϕ P⊥

ADθ, Λ4 = DH
ϕ P⊥

ADϕ, Ξ = SAHR−1AS.
Using Eq. (1), the partial derivatives of a vector a (θm, ϕm) from θ and ϕ [16]:

∂a (θm, ϕm)
∂η

=
∂g (θm, ϕm) ejkmRT

∂η
=

∂g (θm, ϕm)
∂η

ejkmRT
+ g (θm, ϕm)

∂ejkmRT

∂η

∣∣∣∣∣∣∣∣
η=θm,ϕm

(13)

Next, it is necessary to determine the expressions for the derivatives for the phase and amplitude
components. First, we define the derivative of the exponential part on azimuth for the k-th signal on
the n-th antenna element:

∂ejψ

∂θk
=
∂jψ

∂θk
ejψ =

∂j
2π
λ

(xnkx + ynky + znkz)

∂θk
ej(

2π
λ

(xnkx+ynky+znkz)) =

j

(
2π
λ

(−xn sin θ sinϕ+ yn cos θ sinϕ)
)
ej(

2π
λ

(xn cos θ sinϕ+yn sin θ sinϕ+zn cosϕ))
(14)

Define the derivative of the exponential part on elevation and azimuth for the k-th signal on the
n-th antenna element:

∂ejψ

∂ϕk
=
∂jψ

∂ϕk
ejψ =

∂j
2π
λ

(xnkx + ynky + znkz)

∂ϕk
ej(

2π
λ

(xnkx+ynky+znkz)) =

j

(
2π
λ

(xn cos θ cosϕ+ yn sin θ cosϕ− zn sin θ)
)
ej(

2π
λ

(xn cos θ sinϕ+yn sin θ sinϕ+zn cos θ))

(15)
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We define the derivative of the amplitude component with respect to the azimuth and elevation
angle for the k-th signal on the n-th antenna element respectively:

∂gn (ϕk, θk)
∂θk

=
∂

∂θk

D

22m
(1 + sin (ϕk − ϕn))

m (1 + cos (θk − θn))
m =

D

22m
(1 + sin (ϕk − ϕn))

m ∂

∂θk
[(1 + cos (θk − θn))

m] =

D

22m
(1 + sin (ϕk − ϕn))

m
[
m (1 + cos (θk − θn))

m−1 (−θn) (− sin (θk − θn))
]

(16)

and
∂gn (ϕk, θk)

∂ϕk
=

∂

∂ϕk

D

22m
(1 + sin (ϕk − ϕn))m (1 + cos (θk − θn))m =

D

22m

[
∂

∂ϕk
(1 + sin (ϕk − ϕn))

m

]
(1 + cos (θk − θn))

m =

D

22m

[
m (1 + sin (ϕk − ϕn))

m−1 (−ϕn) cos (ϕ− ϕk)
]
(1 + cos (θk − θn))

m

(17)

Substituting expressions (14)–(17) in (13), we derive a matrix-vector expression for calculating the
Cramer-Rao lower bound for estimating an arbitrary number of sources in the azimuth and elevation
planes on an arbitrary antenna array taking into account of the directivity factor.

3.1. Theoretical Researching

Consider now the CRLB, depending on the directivity factor for cylindrical, cubic, conical and sphere-
shaped antenna arrays, each of which consists of six elements (Fig. 1). In these cases, the directivity
factor changes from two to six to determine the effect of the antenna beam pattern on the accuracy of
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Figure 2. CRLB of the antenna arrays for the directivity factors: (a) D = 2, (b) D = 4 and (c) D = 6.
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direction finding, using Eqs. (12)–(13), more clearly. Additionally, the elevation angular coordinate is
fixed to 45◦, and the azimuth varies from 0◦ to 360◦.

From Fig. 2 we can conclude that firstly, the oscillation amplitude of DOA-estimation errors
becomes more obvious and sharp if the directivity factor increases from two to six. This behavior
is influenced by falling the signal into the nulls of the radiation patterns, as we will see in detail further.
Secondly, the best antenna array geometry with directional patch-antennas for DOA-estimation on
azimuth and elevation is sphere (half dodecahedron, Fig. 1(b)). However, the errors distribution is
rather flat even if the directivity factor is big (Fig. 2(c)). Thirdly, the cone and cubic antenna arrays
produce significant leaps in DOA estimations depending on the signal source location in the azimuth
plane.

4. THE EXACT EQUATION OF THE CRAMER-RAO LOWER BOUND FOR
ANTENNA ARRAYS WITH DIRECTIONAL ELEMENTS

4.1. One Signal and Two Antennas Case

Consider a case here that a particular antenna array consists of two directional antenna elements and
then:

a =
[
g1e

jkrT
1 g2e

jkrT
2

]
(18)

Here and further we assume that a = ejkrT
1 , a′ = ∂jk1RT

∂η and g′ = ∂g(θm,ϕm)
∂η , then

∂a (θm, ϕm)
∂η

= g′a+ ga′a (19)

In order to obtain the exact equation of the Cramer-Rao lower bound we need to know the vector
of derivatives of the steering vector, i.e.,

b =
∂a
∂η

=
[
∂a1

∂η

∂a2

∂η

]T
=
[
∂g1a1

∂η

∂g2a2

∂η

]T
= [ g′1a1 + g1a

′
1a1 g′2a2 + g2a

′
2a2 ]T (20)

bH =
(
∂a
∂η

)H
=

[ (
∂a1

∂η

)H (
∂a2

∂η

)H ]T
=

[ (
∂g1a1

∂η

)H (
∂g2a2

∂η

)H ]
=

[
(g′1a1 + g1a

′
1a1)

H (g′2a2 + g2a
′
2a2)

H
]T

=
[
g′1aH1 + g1 (a′1a1)

H g′2aH2 + g2 (a′2a2)
H
]T (21)

As we can see, Equation (12) is rather complicated, and here we consider only one particular case.
Then after simplifying Eq. (12), CRLB for the case of only one signal source can be expressed as follows:

var(ϕ, θ) =
σ2

2K
�
[(

∂aH

∂η

(
I − a

(
aHa

)−1
aH
) ∂a
∂η

)
◦ Ξ
]−1

(22)

Equation (22) can be rewritten more compactly as follows [17]:

var(ϕ, θ) =
σ2

2KPs
1
AR

(
λ

2π

)2

(23)

Consider the right-hand side of expressions (22)–(23) more deeply. They consist of two factors. As
already noted, Ξ ≈ PS for a single source case under the consideration, then we take a closer look at
the rest: [

DH
θ,ϕP

⊥
ADθ,ϕ

]
=
[
∂aH

∂η

(
I − a

(
aHa

)−1
aH
) ∂a
∂η

]

=
[

(g′1a1 + g1a
′
1a1)

H (g′2a2 + g2a
′
2a2)

H
]
P⊥
A

[
g′1a1 + g1a

′
1a1

g′2a2 + g2a
′
2a2

]
(24)
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Consider the exact expression for the component P⊥
A:

P⊥
A =

[
1 0
0 1

]
−
[
a1

a2

] [[
aH1 aH2

] [ a1

a2

]]−1 [
aH1 aH2

]

=
[

1 0
0 1

]
−
[
g1a1

g2a2

] [[
g1a

H
1 g2a

H
2

] [ g1a1

g2a2

]]−1 [
g1a

H
1 g2a

H
2

]
=
[

1 0
0 1

]
− 1
g2
1 + g2

2

[
g2
1 g1g2a1a

H
2

g2g1a2a
H
1 g2

2

]
=

1
g2
1 + g2

2

[
g2
2 −g1g2a1a

H
2

−g2g1a2a
H
1 g2

1

]
(25)

Consider the result of multiplying the matrix P⊥
A on the right-hand side of formula (24):

1
g2
1 + g2

2
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′
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H
]

[
g2
2 (g′1a1 + g1a

′
1a1) − g1g2a1a

H
2 (g′2a2 + g2a

′
2a2)

−g2g1a2a
H
1 (g′1a1 + g1a

′
1a1) + g2

1 (g′2a2 + g2a
′
2a2)

]
=

1
g2
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H

] (26)

Thus, the last expression can be divided into two components of its terms. Consider the left (in
our case, the top) term:(
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Now consider the right (in our case, the lower) addend:(−g2g1a2a
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Now consider the sum of the terms:
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(29)
The following properties have been used to obtain the latest expressions:
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H
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And then the exact equation of the Cramer-Rao lower bound for a particular antenna array
composed of two directional antennas looks like the following:⎡
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. . .
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(31)



148 Nechaev, Peshkov, and Fortunova

Because of the special case, we get that Ξ ≈ PS ≈ g2
1 + g2

2 , and it follows:⎡
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�
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(32)

From the last expression (32) it can be seen that the DOA-estimation accuracy using antenna
arrays composed of directional elements is higher if the square of the phase differences is bigger together
with the square of the difference between their radiation patterns and additionally the square of their
radiation patterns. The phase difference is caused by the positions in space of the individual elements.
Or in other words, CRLB is mainly determined by two terms: firstly, the square of phase differences
determined by the positions of the antennas, and secondly, the square of radiation patterns of each
individual element.

Knowing formula (32), it is possible to obtain such arrangement of antenna elements in space
and their radiation patterns that the term AR would be maximal, and thus CRLB will be minimal
in azimuth and/or elevation. Now it is time to optimize antenna elements locations in XY plane
according to Eq. (15) and angle of rotation of the radiation pattern in azimuth according to Eq. (3) in
order to minimize Eq. (32) azimuth DOA estimation errors. In this case, it is assumed for the initial
simplification of the task that the signal has a coordinate in the azimuth plane of about 150◦ and the
elevation of 90◦. The initial locations of the antenna elements are 0◦ and 180◦ in the azimuth plane as
shown in Fig. 3(c). Consider also two restrictions of the minimization of Eq. (32): firstly, the antennas
will stay in their original positions, but the rotation angle of the radiation patterns will be optimized;
the second boundary condition is the angles of rotation of the patterns coincide with the angles of shifts
of the antennas as in the common cylindrical arrays depicted in Fig. 1(c). The results of estimating
CRLB of Eq. (12) after optimization Eq. (32) in the azimuth are shown in Fig. 3.

After the optimization, the directions of the emitters are 121◦ and 205◦. In this case, the antenna
elements themselves stay in the same places, i.e., 0◦ and 180◦ (Fig. 3(a)). The emitters rotate only
by calculated values. Such an approach can be implemented, but in the authors’ opinion, it is poorly
realizable. It is more realistic to have a multi-element cylindrical antenna array but with switched
elements to scan a specific area of space. For example, we also have two patch antennas and would like
to scan the same area, i.e., θ = 150◦. After optimization, the elements will be located at a distance
R from the center of the array, but their angles of rotations are calculated and are 118◦ and 212◦,
respectively (Fig. 3(b)).

From the curves shown in Fig. 3, it is seen that the optimization of the locations of elements makes
the DOA errors decrease by several dozen times around θ = 150◦ in the azimuth in comparison with
the standard cylindrical array (Fig. 3(c)). In addition, the obtained antenna array configurations shown
in Figs. 3(a) and 3(b) give approximately the same results. At the same time, due to the obtained
optimization results of Equation (32), the RMSE peaks are shifted by 180◦. Next, we analyze each
component of formula (32), which leads to the results represented in Fig. 3.

After viewing Fig. 4, we can produce or generalize the strategy of optimizing the construction of
antenna arrays to reduce the error of DOA estimates. As we can see that the peaks of the left and
right terms are offset from each other, it is impossible to achieve a symmetrical arrangement of the two
antennas and their radiation patterns in order to reach the maximum accuracy. It is more important
to achieve some balance between phase shifts and antenna rotations around the z-axis, which we can
see from Fig. 4(b). Furthermore, it is obviously seen why the standard two-element array provides
the maximal accuracy at θ = 90◦, θ = 270◦: their placements are against each other, and overall
multiplication tends to zero at θ = 0◦ and θ = 180◦, unlike other cases.

Consider now the situation, at which it is supposed that the source has a coordinate in the azimuth
of 90◦. In this case, we will also optimize the placement of antenna elements in space, and the results
of the RMSE estimates are shown in Fig. 5.
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Figure 3. CRLB of two-element antenna array optimized for the source of θ = 150◦: (a) the geometry
with 121◦ and 205◦ rotations relates to the red curve; (b) the geometry with 118◦ and 212◦ shifts relates
to the green curve; (c) the standard antenna array relates to the blue curve.

 
Azimuth, (°) Azimuth, (° ) 

(b)(a)

Figure 4. Evaluation of the left (red) and right (green) components of the denominator CRLB (32) of
a) Figs. 3(c) and (b) Fig. 3(b) configurations.

It is clearly seen from the RMSE curves in Fig. 5 that minimizing expression (32) also produces the
reduction in the DOA errors of the estimates, even for minimal errors of the standard cylindrical two-
element antenna array. In addition, Fig. 5(b) shows that the optimization does not give a symmetrical
position (as it could be supposed) of elements around θ = 90◦ which can help in the design of multi-
element cylindrical arrays with switched antennas.
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Figure 5. CRLB of two-element antenna array optimized for the source of θ = 90◦: (a) the geometry
with 90◦ and 90◦ antenna rotations relates to the red curve; (b) the geometry with 65◦ and 157◦ shifts
relates to the green curve, (c) the standard geometry relates to the blue curve.

4.2. The Exact Equation of the CRLB. One Signal and Three Antennas

Now consider a case that a particular antenna array consists of three directional antenna elements and
with arbitrary locations, as well as a single source.⎡
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⊥
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(33)

Let us optimize the arrangement of elements to minimize Eq. (33), and it is assumed that a single
signal has the azimuth coordinate of 150◦ (the results are shown in Fig. 6) and in the second scenario
is θ = 90◦ (the results are shown in Fig. 7).

It can be seen from Figs. 6 and 7 that the optimal location of the antenna elements and their
radiation patterns cannot always be predicted. In other words, it is not always necessary to direct the
antenna elements strictly in a particular direction to estimate accurately direction-of-arrivals within the
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(b)(a) (c)

Figure 6. CRLB of three-element antenna array optimized for the source of θ = 150◦: (a) the geometry
with 158◦, 147◦ and 152◦ antennas rotations relates to the red curve; (b) the geometry with 112◦, 124◦,
212◦ shifts relates to the green curve; (c) the standard array relates to the blue curve.

sector, which is most clearly seen from the configurations in Figs. 6(b), 7(a), (b). In addition, the square
of the phase differences multiplied by the square of the spatial patterns plays the most important role,
and this term gives significant values in the denominator of formula (32), as it can be clearly seen from
the configurations of the antenna arrays depicted in Figs. 6(b) and 7(b).

4.3. The General Expression of the CRLB for a Particular Antenna Array with
Directional Elements

Thus, it is rather easy to derive the general expression of the CRLB for DOA-estimation on the azimuth
and elevation using particular antenna arrays with an arbitrary number of directional elements, oriented
in space also randomly:⎡
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. . .

0 var(θM , ϕM )

⎤
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2N
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2
j

(
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∑
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(
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)2
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(34)

where i = 1 ÷N , j = 1 ÷N , i �= j.
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(b)(a) (c)

Figure 7. CRLB of three-element antenna array optimized for the source of θ = 90◦: (a) the geometry
with 105◦, 360◦, 105◦ antennas rotations relates to the red curve; (b) the geometry with 66◦, 153◦, 161◦
shifts relates to the green curve, (c) the standard array relates to the blue curve.
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Figure 8. CRLB (a) and MUSIC (b) estimations of six-element antenna array optimized for the source
of θ = 60◦: (c) the geometry with 86◦, 85◦, 44◦, 94◦, 225◦, 355◦ antennas rotations relates to the red
curve; (d) the geometry with 41◦, 85◦, 120◦, 232◦, 341◦, 355◦ shifts relates to the green curve; (e) the
standart array relates to the blue curve. The magenta curve relates to the half-sphere array from
Fig. 1(b).
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Now consider the situation with a single signal source placed in the area of θ = 60◦ and an antenna
array with six elements, as in the first example above. In addition, we take the semi-spherical array
depicted in Fig. 1(b) for estimating the difference in the accuracy of the direction finding in comparison
with the initial cylindrical one. In addition to the theoretical studies, we present some numerical
simulation results to illustrate the effectiveness of the optimized antenna array configurations for the
direction-of-arrival estimation with super-resolution using the MUSIC method [4].

We can see from Fig. 8 that the RMSE of the MUSIC method coincides in shape with the RMSE of
the Cramer-Rao lower bound. It is also obvious that the obtained configurations of the antenna arrays
allow reducing the errors of DOA estimation lower than those values of both the standard cylindrical
array and the half-sphere one. It can also be said that the optimal scanning for radio direction finding
in a certain sector is achieved if small groups of antenna elements are located around two to three
points to ensure high mutual values of the phase differences as well as the product of the squares of
the directivity patterns as it is particularly noticeable from Fig. 8(d). In this case, the denominator of
Equation (34) will reach a maximal value and therefore will lead to greater accuracy, which can also be
seen from the results of the numerical simulation of the MUSIC method (Fig. 8(b)).

5. CONCLUSIONS

Conformal or volume antenna arrays consist of antenna elements, placed on a curved ground. These
kinds of arrays of sensors are of research interest for direction finding and wireless communication
because they are capable of processing signals in a three-dimensional plane (the azimuth and elevation)
and can be mounted on objects of complex shape such as cars and airplanes.

In the paper, the antenna arrays of different configurations have been researched depending on
the directivity factor of each antenna element. The cylindrical, cubic, sphere, and cone antenna array
geometries have been chosen under consideration. They have the same number of antennas and occupy
the comparable area. It is established that the array in the form of a half-sphere has minimal errors in
DOA estimation tasks on azimuth and elevation.

The adaptation of the Cramer-Rao boundary expression for the 3D direction-finding tasks of
conformal antenna arrays with directive emitters is carried out. The influence of the azimuth and
elevation coordinates of radio emission sources on the accuracy of radio direction finding is estimated.
It is established that significantly increasing the directivity of the antenna elements leads to big errors
in DOA estimates. Using the exact equation of the Cramer-Rao lower bound could help to produce
such antenna arrays configurations which significantly allow improving the accuracy in a given sector.
The proposed technique will allow using antenna arrays with switched scanning sectors with greater
efficiency.
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