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Multiple-Constraint Synthesis of Rotationally Symmetric Sparse
Circular Arrays Using a Hybrid Algorithm

Rui-Qi Wang* and Yong-Chang Jiao

Abstract—Rotationally symmetric sparse circular arrays are synthesized under multiple constraints.
By combining the modified differential evolution algorithm based on the harmony search (in short
HSDE) with the vector mapping (VM) method, a hybrid algorithm, called VM-HSDE, is proposed for
synthesizing sparse circular arrays with low sidelobe levels. Due to the array’s specific geometry, the
number of optimization variables is reduced, and the constrained optimization problem is simplified.
Moreover, infeasible solutions are avoided, and the problem is effectively solved by the VM-HSDE
algorithm. Finally, three pattern optimization results verify the effectiveness and reliability of the
VM-HSDE algorithm.

1. INTRODUCTION

Sparse circular planar array (SCPA) is a planar array whose elements arbitrarily are distributed over a
circular aperture. In recent years, design of the SCPA geometry under multiple constraints for desired
performance has attracted considerable interest in various applications [1–13]. As one kind of SCPAs, a
concentric circular antenna array (CCAA) has several concentric rings with different radii and uniform
or nonuniform element spacings, which has been widely studied in [1–7]. To exploit various geometries
of other types of SCPAs, the array based on aperiodic tilings [8], the array composed of subarrays [9],
and the array with rotational symmetry structure [11] have been investigated.

The geometry design of such arrays involves several constraints, such as the number of array
elements, aperture size, and the minimum spacing between two adjacent elements. By enforcing a
minimum element spacing of bλH (b ≥ 0.5, λH is the wavelength in vacuum at the highest frequency),
Gregory et al. utilized rotational symmetry structure [11] of the aperiodic array to avoid grating lobes
over a bandwidth of 2b : 1. At the lowest frequency, the minimum element spacings are typically
constrained to 0.5λL (λL is the wavelength in vacuum at the lowest frequency, and λL = 2bλH) to
avoid mutual coupling. Rotational symmetry layouts with several constraints provide great flexibility
in the pattern synthesis and contribute to complicated optimization problems, particularly for large
scale broadband arrays.

Various optimization methods have been reported to synthesize sparse circular arrays in [14–22],
including analytical techniques and evolutionary algorithms. In [14] and [15], the vector mapping (VM)
method and matrix mapping method were used to handle complicated constraints for linear and planar
arrays, respectively. With the help of these methods, infeasible solutions are avoided, and the total
search space is effectively reduced. However, the complicated constraints for the SCPA synthesis are
rarely discussed. In a recent study by Chen et al., a modified real genetic algorithm (MGA) was
introduced to design a sparse circular array [7]. A peak sidelobe level (PSLL) of −23.7424 dB for a
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201-element array was obtained. A hybrid BCS-deterministic approach [4] was presented to synthesize
CCAA, and the optimized 201-element array has the PSLL of −22.94 dB.

In this paper, a rotationally symmetric sparse circular array (RSSCA) with all elements uniformly
excited is synthesized. The array has a fixed number of elements distributed over a given array aperture
with the minimum spacing constraint. By combining a modified differential evolution algorithm based
on harmony search (HSDE) [18] with the vector mapping (VM) method, a hybrid algorithm, called
VM-HSDE, is proposed. The VM-HSDE algorithm is used to optimize the RSSCA geometry with the
objective of PSLL reduction. To prove the effectiveness and reliability of the proposed algorithm, three
different arrays are synthesized, and the results are compared to those obtained by the MGA [7], multi-
objective evolutionary algorithm (MOEA) [10], and covariance matrix adaptation evolutionary strategy
(CMA-ES) [11], respectively. The proposed algorithm converges fast for synthesizing the RSSCAs,
which could be effectively performed for optimizing large scale arrays.

This paper is organized as follows. The geometry of RSSCA and the VM-HSDE algorithm are
introduced in Section 2, where the synthesis is mathematically formulated as a constrained optimization
problem. In Section 3, numerical experiments are performed with results discussed. Finally, conclusions
are drawn in Section 4.

2. ROTATIONALLY SYMMETRIC SPARSE CIRCULAR ARRAY SYNTHESIS

2.1. Array Geometry and Formulation

Consider the rotationally symmetric sparse circular array with all elements uniformly excited. As
illustrated in Fig. 1, the array has a circular aperture with radius R and a P -fold rotational symmetry
structure with Δϕ = 2π/P . The full array has N elements, and each slice has M elements, M = N/P .
To keep the spacing between the center element and the adjacent element no less than dmin, a circular
region of radius d1 (greater than dmin) is segmented. Then, each slice is divided into Q annular
regions with corresponding M1, M2, . . ., MQ elements, and

∑Q
i=1 Mi = M . Referring to Eq. (6)

in [7], ki elements are arranged in the ith ring with the adjacent element spacings no less than dmin.
ki = Int�2πLi/dmin�, where Li is the radius of the ith ring, and Int�·� indicates rounding down. To
keep the spacings between elements no less than dmin for the RSSCA shown in Fig. 1, the radius of the
ith ring satisfies Li ≥ idmin. The number of elements in the ith annular region is set as a nonnegative
integer, which satisfies the constraint Mi ≤ Int�2πi/P �.

In Fig. 1, element (i, j) represents the jth element within the ith annular region in the first
slice, where j = 1, 2, . . . ,Mi, i = 1, 2, . . . , Q. Element (i, j) is located at (ri,j , ωi,j) in the polar

Figure 1. Geometry of the RSSCA in xoy-plane.
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coordinate system with the origin O, which is represented by vector ai,j = (ri,j , ωi,j). We have
ri,j = Li + Δi,j =

∑i
s=1 ds + Δi,j, where Li denotes the radius of the ith ring, and Δi,j and ωi,j

denote the radial perturbation and the azimuth angle of element (i, j). Also, d1 = L1, di = Li − Li−1,
i = 2, 3, . . . , Q, di represents the radial distance between the (i − 1)th ring and the ith ring.

Define vectors

d = (d1, d2, . . . , dQ)T

Δ =
(
Δ{1},Δ{2}, . . . ,Δ{Q}

)T
ω =

(
ω{1}, ω{2}, . . . , ω{Q}

)T (1)

Both Δ and ω are divided into Q segments. Their segments are denoted by Δ{i} =
(Δi,1, . . . ,Δi,j, . . . ,Δi,Mi), ω{i} = (ωi,1, . . . , ωi,j , . . . , ωi,Mi), j = 1, 2, . . . ,Mi, i = 1, 2, . . . , Q. Then
the radiation pattern of the RSSCA is expressed as

F (θ, ϕ,d,Δ,ω) =
P−1∑
p=0

Q∑
i=1

Mi∑
j=1

ejk(∑i
s=1 ds+Δi,j) sin θ cos(ωi,j+pΔϕ−ϕ) (2)

where k is the free space wave number, and θ and ϕ are the elevation and azimuth angles. For the P -fold
rotationally symmetric array, the associated radiation pattern possesses ϕ-symmetry of the angle of Δϕ
or Δϕ/2 when P is even or odd, respectively. Thus, only F (θ, ϕ,d,Δ,ω) values in region {0 ≤ θ ≤ π/2,
0 ≤ ϕ ≤ Δϕ} or region {0 ≤ θ ≤ π/2, 0≤ ϕ ≤ Δϕ/2} need to be computed, depending on the odevity
of P [11].

The fitness function is defined as the PSLL of the radiation pattern in the ϕ-plane within the angle
of Δϕ or Δϕ/2 as follows.

fitness (d,Δ,ω) = max
(θ,ϕ)∈L(d,Δ,ω)

{∣∣∣∣ F (θ, ϕ,d,Δ,ω)
F (θmax, ϕmax,d,Δ,ω)

∣∣∣∣
}

(3)

where (θmax, ϕmax) denotes the maximum radiation direction of pattern F (θ, ϕ,d,Δ,ω), and L(d,Δ,ω)
denotes the sidelobe region corresponding to d, Δ and ω.

2.2. Optimization Model

For the RSSCA described above, the synthesis problem is summarized as: finding optimal vectors d∗,
Δ∗, and ω∗ such that fitness(d,Δ,ω) in Eq. (3) is minimized, under the constraints of aperture size
and minimum element spacing. Thus, the following constrained optimization model is established.

minimize fitness (d,Δ,ω)

subject to di ≥ dmin,

Q∑
i=1

di = R − dmin

0 ≤ Δi,j ≤ dmin, Δi,j − Δi−1,k ≥ 0
0 ≤ ωi,j ≤ Δϕ, ωi,j+1 − ωi,j ≥ εi

j = 1, 2, . . . ,Mi, k = 1, 2, . . . ,Mi−1, i = 1, 2, . . . , Q

(4)

where dmin is the minimum bound for the spacing between two adjacent elements, which determines the
array bandwidth; εi is the minimum angular separation of the ith ring, which is calculated according
to the following relation

εi = arccos

⎡
⎢⎢⎢⎢⎢⎣1 − d2

min

2

(
i∑

s=1

ds

)2

⎤
⎥⎥⎥⎥⎥⎦ , i = 1, 2, . . . , Q (5)
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Denote the distance between elements (i + 1, j) and (i, k) distributed in two adjacent annular
regions by |ai+1,j − ai,k|, and the distance between two adjacent elements (i, j + 1) and (i, j) in the ith
annular region by |ai,j+1 − ai,j|. Obviously,

|ai+1,j − ai,k| ≥ ||ai+1,j | − |ai,k|| = di+1 + (Δi+1,j − Δi,k) ≥ dmin

j = 1, 2, . . . ,Mi+1, k = 1, 2, . . . ,Mi, i = 1, 2, . . . , Q − 1 (6)

|ai,j+1 − ai,j| =
√

r2
i,j+1 + r2

i,j − 2ri,j+1ri,j cos (ωi,j+1 − ωi,j)

≥
√

r2
i,j+1 + r2

i,j − 2ri,j+1ri,j cos εi ≥
√(

r2
i,j+1 + r2

i,j

)
(1 − cos εi)

≥
√

2L2
i (1 − cos εi) = dmin j = 1, 2, . . . , Mi − 1, i = 1, 2, . . . , Q (7)

and

|ai,j| = ri =
i∑

s=1

ds + Δi,j ≤
Q∑

s=1

ds + Δi,j = R − dmin + Δi,j ≤ R

j = 1, 2, . . . ,Mi, i = 1, 2, . . . , Q (8)

Through basic mathematical relations in Eqs. (6), (7) and (8), we prove that both the element
spacing and aperture constraints are satisfied for vectors d, Δ, ω in Eq. (4).

2.3. The VM-HSDE Algorithm

First, according to the VM method, a projection equation between two vectors x and x′ is summarized
as follows, which is given by Equation (6) in [14].

x′ = VM (x)
where x = (x1, x2, . . . , xn)T , x′ = (x′

1, x
′
2, . . . , x

′
n)T

min ≤ xi, x
′
i ≤ max, i = 1, 2, . . . , n

n∑
s=1

x′
s = L

(9)

Then, set
y = VM (x1) , z = VM(x2)
x1 = (x11, x12, . . . , x1n1)

T , y = (y1, y2, . . . , yn1)
T

x2 = (x21, x22, . . . , x2n2)
T , z = (z1, z2, . . . , zn2)

T

min1 ≤ x1i, yi ≤ max1, i = 1, 2, . . . , n1

min2 ≤ x2i, zi ≤ max2, i = 1, 2, . . . , n2
n1∑

s=1

ys = L1,

n2∑
s=1

zs = L2

(10)

where n1 = Q, min1 = dmin, max1 = 2dmin, L1 = R − dmin, n2 = Mi, min2 = εi, max2 = 2εi, L2 = Δϕ.
Vector d and the ith segment of vector ω are obtained by

d = y

ωi,j =
j∑

s=1

zs − δ · z1, j = 1, 2, . . . , n2
(11)

where ωi,j is the jth element of ω{i}, δ an uniform random number in [0, 1], and z1 the first element of
vector z.

The HSDE algorithm combines the good local search capability of the classic DE and the great
search diversity of harmony search algorithm, which has been proved to converge faster and requires
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less computation in [18]. Here, we propose the VM-HSDE algorithm based on the HSDE algorithm.
Two modifications are added in the six steps of the HSDE. d, Δ and ω are set as the optimization
variables. In Step 1, the initial population with NP individuals (ds,Δs,ωs), s = 1, 2, . . . , NP is
generated. Randomly choose 0 ≤ Δs

i,j ≤ dmin and rearrange it to satisfy the conditions Δs
i,j−Δs

i−1,k ≥ 0,
j = 1, 2, . . . ,Mi, k = 1, 2, . . . ,Mi − 1, i = 2, 3, . . . , Q. ds and ωs are generated by Equation (11) such
that all constraints in Eq. (4) are satisfied. The second modification is to add an operation at the end
of Step 3, in which ds and ωs are evaluated and updated by Eq. (11).

With the help of the RSSCA specific geometry and VM-HSDE algorithm, the constrained
optimization problem in Eq. (4) is effectively simplified. On the one hand, due to rotational symmetry
structure, the number of variables is reduced, and the computing scale of the radiation pattern is
simplified. On the other hand, the generation scheme of the sparse circular array by the MGA [7] is
to thin the elements of the fullest array. It is hard to perform MGA for the large scale array because
the total element number of the fullest array and the number of the abandoned elements are extremely
large. The VM-HSDE algorithm for synthesizing the RSSCA can avoid this drawback, which could be
effectively applied to large scale array optimization.

3. NUMERICAL RESULTS

In this section, three RSSCA examples with constraints of the element number, aperture size and
minimum element spacing are presented. Examples A, B, and C are taken from [7, 10, 11], respectively.
The detailed design parameters for these examples are given in Table 1. In the VM-HSDE algorithm, we
use the same values of HR, CR max, CR min, Fmax, and Fmin as given in [18]. For all computer simulation
examples, 10 independent runs are performed, and the algorithm is terminated after Gmax = 200
generations for each run. The population size of each example is set the same as that in the corresponding
compared reference. The angle resolutions of θ and ϕ (0 ≤ θ ≤ π/2, 0≤ ϕ ≤ Δϕ/2, with odd Q) are set
as 0.2◦ for Example C, while 1.8◦ is used for Examples A and B, which are adopted by the compared
references. Table 2 gives the best PSLL values and maximum generations Gmax for all examples,
compared to those available in [7, 10, 11], which demonstrates effectiveness of the VM-HSDE algorithm.

Example A is a 201-element uniformly excited array with a single element fixed at the center. The
numbers of variables for the proposed algorithm and MGA [7] are 89 and 231, respectively. Obviously,
the number of optimization variables is effectively reduced. The optimized 201-element uniformly excited

Table 1. Design parameters.

Example Design Parameters

A
N = 201, P = 5, Q = 9, {M1,M2, . . . ,MQ} = {1, 2, 3, 5, 6, 5, 5, 6, 7}

R = 5λ, dmin = 0.5λ

B
N = 80, P = 5, Q = 5, {M1,M2, . . . ,MQ} = {1, 2, 3, 4, 6}

R = 3.8λ, dmin = 0.5λ

C
N = 600, P = 15, Q = 16, {M1,M2, . . . ,MQ} = {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5}

R = 100λ, dmin = 5λ

Table 2. Comparative convergence performances for three examples.

Example
PSLL (dB) Gmax

In this paper In references In this paper In references
A −24.2102 −23.7424 [7] −22.94 dB [4] 200 200 [7]
B −20.8023 −19.6 [10] 200 1000 [10]
C −19.1371 −18.85 [11] 200 1500 [11]
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arrays by the MGA and the hybrid BCS-deterministic approach [4] have PSLLs of −23.7424 dB and
−22.94 dB, respectively. Fig. 2 shows the element layout of the best solution obtained by the VM-HSDE
algorithm. The 3-D radiation pattern and the ϕ-cut pattern corresponding to the peak sidelobe level are
given in Fig. 3, where the PSLL is −24.2102 dB. Comparing the PSLL results obtained by VM-HSDE
and MGA, an improvement of 0.4678 dB is observed.

Example B is an 80-element uniformly excited array with an aperture radius of 3.8λ. In [10], the
array was synthesized by the MOEA in 1000 generations for 100 independent runs, which is an extremely
large amount of computation. The numbers of variables for the proposed algorithm and MOEA are 37
and 17. The best PSLL of −19.6 dB is obtained for this case. By using the VM-HSDE algorithm, the
best array yields the PSLL of −20.8023 dB in 200 generations for 10 independent runs. It is obvious
that the proposed algorithm converges fast with good optimization results. Fig. 4 shows the geometry of
the best solution. The 3-D radiation pattern and the ϕ-cut pattern corresponding to the peak sidelobe
level are given in Fig. 5.

Example C is a relatively large scale array with large element spacing. The detailed design
parameters are shown in Table 1. The numbers of variables for the proposed algorithm and CMA-

Figure 2. Geometry of the best array for
Example A.

Figure 3. ϕ-cut pattern corresponding to the
peak sidelobe level and 3-D Pattern for Example
A.

Figure 4. Geometry of the best array for
Example B.

Figure 5. ϕ-cut pattern corresponding to the
peak sidelobe level and 3-D Pattern for Example
B.
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Figure 6. Geometry of the best array for
Example C.

Figure 7. ϕ-cut pattern corresponding to the
peak sidelobe level and 3-D Pattern for Example
C.

ES [11] are 96 and 80, respectively. Fig. 6 shows the array geometry of the best solution obtained
by the VM-HSDE algorithm in 200 generations. The 3-D radiation pattern and the ϕ-cut pattern
corresponding to the peak sidelobe level are given in Fig. 7. The best PSLL is −19.1371 dB, which is
0.2871 dB lower than that obtained by the CMA-ES in 1500 generations. In [11], less than −18.9 dB
PSLLs over a 5.4 : 1 bandwidth have been achieved. By enforcing a minimum spacing of 5λ (λ is the
wavelength at the highest frequency), the best array obtained by the VM-HSDE algorithm provides
less than −18.6 dB PSLLs without grating lobes over a wider bandwidth of 10 : 1. It is noted that the
VM-HSDE algorithm is effective for synthesizing the large scale broadband arrays.

4. CONCLUSIONS

A hybrid algorithm of the vector mapping and optimizer HSDE is applied to synthesizing rotationally
symmetric sparse circular arrays. With a fixed number of elements distributed over a given aperture,
element locations are optimized to obtain low PSLL under the minimum spacing constraint. Three
examples are given and compared to the references. Numerical results show that the VM-HSDE
algorithm converges fast with better optimization results than that obtained by the MGA, MOEA,
and CMA-ES.
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