
Progress In Electromagnetics Research M, Vol. 78, 125–133, 2019

Solution of Wideband Scattering Problems Using Hierarchical
Ultra-Wideband Characteristic Basis Functions

Wen-Yan Nie1 and Zhong-Gen Wang2, *

Abstract—In this paper, a hierarchical ultra-wideband characteristic basis function method
(HUCBFM) is presented for high-precision analysis of wideband scattering problems. Unlike existing
improved ultra-wideband characteristics basis function method (IUCBFM), HUCBFM reduces the
number of characteristic basis functions (CBFs) necessary to express a current distribution. This
reduction is achieved by combining primary CBFs (PCBFs) with the secondary level CBFs (SCBFs)
to form a single hierarchical ultra-wideband characteristic basis function (HUCBF). As HUCBF
incorporates the effects of PCBFs and SCBFs, the accuracy does not change significantly compared
to that obtained by IUCBFM. Furthermore, the efficiencies of constructing the CBFs and filling the
reduced matrix are improved. Numerical examples verify and demonstrate that the proposed method
is credible both in terms of accuracy and efficiency.

1. INTRODUCTION

Many electromagnetic applications require the solution of the radiation from an antenna or scattering
problems over a wide frequency band rather than at a single frequency. However, the solution using
either the method of moments (MoM) [1] or other fast methods [2–4] requires the calculations to be
executed at each frequency point. Several techniques have been proposed to alleviate this problem.
In [5], model-based parameter estimation (MBPE) is used to obtain the wideband data from frequency
and frequency-derivative data. In [6], impedance interpolation technology is used to analyze the
wideband electromagnetic scattering problems. This method leads to a CPU time reduction at the
expense of increased memory requirement. In [7], multilevel fast multipole method (MLFMM) is
combined with the best uniform approximation to calculate the wideband radar cross section (RCS)
of objects. In [8, 9], asymptotic waveform evaluation (AWE) technology is used to predict the RCS
over a band of frequencies. However, this technique needs to store both the impedance matrix and its
frequency derivatives, limiting its applicability to small-scale problems only. In [10], the AWE technique
is combined with the pre-corrected fast Fourier transform (PFFT)/adaptive integral method (AIM) for
a fast analysis of the wideband scattering problems. Most of the approaches mentioned above usually
face the unpredictable problem of convergence rate as they use iteration method to solve the linear
equations.

Another method used for the solution of electromagnetic scattering problems is characteristic basis
function method (CBFM) [11–13]. This method uses the direct method for matrix equation solution.
Several methods have been proposed to improve the accuracy, computational time, and memory
problems of CBFM. In [14–16], an improved primary characteristic basis function method is proposed to
improve the efficiency of constructing characteristic basis functions (CBFs). In [17, 18], adaptive cross
approximation algorithm and AIM are used to accelerate reduced matrix construction. However, CBFs
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should be recalculated at each frequency point over the frequency band of interest. Hence, in [19], ultra-
wideband CBFM (UCBFM) is proposed to analyze wideband electromagnetic scattering problems. The
ultra-wideband CBFs (UCBFs) constructed at the highest frequency point can also be employed at lower
frequencies without going through the time-consuming step of constructing the CBFs again. However,
the errors in the calculation of the RCS using UCBFs are usually large at lower frequency points. In
addition, the number of UCBFs constructed at the highest frequency point is unnecessarily high, and
computational complexity increases when applying UCBFs to the lower frequency points. To mitigate
these problems, an improved UCBFM (IUCBFM) is proposed in [20] to improve the accuracy at lower
frequency points. This improvement is achieved by fully considering the mutual coupling effects among
the sub-blocks to obtain the secondary level CBFs (SCBFs). In [21], an adaptive improved UCBFs
(AIUCBFs) construction method is proposed, which can decrease the computational complexity at the
lower frequency points. In [22], the unnecessary UCBFs are removed from the basis set as the frequency
is decreased. In [23], a singular value decomposition (SVD) enhanced IUCBFM (SVD-IUCBFM) is
proposed to reduce the number of matrix equation solutions. These methods have advantages of higher
accuracy at lower frequency points and lower computational complexity in lower frequency bands.
However, most of the approaches mentioned above need to calculate SCBFs that leads to an increase
in the number of CBFs before the application of SVD.

In this paper, a hierarchical UCBFM (HUCBFM) is proposed to improve the efficiency of the
IUCBFM. The HUCBFM is a method that reduces the number of CBFs necessary to express a current
distribution. The method combines the SCBFs calculated for each block of the scatter with the primary
CBFs (PCBFs) to form a single hierarchical ultra-wideband characteristic basis function (HUCBF). As
the HUCBF incorporates the effect of PCBFs and SCBFs, a reduction in the number of CBFs can be
achieved, but the accuracy does not change significantly compared to that of IUCBFM. Furthermore,
dimensions of the reduced matrix and the reduced matrix filling time are significantly reduced.

This paper is composed of the following sections. The next section describes the improved ultra-
wideband characteristic basis function method. In Section 3, the construction of hierarchical ultra-
wideband characteristic basis functions (HUCBFs) is described. Section 4 presents the complexity
of the two methods. In Section 5, some numerical results are given, while conclusions are drawn in
Section 6.

2. IMPROVED ULTRA-WIDEBAND CHARACTERISTIC BASIS FUNCTION
METHOD

To improve the calculation accuracy of UCBFM at lower frequency points, the construction of UCBFs
is improved by considering the mutual coupling effects among sub-blocks. The IUCBFM [20] begins
by dividing an object into M blocks. Then, it establishes a model at the highest frequency point and
constructs the CBFs by using a series of plane waves (PWs). Suppose that Nθ and Nφ represent the
numbers of PWs in the directions of θ and φ, respectively, giving a total of 2NθNφ PWs, considering
two polarization modes. For each plane wave excitation, PCBFs of each block can be solved by the
following system:

ZiiJP
ii = Vii, (1)

where Vii represents the excitation vector of block i, for i = 1, 2, 3, . . . ,M ; Zii is an Ni × Ni self-
impedance matrix of block i; N represents the number of unknowns in the extended block i; and JP

ii
is the PCBFs matrix of dimensions Ni × 1. The PCBFs of block i can be obtained by directly solving
Eq. (1). After the PCBFs of each block are solved, the SCBFs are calculated subsequently using the
following equations:

ZiiJS1
ii = −

M∑
j=1(j �=i)

ZijJP
jj, (2)

ZiiJS2
ii = −

M∑
j=1(j �=i)

ZijJS1
jj , (3)
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where Zij represents the impedance matrix between i and j blocks, and JS1
ii and JS2

ii represent the
first-level SCBFs and second-level SCBFs, respectively.

Following the procedure described above, a total of 2NθNφ JP
ii , 2NθNφ JS1

ii , 2NθNφ JS2
ii , can be

obtained on each block. To reduce linear dependency among these CBFs, the SVD approach is used.
Only those CBFs whose relative singular values are above a certain threshold, e.g., 0.001, are retained
as improved UCBFs (IUCBFs). For simplicity, it is assumed that all of the blocks contain the same
number of K IUCBFs after the application of SVD. The solution to the entire problem is expressed as
a linear combination of the M × K IUCBFs as follows:

J =
M∑

m=1

K∑
k=1

αk
m(f)JCBFk

mm , (4)

where JCBFk
mm represents the kth IUCBFs of block m, and αk

m(f) represents the unknown weight
coefficients. The Galerkin method [11] is used to convert the traditional MoM equation Z · J = V
into a linear equation with coefficient matrix α(f). A KM × KM reduced matrix can be obtained as
shown next:

ZR(f) · α(f) = VR(f), (5)

where V R
ii (f) = JT

ii · Vii(f), T represents transpose operation, and ZR(f) represents the reduced
impedance matrix of dimensions KM × KM . Each element of ZR(f) can be expressed as follows:

ZR
ij (f) = JT

ii · Zij(f) · Jjj i, j ≤ M. (6)

where Zij(f) represents the impedance matrix between blocks i and j at frequency f . As the dimension
of ZR(f) is small, α(f) can be obtained by directly solving Eq. (5). Then, by substituting α(f) into
Eq. (4), the surface current J at any frequency point can be obtained. Although IUCBFs can improve
the calculation accuracy at lower frequency points, the calculation of SCBFs leads to an increase in
both the number of matrix equation solutions and the number of CBFs.

3. HIERARCHICAL ULTRA-WIDEBAND CHARACTERISTIC BASIS FUNCTION
METHOD

In the IUCBFM outlined in the previous section, a matrix of size 6NθNφ × M needs to be solved
for constructing the CBFs, and subsequently, 6NθNφ × M CBFs are obtained. When dealing with
large-scale targets, the enormous number of CBFs significantly increases the CPU time and memory
requirements. To solve these problems, a HUCBFM is proposed in this section. The HUCBFM reduces
the number of CBFs necessary to express a current distribution by combining PCBFs with the SCBFs
to form a single HUCBF. Fig. 1 shows the schematic diagram to construct the HUCBFs. The HUCBFs
of each block are constructed based on Eqs. (1), (2) and (3) as follows [14]:

ZiiJ
P (k)
ii + ZiiJ

S1(k)
ii +ZiiJ

S2(k)
ii = Vk

ii −
M∑

j=1(j �=i)

ZijJ
P (k)
jj −

M∑
j=1(j �=i)

ZijJS1
jj , (7)

Zii

(
JP (k)

ii + JS1(k)
ii +JS2(k)

ii

)
= Vk

ii −
M∑

j=1(j �=i)

ZijJ
P (k)
jj −

M∑
j=1(j �=i)

ZijJS1
jj , (8)

ZiiJ
H(k)
ii = Vk

ii −
M∑

j=1(j �=i)

ZijJ
P (k)
jj −

M∑
j=1(j �=i)

ZijJS1
jj . (9)

where Vk
ii is the kth incident plane wave excitation, and JP (k)

jj and JS1(k)
jj represent PCBFs and the first-

level SCBFs, respectively, which are obtained by using the kth incident plane wave irradiating block j.
2NθNφ HUCBFs JH(k)

ii can be obtained by directly solving Eq. (9). Subsequently, the SVD procedure
can be utilized to remove the redundancy in the obtained HUCBFs before constructing the reduced
matrix. Since the number of CBFs is much lower than that constructed by the IUCBFM, the time
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Figure 1. Schematic diagram of HUCBFs
construction.
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Figure 2. UCBFs number of each block.

taken by the SVD procedure is also reduced in the HUCBFM. In addition, as the mutual interaction of
surrounding blocks is properly considered in the HUCBFM, a high accuracy can be obtained when the
same number of PWs is set to irradiate each block.

4. COMPLEXITY ANALYSIS

The computations involved in the application of the IUCBFM or HUCBFM can be divided into three
parts: 1) The UCBFs construction. 2) Constructing the reduced matrix. 3) Solving the reduced
matrix. The most computationally intensive part of the IUCBFM is associated with the construction
of the UCBFs and the reduced matrix construction procedure. In the following, the computational
complexity of each of these parts is analyzed for both IUCBFM and HUCBFM:

(1) Ultra-wideband CBFs construction: To solve Eq. (1), the LU factorization is usually used. In
IUCBFM, the construction of the UCBFs mainly includes two parts: first is the construction
of the PCBFs and SCBFs, and the second is the SVD procedure. The complexity of the
UCBFs construction is O(6MNθNφ(Ni)3) + 4M(M − 1)NθNφNiNj + 6MNθNφ(Ni)2. Ni and
Nj represent the numbers of the RWG basis functions in blocks i and j, respectively. In
HUCBFM, the computational complexity of UCBFs construction is O(6MNθNφ(Ni)3) + 4M(M −
1)NθNφNiNj + 2MNθNφ(Ni)2.

(2) Reduced matrix construction: In IUCBFM, the complexity of the reduced matrix construction
is O((KM)2NiNj). In HUCBFM, the complexity of the reduced matrix construction is
O((KnewM)2NiNj). The number of HUCBFs retained on each block after SVD is Knew, where
Knew is always smaller than K.

(3) Reduced matrix solution: In IUCBFM, the complexity of the reduced matrix solution is O((KM)3).
In HIUCBFM, the complexity is O((KnewM)3).

Compared with the IUCBFM, the computational complexity of HUCBFM is greatly decreased in UCBFs
construction, reduced matrix construction and reduced matrix solution.

5. NUMERICAL RESULTS

In this section, a comparison is carried out between the performances of the existing IUCBFM and the
proposed HUCBFM. All simulations are completed on a personal computer with an Intel(R) Core(TM)
i7-3970 CPU with 3.5 GHz (only one core is used) and 16 GB RAM. The compiler used is Visual studio
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2013. The threshold of the SVD is set to 10−3. In order to decrease the computational complexity at the
lower frequency points, the adaptive UCBFs construction method is used [21]. The equivalent dipole-
moment method (EDM) [24] is applied to accelerate the impedance matrix element filling procedure.
We use the relative error of the RCS to estimate the accuracy of the proposed method, and the relative
error is defined as follows:

Err(% )=100 ×
√∑

n

∣∣RCSx − RCSref
∣∣2/√∑

n

∣∣RCSref
∣∣2 (10)

where RCSx is the RCS calculated by the IUCBFM or HUCBFM, and RCSref is the RCS calculated
by the FEKO.

First, a PEC sphere with radius of 0.1 m over a frequency range of 0.3 GHz to 3 GHz is considered.
The geometry is divided into 4914 triangular patches with an average length of λ/10 at 3 GHz, thus
resulting in 10900 unknowns. The sphere is divided into 8 blocks, with each block extended by
Δ = 0.15λ. Referring to [20], each block is illuminated by multi-angle PWs from 0◦ ≤ θ < 180◦
and 0◦ ≤ φ < 360◦ with Nθ = 8 and Nφ = 8, resulting in a total of 128 PWs. The numbers of
UCBFs constructed by using IUCBFM and HUCBFM retained on each block at the highest frequency
point are shown in Fig. 2. It can be observed easily that the number of UCBFs obtained using the
HUCBFM is significantly smaller than that obtained using the IUCBFM. The θθ polarization bistatic
RCSs calculated at 900 MHz using IUCBFs and HUCBFs are shown in Fig. 3. The results calculated
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Figure 3. Bi-static RCS of the sphere at
900 MHz.
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Figure 4. Wideband RCS of the PEC sphere.

Table 1. Numbers of UCBFs and calculation time of different procedures for the two methods.

IUCBFM HUCBFM
Frequency sub-band (GHz) 0.3–0.975 0.975–1.65 1.65–3.0 0.3–0.975 0.975–1.65 1.65–3.0

Number of PWs 128 128 128 128 128 128
SVD time (s) 19.29 19.63 21.09 9.37 9.45 9.51

Number of UCBFs 462 711 1129 329 521 801
UCBFs construction time (s) 527.99 536.18 541.64 439.41 441.83 443.79

Reduced matrix filling (s) 19.39 30.59 59.04 13.22 21.46 34.69
Total time (s) 1647.31 1785.65 2072.62 1445.51 1530.51 1668.89

Relative error (%) 2.88 2.61 1.99 2.95 2.78 2.01
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using the HUCBFs agree well with the results obtained by the IUCBFs. The given frequency band is
adaptively divided into 3 sub-bands using the adaptive UCBFs construction method. The broadband
RCSs with 10 frequency sampling points in each sub-band, computed by the conventional IUCBFM
and the HUCBFM are compared in Fig. 4, which are in good agreement. The numbers of UCBFs and
the computational times for different procedures are summarized in the Table 1. It can be seen that
the HUCBFM needs a smaller number of UCBFs than the conventional IUCBFM. Furthermore, the
UCBFs constructing time and reduced matrix filling time are remarkably reduced, and the gains are
about 19% and 37%, respectively.

Table 2. Numbers of UCBFs and calculation time of different procedures for the two methods.

IUCBFM HUCBFM

Frequency

sub-band

(GHz)

0.1–

0.7125

0.7125–

1.325

1.325–

2.55

2.55–

5.0

0.1–

0.7125

0.7125–

1.325

1.325–

2.55

2.55–

5.0

Number

of PWs
128 128 128 128 128 128 128 128

SVD

time (s)
34.33 34.81 34.89 34.64 17.11 16.53 16.62 16.73

Number

of UCBFs
362 476 729 1340 210 321 524 923

UCBFs

construction

time (s)

986.56 997.75 989.5 1010.51 839.12 830.11 829.12 839.15

Reduced

matrix

filling (s)

23.51 35.13 69.78 115.88 19.86 24.75 49.13 75.87

Total

time (s)
2478.76 2643.97 2919.17 3520.07 2291.71 2403.81 2622.57 2931.86

Relative

error (%)
4.08 3.64 3.11 2.96 4.29 3.84 3.36 3.27

1G 2G 3G 4G 5G

-40

-30

-20

-10

0

R
C

S
/d

B
s
m

f /Hz

 FEKO

 IUCBFM

 HUCBFM

Figure 5. Wideband RCS of the cube.
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Second, a PEC cube with a side length of 0.1 m over a frequency range of 0.1 to 5GHz is considered.
The discretization in triangular patches is conducted at 5 GHz, which leads to a total number of 13607
unknowns. The geometry is divided into 8 blocks. The broadband RCSs computed by the IUCBFM
and HUCBFM are shown in Fig. 5. The numbers of UCBFs and the computational times of the two
methods are shown in Table 2. As shown in Fig. 5 and Table 2, the HUCBFM leads to a relatively
small number of UCBFs in each sub-band resulting in substantial time-saving without compromising
the accuracy.

Finally, a PEC hexahedron over a frequency range of 0.4 GHz to 4 GHz is considered. The lengths of
bottom and top sides are 0.2 m and 0.1 m, respectively, and 0.2 m high. The discretization in triangular
patches is conducted at 4 GHz, which leads to 21479 unknowns. The geometry is divided into 8 blocks.
The broadband RCS with 6 frequency sampling points in each sub-band, computed by the IUCBFM and
HUCBFM are shown in Fig. 6. It can be seen from Fig. 6 that the RCSs calculated by the two methods
agree well with calculation results of the FEKO. The numbers of UCBFs and the computational times
of the two methods are shown in Table 3. It is evident that the HUCBFM outperforms the conventional
IUCBFM, both in UCBFs construction and RCS computational time. Especially, the numbers of UCBFs
and the reduced matrix filling time are remarkably reduced.

Table 3. Numbers of UCBFs and calculation time of different procedures for the two methods.

IUCBFM HUCBFM

Frequency sub-band (GHz) 0.4–1.3 1.3–2.2 2.2–4.0 0.4–1.3 1.3–2.2 2.2–4.0

Number of PWs 128 128 128 128 128 128

SVD time (s) 83.27 83.38 83.06 38.39 39.02 39.26

Number of UCBFs 606 923 1463 453 680 858

UCBFs construction time (s) 2575.76 2596.09 2585.40 2227.63 2225.28 2217.09

Reduced matrix filling (s) 143.39 217.29 348.03 106.27 159.36 199.59

Total time (s) 5144.78 5683.41 6457.80 4363.78 4788.81 5141.39

Relative error (%) 3.98 3.68 3.35 4.21 3.83 3.47

6. CONCLUSION

This paper puts forward an effective numerical method for analyzing the wideband scattering of
PEC objects. In this method, hierarchical ultra-wideband characteristic basis functions (HUCBFs)
are obtained by combing primary CBFs (PCBFs) with the secondary level CBFs (SCBFs). This
combination incorporates the effects of both PCBFs and SCBFs such that the number of UCBFs and
the computation time for UCBFs are reduced significantly. Furthermore, the reduced matrix dimensions
and reduced matrix filling time are decreased. The numerical results demonstrate that the proposed
method can calculate the wideband radar cross section more efficiently than the conventional improved
ultra-wideband characteristics basis function method (IUCBFM) without compromising the accuracy.
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