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A Compact Endfire Radiation Antenna Based on Spoof Surface
Plasmon Polaritons in Wide Bandwidth
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Abstract—A compact slot-coupled endfire radiation antenna based on a tapering spoof surface plasmon
polaritons (SSPPs) structure with high efficiency is proposed in this paper. A narrow slot balun is
designed to feed the SSPPs structure rather than to work as the primary radiator. Simulated results
show that the odd SPP mode is successfully excited on the tapering SSPPs structure, which contributes
to the endfire radiation. Due to the high confinement of SSPPs, the proposed antenna shows low RCS
within the frequency band of 1.5 GHz–4 GHz and 5.6 GHz–8 GHz. A prototype is fabricated and tested.
Simulated and measured results show good agreement that the proposed antenna can provide stable
endfire radiation patterns within the frequency band of 2 GHz–3.4 GHz. The maximum gain reaches
8 dBi, and the average efficiency over this bandwidth is 80%. The high-efficiency endfire SSPPs antenna
with balanced broad band and high gain has a promising application in communication systems and
integrated circuits.

1. INTRODUCTION

Surface plasmon polaritons (SPPs) are special electromagnetic (EM) waves bound on the interface of
two materials where the real parts of permittivity are opposite in sign [1–8]. The use of SPPs in
technology has originated the novel research field of plasmonics, whose applications are found in several
fields ranging from optoelectronics [9–13], nanomedicine [14–18], and membrane technology [19–21].
Many antennas have been reported based on plasmonics, but they are designed for optical regions [22–
25]. Based on the valuable work in [26] and [27], spoof SPPs (SSPPs) have been realized in the
microwave band by using structured surfaces. Afterward, SSPPs have inspired intensive interest in
microwave community. Extensive applications based on SSPPs waveguide have been reported, including
transmission line [28–30], filters [31–33], and wave splitters [34–36].

Due to the strong field-confinement characteristic and phase mismatch with free space, the
electromagnetic wave supported on SSPPs transmission line does not radiate, which limits the
application of the SSPPs in antenna design to a certain extent. With tapering structures [40, 41],
or resonating elements [42–44], or periodic modulations [37–39], SSPPs modes can be converted into
spatial radiated modes.

Many valuable works on SSPPs antennas have been reported [37–47]. In [38], a leaky wave antenna
based on SSPPs is proposed, in which periodically loaded patches are introduced to provide an additional
momentum for phase matching with the radiated waves in the space. In [39], an asymmetrical plasmonic
waveguide is reported to improve the radiation efficiency of the periodically modulated SSPPs leaky
wave antenna. A new method is proposed to efficiently radiate electromagnetic (EM) wave form SSPPs
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structure, as presented in [43]. A flaring metal structure is introduced to realize wide band impedance
matching.

All the SSPPs antennas reported so far are dedicated to realizing efficient conversion of SSPPs
modes to spatial radiated modes, and most of them steer the beam around the broadside. In [41], an
endfire SSPPs antenna is reported. This antenna is fed by a monopole, and a tapering structure [48, 49]
is used to couple the electromagnetic wave from the monopole. The odd surface wave mode is excited
along the SSPPs structure and is radiated through the tapering structure at the end. This antenna
shows good radiation patterns in the endfire direction. Owing to the resonant nature of the monopole,
it exhibits a narrow frequency band. Another endfire radiation antenna based on SSPPs is presented
in [42]. Similar to the antenna reported in [41], this antenna shows a narrow impedance band. To
improve the impedance band of endfire SSPPs antenna, a traveling-wave antenna for endfire radiation
is proposed [40]. This antenna provides an endfire radiation beam within 7.5–8.5 GHz. However, due to
the traveling-wave characteristic, there are many side lobes. It is noted that the corrugated edges used
in Vivaldi antennas are designed to suppress the surface wave [50, 51], and the SSPPs are not exactly
excited.

In this paper, we propose an efficient compact SSPPs endfire antenna over a wide operating
frequency band. This antenna is mainly composed of a transition area, tapering SSPPs structure,
and microstrip feed line. The narrow extending slot in the tapering SSPPs structure works as a running
waveguide, and the triangular slot at the end of the antenna is introduced to improve the impedance
matching and radiation performance. The odd SSPPs mode is excited through the narrow slot, and
the tapering structure is designed to convert the SSPPs mode to spatial radiated mode. Unlike Vivaldi
antennas where slot is the primary radiator, the narrow slot in this design cannot provide an endfire
radiation beam over a wide frequency band, and the corrugated SSPPs structure is introduced as a
main radiator to couple the energy from the slot. Due to the high confinement of SSPPs, EM wave
is transmitted and radiated to the endfire direction. The proposed antenna shows good radiation
patterns in the endfire direction within a wide operating band of 2–3.4 GHz. Furthermore, because of
the advantages of SSPPs, the proposed antenna exhibits the characteristic of low profile and high field-
confinement, which could be fabricated close to each other without significant mutual coupling [52]. In
addition, SSPPs structure can also reduce antenna RCS within the frequency bands of 1.5 GHz–4 GHz
and 5.6 GHz–8 GHz. The proposed antenna shows high directivity in endfire direction with an average
radiation efficiency about 80% in the available band. The work in this paper provides an efficient
method to feed SSPPs antenna and is of great value in communication systems and integrated circuits.

The structure and key parameters of the proposed antenna are explained in Section 2. Antenna
prototype and experimental results are discussed in Section 3. Finally, the conclusion is given in
Section 4.

2. ANTENNA DESIGN AND ANALYSIS

2.1. Antenna Structure and Principle

The configuration of the proposed SSPPs endfire antenna is shown in Figure 1. The entire metal
structure is fabricated on a 0.762-mm-thick Arlon AD250 substrate (with εr = 2.5 and tan σ = 0.0018).
The tapering microstrip line at the back of the antenna is designed to feed the narrow extending slot
as shown in Figure 1(b). The microstrip line is designed to match the impedance of 50 Ω.

Compared with conventional microstrip line, the arc-shaped tapering microstrip line provides a
better impedance matching. A fan-shaped patch is loaded at the end of the microstrip line to improve
antenna efficiency. r2 is the radius of this fan-shaped patch. The narrow extending slot in the part
of SSPPs structure works as a waveguide for the running wave, and the triangular slot at the end of
the antenna is introduced to reduce the reflection. L3 and W2 are the height and bottom side of the
triangle.

By introducing the SSPPs structure, the EM wave supported on the narrow slot is coupled to the
tapering SSPPs structure. The electric fields on the tapering SSPPs structure is anti-symmetric (odd
mode [30]), which contributes to the endfire radiation together with the narrow slot.

The exponential profile curve is employed in the design of SSPPs transmission line to improve the
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(a)

Figure 1. Proposed endfire radiation antenna. (a) Front view, (b) back view of the proposed antenna.

(b)(a)

Figure 2. (a) Narrow slot antenna, (b) the proposed SSPPs antenna.

antenna performance. The ridge curve equation is defined as

y = eln(0.5×W1+1)×[(x−L4)/(L1−L4)]−1 − 0.5 × W1 (L4 ≤ x ≤ L1) (1)

2.2. Simulation Verification and Parameter Analysis

A series of simulations have been performed using CST Microwave Studio. Figure 2 shows the structure
of a narrow slot antenna and the proposed SSPPs antenna. |S11| performances of these two antennas
are compared in Figure 3. |S11| means the input return loss at the antenna port. The lower the |S11|
value is, the more the energy is fed into the antenna. |S11| performance affects the antenna efficiency
and is recommended below −10 dB. It is observed that |S11| performance is significantly improved with
SSPPs structure.

On the other hand, the narrow slot works as a waveguide for the running wave, and it can provide
an endfire beam within a very narrow band at 2.5 GHz from the simulation results. The power flow
distributions at 2.5 GHz of these two antennas are compared in Figure 4. It can be seen from Figure 4
that part of the EM energy in the narrow slot antennas is radiated to the endfire direction, and the rest
of the EM energy is transmitted to the opposite direction from the end of the slot. However, the EM
energy in the proposed SSPPs antenna is gradually coupled from the slot to the SSPPs structure and
radiated to the endfire direction.

The electric field distribution is shown in Figure 5(a). It is clear that the dominant surface wave
mode transmitted on the structure is odd mode [30] rather than the even mode on conventional plasmonic
metamaterials [39, 44]. The radiation pattern at 2.5 GHz is presented in Figure 5(b) which shows good
endfire radiation patterns. The simulated antenna gain reaches 7.28 dBi and is with low side lobes.
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Figure 3. Comparison of the |S11| performance between the narrow slot antenna and the proposed
SSPPs antenna.

(b)(a)

Figure 4. The power flow of (a) narrow slot antenna, (b) the proposed SSPPs antenna at 2.5 GHz,
respectively.

(b)(a)

Figure 5. (a) Electric field (Ez component) distribution near the structure at 2.5 GHz, (b) radiation
pattern at 2.5 GHz.

The RCSs versus frequency are compared in Figure 6. The gray area is the impedance band of the
proposed SSPPs antenna and a same size Vivaldi antenna. It is observed that both the proposed SSPPs
antenna and Vivaldi antenna can reduce RCS within the operating band of 1.5 GHz–4 GHz. On the
other hand, RCS of the Vivaldi antenna is above −10 dB and is close to that of a metallic plate within
the frequency band of 5.6 GHz–8 GHz, but within this band, the RCS could be significantly reduced
due to the high confinement of the SSPPs.

In Figure 7, |S11| performances of the proposed antenna with and without the triangle slot at the
end are compared. It can be observed that |S11| performance is significantly improved by introducing
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Figure 6. The simulated RCS versus frequency (y-polarization), (a) a metallic square plate with a side
of 100 mm, (b) the proposed SSPPs antenna with a metallic plate, (c) a same size Vivaldi antenna with
a metallic plate.
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Figure 7. Comparison of |S11| performance with and without the triangle slot at the end.
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Figure 8. Effect of W1 on the |S11| performance.

the triangle slot. The tapering structure is important to the antenna impedance matching. In Figure 8,
|S11| performances are compared versus the variable of W1. It is observed that if W1 increases, the
operating band will move to the lower band. If W1 decreases from 70 mm to 60 mm or increases from
70 mm to 80 mm, |S11| performance will deteriorate. Figure 9 compares |S11| values versus L1, and the
frequency band is stable as L1 increases from 210 mm to 220 mm, but if L1 decreases to 200 mm, the
impedance matching will deteriorate. Considering the antenna size, L1 = 210 mm is a better choice.

The proposed endfire antenna is designed through a series of simulations. The optimized values of
parameters are listed in Table 1.
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Figure 9. Effect of L1 on the |S11| performance.

Table 1. Optimized geometric parameters of the pattern reconfigurable antenna.

Parameters h L1 L2 L3

Values/mm 25 216 27.1 20.6
Parameters L4 r1 r2 W1

Values/mm 29 10 6 70
Parameters W2 W3 W4

Values/mm 3 2.1 19.6

3. EXPERIMENTAL RESULT AND DISCUSSION

A prototype was fabricated and measured. The simulated and measured |S11| curves of the proposed
endfire antenna are compared in Figure 10. It is observed that the simulated 10-dB impedance
bandwidth is about 2.3 GHz over 1.8–4.1 GHz (about 78%). Also, the measured 10-dB impedance
bandwidth of the proposed antenna covers 1.8–4.3 GHz (about 82%). The measured results agree well
with the simulated ones.

The simulated and measured antenna efficiencies and realized gains versus frequency are given in
Figure 11. It is observed that the simulated average efficiency is above 97%, and the measured radiation
efficiency is around 80%. The measured and simulated gains match well with each other within the
operating band of 2–3.4 GHz except 3.1 GHz. Because the measured efficiency declines at 3.1 GHz, the
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Figure 10. Comparison of the simulated and measured |S11| values of the proposed endfire antenna.
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measured gain deteriorates accordingly. It is also observed that the simulated antenna gain at 2.3 GHz
and 2.4 GHz is smaller than that at other frequencies without obvious efficiency decline. It is because
the EM wave transmitted on the narrow slot is huge at these frequencies, and the surface wave out
of the narrow slot suppresses the SSPPs through the triangle slot. Thus the beam is widened, and
the antenna gain declines. At other frequencies, the SSPPs work as the dominant radiator, and the
extending antenna aperture makes the radiation beam become narrow, resulting in high realized gain.
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Figure 11. Comparison of the simulated and measured gain and efficiency of the proposed endfire
antenna.
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Figure 12. Simulated and measured radiation patterns of the proposed endfire antenna. (a), (b) and
(c) show the radiation pattern in the xoy plane at 2 GHz, 2.7 GHz, and 3.4 GHz, respectively; (d), (e)
and (f) show the radiation pattern in the xoz plane at 2GHz, 2.7 GHz, and 3.4 GHz, respectively.
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The proposed antenna can provide endfire radiation beams within the frequency range from 2 GHz
to 3.4 GHz. Radiation patterns in the xoy plane are given in Figure 12, in which Figures 12(a), (b),
and (c) show good radiation patterns in the xoy plane at 2 GHz, 2.7 GHz, and 3.4 GHz, respectively,
and Figures 12(d), (e), and (f) show good radiation patterns in the xoz plane at 2 GHz, 2.7 GHz, and
3.4 GHz, respectively. It is observed that the measured results match well with the simulated ones.

Table 2. Performance comparison of endfire antennas.

Ref.
Bands
(GHz)

Size
Peak gain

(dBi)
Radiation
efficiency

[40] 7.5–8.5 2.9λc × 0.8λc 9.2 96%
[41] 9–10.5 3.6λc × 0.5λc ∼ 9.7 high
[42] 6 2.3λc × 0.6λc 7 92.3%
[51] 0.5–6 2.8λc × 1.6λc ∼ 8 -

This letter 2–3.4 1.9λc × 0.6λc 8 80%
∗λc is the wavelength at the center frequency.

The performances of our prototype and other different types of previously reported SSPPs endfire
antennas [40–42] are compared in Table 2. A UWB Vivaldi antenna reported in [51] is also compared
in Table 2. The proposed endfire SSPPs antenna size is 1.9λc × 0.6λc, peak gain 8 dBi, and average
efficiency 80% over 2–3.4 GHz. It is observed that compared with the other SSPPs endfire antennas
reported in [40–42], the proposed design achieves the most compact size and the widest frequency band.
The realized gain is relatively high with respect to the antenna size. Compared to the miniaturized
Vivaldi antenna [51], the realized gain of the proposed antenna is relatively high and less fluctuating.

4. CONCLUSION

An efficient compact SSPPs endfire antenna over wide operating frequency band is studied. The
microstrip is used to feed the narrow extending slot and to excite the odd SSPPs mode, which supports
the endfire radiation pattern. Due to the high confinement of SSPPs, the proposed antenna shows low
RCS within the frequency bands of 1.5 GHz–4 GHz and 5.6 GHz–8 GHz. The manufactured prototype of
the proposed antenna realizes endfire radiation beam within a wide frequency band of 2–3.4 GHz. The
measured maximum gain reaches 8 dBi, and the average efficiency is 80% over the operating band. Ease
of fabrication, low profile, and high efficiency render this antenna highly suitable for endfire applications.
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