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Abstract—Convolutional Neural Network (CNN) models applied to synthetic aperture radar automatic
target recognition (SAR ATR) universally focus on two important issues: overfitting caused by lack of
sufficient training data and independent variations like worse estimates of the aspect angle, etc. To this
end, we developed a lightweight CNN-based method named SARNet to accomplish the classification
task. Firstly, a clock-wise data amplification approach is presented to generate adequate SAR images
without requiring many raw SAR images, effectively avoiding overfitting in the course of training.
Then a SARNet is devised to process the extracted features from SAR target images and work on
classification tasks with parameters fine-tuning under comparative models. To enhance and structurally
organize the representation of learned proposed model, various activation functions are explored in this
paper. Furthermore, due to the pioneering conducted experiments, training samples in the MSTAR
and extended MSTAR database are utilized to demonstrate the robustness and effectiveness of the
lightweight model. Experimental results have shown that our proposed model has achieved a 98.30%
state-of-the-art accuracy.

1. INTRODUCTION

Target recognition in synthetic aperture radar (SAR) images has several promising applications in
the various fields, such as enemy identification, battlefield surveillance, and disaster relief program.
SAR technology could provide more information in multi-fields, such as topographic information for
mineral exploration, prospection for oil spill boundaries, navigation for sea state and ice hazard maps,
and reconnaissance for military operations [1, 2]. Therefore, SAR ATR has become one of the most
challenging issues in its applications.

Traditionally, typical classification task relevant to SAR target images could be summarized as
two processes: feature extraction and classification. Feature extraction techniques including principal
component analysis (PCA) [3], linear discriminant analysis (LDA) [4], histogram of oriented gradients
(HOG) feature extraction [5], and nonnegative matrix factorization (NMF) [6] have been proposed. PCA
and LDA are two principal algorithms for dimensionality reduction in the classification task. The basic
difference between them is that LDA uses information of classes to find features in order to maximize
its separability while PCA uses the variance of each feature to do the same. HOG feature extraction
returned the features that could encode local shape information from regions within an image. NMF
is a widely used tool for the analysis of high-dimensional data as it automatically extracts sparse and
meaningful features from a set of nonnegative data vectors. Then classification approaches such as
support vector machine (SVM) [7], decision tree [8], and Bayesian classifier [9] have been presented as
well. SVM is an algorithm used for classification problems similar to Logistic Regression (LR). The
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objective of the algorithm is to find the hyperplane that has the maximum margin in an N -dimensional
space that distinctly classifies the data points. A decision tree is a decision support tool that uses a
tree-like model of decisions and their possible consequences. Bayes is a simple widely used technique for
constructing classifiers: models that assigned class labels to problem instances, represented as vectors
of feature values, where the class labels were drawn from some finite set; however, artificial scenes and
natural objects may suffer from large mirror reflections associated with microwave mirroring, speckle
noise, and complex azimuth cases [10]. Additionally, the probability of correct classification decreases
with worse estimates of the aspect angle and limited raw image data. All these factors will lead to more
difficulties in SAR ATR.

In this paper, a lightweight SARNet model with clock-wise data amplification operation is proposed
for SAR ATR. Firstly, clock-wise data amplification approach is utilized to generate sufficient training
samples. Then a lightweight SARNet is designed to reduce the parameters produced from layer by layer.
Several activation functions are also studied to validate the representation of the extracted features.
The contributions of this paper are as follows:

(i) The aim of the presented clock-wise data amplification is to avoid overfitting and address the
drawback that SAR image is prone to severe image rotation.

(ii) The architecture of proposed models is lightweight and simple; however, the accuracy is greatly
improved compared with the method employed to traditional and complex network, much reducing
the memory requirement and redundant computation.

(iii) Comprehensive experiments were performed to empirically explore the SARNet model with different
parameters on the extended MSTAR database.

2. RELATED WORK

Traditional approaches applied into SAR ATR task have achieved promising results [11–25]. In 2001,
Zhao and Principe [11] input original pixels from SAR target images to the support vector machine
(SVM) classifier to form a local “bounded” decision region around each class that presents better
rejection to confusers Sun et al. [12] extracted features of the magnitudes of the 2-D DFT coefficients
from preprocessed images. In order to enhance the classification performance, Zhou et al. [13] identified
scattering centers by physical correlation and predicted results from the global scattering center model.
Park et al. [14] presented discriminative features on projection length and target pixels for discriminating
targets from clutter in high-resolution synthetic aperture radar imagery. Dong et al. [15] provided an
approach of the monogenic signal through sparse representation to code the feature vector of the test
sample as a sparse linear combination of them. Carmine et al. [16] extracted pseudo-Zernike moments of
multichannel images for SAR ATR. Mishra and Mulgrew [17] also studied principal component analysis
(PCA) method to reduce the dimension for less computation with parameters for SAR ATR Ash [18]
used the local binary pattern (LBP) and other texture feature extraction methods to address the
change detection for robust exploitation in interrupted SAR environments. Zhang et al. [19] adopted
a new classifier for polarimetric SAR images to acquire robust features. Zhai et al. [20] proposed a
multi-scale local phase quantization plus biometric pattern recognition to do with SAR target images.
For addressing the changes of SAR target detection problem Misha and Susaki [21] presented a region
algorithm based on change detection in SAR image. Gao et al. [22] modeled SAR images with generalized
Gamma distribution for text component. At the same time. Cheng et al. [23] tried an improved scheme
for parameter estimation of G◦ distribution model in high-resolution SAR images. Ni et al. [24] proposed
a Matrix Analysis and Multi-threshold Segmentation algorithm to obtain the interested region of SAR
target images. Fu [25] also proposed a SAR target recognition method based on target region matching.
However, the above algorithms for feature extraction are often designed manually and not extracted in
detail, resulting in time consumption and labor waste with unsatisfactory results.

In the past few decades, above traditional approaches and advanced CNN methods of image
classification have advanced the understanding of tasks related to SAR target images. Inspired by
the feature extraction and classification method in many traditional techniques. Ding et al. [26] tried
to conduct image transformations on SAR images and managed to apply to the existing CNN models
with comparative results. With the goal of optimizing the output parameters, Chen et al. [27] focused
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on the classification scheme selecting spectral-spatial features. Zhao and Du [28] proposed a spectral-
spatial feature based classification (SSFC) algorithm by combining the dimension reduction block and
deep learning techniques. Marmanis et al. [29] applied convolution neural network and deep learning
algorithm on SAR ATR task, which served more in the field of SAR ATR [30–34]. Liu et al. [35]
presented a SAR target image classification method with CNN based on transfer learning and reached
comparable results. Convolution neural network obtains its advantage through end-to-end learning and
can be trained by the standard back-propagation algorithm. All these suggest the promising potential
of CNN-based in feature extraction and feature learning.

The organization of this paper can be summarized as follows. Section 3 introduces the proposed
networks and details the extended MSTAR database. Section 4 presents the experimental results on
public databases. Finally, conclusions are presented in Section 5.

3. PROPOSED METHOD

In this section, we propose a lightweight SARNet model for SAR ATR, to accomplish the SAR
images classification task effectively with data amplification. Firstly, we will illustrate the structure,
implementation, and characteristics of the proposed network. Then the ROI extraction and clock-wise
data amplification are detailed. Finally, a few derivations will be given under mythology architecture.

3.1. Proposed Network

To the best of our knowledge, it is supposed that an amount of time will be taken to reduce the
parameters of a large-scale network in the SAR ATR assignment. In this paper, a two-layer convolution
layer neural network is designed. The diagram of SARNet presented is illustrated in Figure 1.

Figure 1. The diagram of the proposed network.

The network model consists of two layers of basic layer convolution 1 (Conv1) and convolution 2
(Conv2). The layer Conv1 outputs 64 feature maps, and Conv2 outputs 128 feature maps with two
layers. The pool layers pooling1 (P1) and pooling2 (P2) both adopt the maximum pool. F1 and F2 are
the fully connected layers. F1 outputs 500 neurons, and F2 outputs 3 neurons. After F2 convolution
layer, softmax classifier is used to output the classification results. In the network, ReLU activation
is employed in this paper to reduce the interdependence of parameters and alleviate the problem of
over-fitting. The procedure of the network can be illustrated as Equation (1).

l(x, y, θ) =
L∑

i=1

soft max(W · f(Xi; θ), yi) (1)

where x = {Xi}L
i=1, y = {yi}L

i=1; x, y are the input and output collections of the proposed network
respectively; θ is the fine-tuned weights or the learned weights from training samples. W is the weight
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of input images, and L denotes the class number of the SAR target. f(·) means the features extracted
from the previous layers. Softmax is a common classifier used in deep learning.

In the proposed classification pipeline, notice that parameters settings greatly affect the effectiveness
of our network. Therefore, we maintain the variables such as iteration and batch size as fixed values to
yield the best state of the network for SAR target images classification. The parameters of the proposed
model are shown as Table 1.

Table 1. The proposed SARNet parameters setting.

Layer type Output size filter size/stride depth parameter
Input 64 × 64 × 1 - - -
Conv1 56 × 56 × 64 9 × 9/1 1 5,248

Maxpool1 28 × 28 2 × 2/2 0 -
Conv2 20 × 20 × 128 9 × 9/1 1 663,680

Maxpool2 10 × 10 2 × 2/2 1 -
Fc1 500 - 0 6,400,500
Fc2 3 - 0 1,503

3.2. ROI Extraction

Owing to the imaging characteristics of the aperture radar, background noise, especially speckle noise,
generally exists in acquired training samples, considerably increasing the time of image processing and
reducing the precision of classification task. Consequently, the region of interest (ROI) needs to b
extracted from the original samples. Supposing that the radius of ROI is r, the function satisfies the
following constrains under such a sense.

f(r, ϕ) = 0, (r, ϕ) /∈ p2 (2)

where f(·) is a set of points satisfying f(·) = 0 by substituting all the point coordinates without the
centroid of the images. ϕ is the included angle with level line.

As expected, there would be some blank area in the images after clock-wise data amplification to
degrade the classification performance. The idea is to reconstruct the area as a circle which is not prone
to the operation. The region of reconstruction is defined as

Loc(x, y) =
{
(x, y)|(x − x0)2 + (y − y0)2 = r2

}
(3)

In general, when a part of the area of interest is reconstructed, a small amount of adjacent
information outside the area being considered is added for reconstruction as raw data. In order to
obtain ROI image from original image, we locate the centroid of each image to resize the region from
the reconstructed area. Based on the centroid (x0, y0), the scale of the length is from x0−l/4 to x0+l/4.
The height is from y0 − l/4 to y0 + l/4 where l and h are the length and height of the raw image. SAR
images are illustrated in Figure 2. Figure 2(a) describes the original images, and Figure 2(b) shows the
ROI. The resized SAR images share the size of l = 64, h = 64.

3.3. Clock-Wise Data Amplification

For SAR image, the aspect angle of the target is primarily prone to the imaging results, while the
azimuth and angle of the image are not generally complete, greatly producing negative effect of SAR
ATR. The strategy is to change the aspect angel to extend the dataset on the basis that the pitch angle
of SAR image is not sensitive to the change, and the method that rotates the SAR target images degrees
by degrees is named clock-wise data amplification to generate sufficient training samples, addressing
the challenging problem of overfitting and sample shortages.
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(a) (b)

Figure 2. Raw SAR image and ROI image. (a) Raw image. (b) ROI image.

Figure 3. Image transformation process.

As shown in Figure 3, (x, y) is the location of the image pixel, and (x′, y′) is the associated location
after transformation. The transformation formula is as follows:⎧⎪⎪⎨

⎪⎪⎩
tan(θ + α) =

y′

x′
tan α = y

x

x2 + y2 = x′2 + y′2
(4)

By means of mathematical transformations, the equation can be simplified as equality in Eq. (5).{
x′ = x cos θ + y(− sin θ)
y′ = x sin θ + y cos θ

(5)

Note that affine transformation matrices can be represented as:

A =
[

cos θ − sin θ

sin θ cos θ

]
(6)

To avoid the deficiency of information in SAR target images, a shift will be added as:
x′ = (x − x0) cos θ + (y − y0)(− sin θ) + x0 + Δx

y′ = (x − x0) sin θ + (y − y0)(cos θ) + y0 + Δy
(7)

By using the backward mapping in the image, the annotations of x′, y′x′, y′ can be interpret as x, yx,
y, then such a formula is changed into the equation as:

x = ((x′ − x0 − Δx) cos θ + (y′ − y0 − Δy)(sin θ)/scale + x0

y = ((x − x0 − Δx)(− sin θ) + (y′ − y0 − Δy)(cos θ)/scale + y0
(8)

For the MSTAR database, training samples are under the process of clock-wise data amplification. The
extended database is 360 times of the amount of data compared to the original MSTAR database. ROI
Images with different degree clock-wise data amplification are shown in Figure 4.



74 Zhai et al.

(a) (b) (c) (d) (e) (f)

(g) (h (i) (j) (k) (l)

Figure 4. ROI Images with different degree clock-wise data amplification.

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this paper, the experiments are conducted on acceleration computing service with Intel Core i3-7350K
CPU, on Ubuntu 16.04 LTS operation system. NVIDIA GTX 1080ti is selected to process the images,
and the capability of RAM is 8G. The proposed convolutional neural network model is implemented
using the publicly available Caffe framework.

4.1. MSTAR Database

4.1.1. Original Database

With the objective of exploiting the performance on SAR target images classification task, the MSTAR
SAR dataset was performed to test the model. The dataset was derived from the MSTAR project
with three categories.The configuration of the MSTAR three-target database is shown in Table 2.
The training and testing sets released in public are the target image with different aspects and
depression angles. The training and testing samples, acquired from T72 SN132 (Main Battle Tanks),
BMP2 SNC21 (Armored Personal Carriers), BTR70 SCN71 (Armored Personal Carriers), are utilized
for the experiments presented in this paper. The total dataset for the work had 698 images incorporating
232 BMP2 SNC21, 233 BTR70 SCN71, and 233 T72 SN132 images. For the entire training dataset, we
randomly select 75% for training and 25% for validation. The optical images are illustrated in Figure 5,
and SAR images are illustrated in Figure 6.

(a) (b) (c)

Figure 5. Optical images of three kinds of targets. (a) T72 SN132. (b) BTR70 SCN71. (c)
BMP2 SNC21.

4.1.2. Extended MSTAR DATASET

The MSTAR database contains 698 raw SAR images with three categories. The mumble is 232, 233,
and 233, respectively. The extended MSTAR dataset through clock-wise data amplification incorporates



Progress In Electromagnetics Research C, Vol. 91, 2019 75

(a) (b) (c)

Figure 6. SAR Imaging of three kinds of targets. (a) T72 SN132. (b) T72 SN132. (c) BMP2 SNC21.

Table 2. The configuration of the MSTAR three-target database.

Training Set Number Testing Set Number
T72 SN132 232 T72 SN132 196
T72 SN812 231 T72 SN812 195
T72 SNS7 228 T72 SNS7 191

BMP2 SNC21 233 BMP2 SN9563 195
BMP2 SN9566 232 BMP2 SN9566 196
BMP2 SNC21 233 BMP2 SNC21 196
BTR70 SNC71 233 BTR70 SNC71 196

254770 images, and the capability is summed up to 1.01G. The image size is 64×64 pixels with grayscale
image type. Squash is selected as the resize transformation and IMDB as DB backend. There is no
database compression in the testing database. For the original SAR datasets, 524 images are utilized
to train the SARNet model, and 174 images are used as validation database. All experiments on an
extended database include 254770 images, and 1365 images are employed as a validation database as
well as testing database to validate the performance of presented models. Database distributions of the
original and extended datasets are shown as in Figure 7.

4.2. Iteration of Training

In the course of training, 60 epochs are selected to fine-tune the models; meantime, information about
the loss values and output classification results is recorded as well. As depicted in Figure 8, the accuracy
has increased to a superior value in the earlier training stage and maintains a stable state afterwards.

The performance has attained a great improvement when fixing the epochs to 60. The phrase of
training process is shown in Figure 8, and it has demonstrated the robustness and efficiency of the
presented network, which received a faster convergence speed and kept a relatively stable state at the
end.

4.3. Analysis of the Proposed SARNet

In this section, significant elements of SARNet are explored for the lightweight model. Different network
models are reconstructed to validate the performance on SAR image databases. The accuracy of network
feature extraction under different parameters is tested, and the influence of different parameters on the
test results is discussed in detail from Table 3 to Table 6.

As shown in Table 3, the relatively large convolution kernel is advantageous to extract informative
features from SAR images, and the model with the convolution kernel size of 9 × 9 achieved the best
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Table 3. Effect of different convolution kernel sizes.

Net model Conv1 Conv2 Fc Accuracy
1 3/64 3/128 500 95.46%
2 5/64 5/128 500 95.38%
3 7/64 7/128 500 95.60%
4 9/64 9/128 500 95.75%
5 11/64 11/128 500 93.70%

Table 4. Effect of the number of layers.

Model Conv1 Conv2 Conv3 Conv4 Fc Accuracy
1 3/15 3/30 – – 500 95.38%
2 3/15 3/30 3/60 – 500 95.53%
3 3/15 3/15 3/60 3/120 500 94.80%

Table 5. Effect of ReLU active function on the model.

Model Conv-pooling1 ReLU Conv-pooling2 ReLU Accuracy
1 7/64, 2 Yes 7/128, 2 No 89.89%
2 7/64, 2 Yes 7/128, 2 Yes 95.60%

Table 6. Ablation study with variable activation functions.

Network Activation Accuracy

SARNet

Sigmoid 96.78%
TanH 96.04%
Power 42.64%
ELU 97.36%
ReLU 97.88%

effect. Table 4 demonstrates that two convolutional layers as the best parameters in terms of three
convolutional layers considerably increase much complexity of the network. Table 5 indicates that
activation function applied to the SARNet contributes to a satisfactory performance. Learned from
Table 6, Ablation study on activation function demonstrates that the ReLU contributes to obtaining
the best representation of the network and reaches better performance than other functions.

To get a deeper view and demonstrate the proposed network’s capabilities, we visually examine
different layers in Figure 9. In the proposed SARNet it shows that the learned filter size under several
comparable experiments contributes to extracting more feature information, which contains informative
information pertaining to the target. Observed from the visualization, it is not surprising that the
proposed model could perform well in recognition.

4.4. Comparison Evaluation

4.4.1. Results on Original and Extended MSTAR Database

As indicated in Tables 7 and 8, it is apparent that data amplification helps in improving the performance
of classification. The result of training sample without data amplification reaches 83.66%, lower than
the result about 14.22% with clock-wise data amplification.



78 Zhai et al.

Input Image Conv1 Pool1 Conv2

Softmax IP2 IP1 Pool2

Figure 9. Visualization of different layers.

Table 7. Results on original MSTAR database.

Testing Target Result Accuracy
BMP2 BTR T72

BMP2 484 81 19 82.82%
BTR 71 471 45 80.24%
T72 1 6 189 96.43%

Overall Accuracy 83.66%

Table 8. Results on extended MSTAR database.

Testing Target Result Accuracy
BMP2 BTR T72

BMP2 575 4 3 98.80%
BTR 19 566 2 96.42%
T72 1 0 195 99.19%

Overall Accuracy 97.88%

As indicated in Table 9, different intervals of clock-wise experiments are designed to explore the
performance of the proposed model. It is shown that different intervals benefit the classification task,
indicating the significance of the sufficient training samples in deep learning method. It should be noticed
that clock-wise data amplification works well to improve the performance; however, the performance of
45◦ interval of clock-wise is better than 1◦. There might be more redundancy and noise in the images
via 1◦ interval of clock-wise, and it remains to be proved.

4.4.2. Comparison Experiments Analysis

As suggested in Table 10, the model produced from our network shares the lightweight capability of
28.3 M compared with other traditional and advanced method. Experimental performance in Tables 10
and 11 also demonstrates that our proposed method is robust and effective. The method using both
dictionary learning and sparse representation reaches the result of 92.20%. The accuracy in CNN [38] is
about 95.90%. The results of unsupervised K-means with data amplification obtain accuracy of 96.67%.
The accuracy of our proposed method is superior to all the approaches in Table 11.
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Table 9. Network accuracy via different clock-wise data amplification.

Network Interval clock-wise Accuracy

SARNet

1◦ 97.88%
45◦ 98.30%
60◦ 96.77%
90◦ 96.94%
120◦ 97.45%

Table 10. Comparisons with other state-of-the-art CNN models.

Method Parameters Accuracy Storage
Alex-Net [36] 20,157,123 93.55% 80.6 M
Le-Net [37] 4,252,573 97.29% 17 M

ResNet-50 [38] 859,299 97.66% 3.5 M
SARNet 7,070,931 98.30% 28.3 M

Table 11. Comparison with other methods.

Method Accuracy
Dictionary learning+ sparse representation [39] 92.20%

SVM [40] 93.54%
AlexNet [36] 93.55%

Single-scale LPQ binding [41] 94.75%
Gabor+LPM+ELM [42] 94.80%

A combination of sparse presentations [43] 95.60%
CNN [44] 95.90%

Adaptive feature selection method [45] 96.12%
Unsupervised K-means +Data Amplification [46] 96.67%

Le-Net [37] 97.29%
ResNet-50 [38] 97.66%

SARNet 98.30%

Table 10 shows the performance of the previous advanced methods. The parameters produced from
SARNet are about 7,070,931, ranking the third listed in the table, while it reaches the best accuracy
about 98.30%, even though the storage about SARNet is 28.3 M. In terms of overall performance, it has
comparable advantages over state-of-the-art CNN model.

5. CONCLUSION

In this paper, a lightweight SARNet is presented to solve the challenging problems existing in SAR target
images recognitions task. Firstly, ROI extraction and clock-wise data amplification are utilized to solve
the drawback of limited original images, addressing the limitation of insufficient raw training samples.
Then the learned parameters from comparative experiments are adapted to suit new lightweight SARNet
models. Furthermore, the proposed SARNet has improved the effectiveness compared to state-of-the-
art models on supervised classification and has strong robustness in the terms of the visual quality and
classification accuracy. How to choose different intervals of clock-wise data amplification to benefit the
performance of SAR ATR is a promising and valuable focus in the future work.
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