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Computing with Large Time Steps for Electromagnetic Wave
Propagation in Multilayered Homogeneous Media

Nikitabahen N. Makwana* and Avijit Chatterjee

Abstract—We present an extension of Large Time Step (LTS) method to electromagnetic wave
propagation involving multilayered homogeneous media. The LTS method proposed by LeVeque is
an extension of Godunov’s method for the numerical solution of hyperbolic conservation laws. In
this method, very large time steps are allowed by an increase in the numerical domain of dependence
compared to conventional explicit methods constrained by the Courant-Friedrichs-Lewy stability
criteria. This can lead to additional complexities when being applied to multilayered homogeneous
media due to presence of material interfaces. Appropriate treatment of material interface boundaries is
proposed in the present work in the context of finite volume time-domain method with LTS. Numerical
examples are presented involving solution of time-domain Maxwell’s equations in a layered dielectric
medium using LTS approach.

1. INTRODUCTION

The classical LTS method was proposed by LeVeque [1] to speed up the solution of nonlinear hyperbolic
conservation laws like the Euler equations in gas dynamics [2–4] and shallow water equations in fluid
mechanics [5–9] when being solved in a Godunov based finite volume framework. The LTS approach
assumes waves arising out of solving Riemann problems at cell interfaces in a Godunov method to behave
linearly. This linear behaviour allows superposition of waves to be used to update downwind cell values.
This results in the Courant-Friedrichs-Lewy (CFL) criterion restriction on the explicit time step due to
numerical stability considerations being bypassed. The large value of time step Δt, due to CFL number
(ν) � 1 in LTS method, can considerably speed up numerical simulations involving hyperbolic waves
even with the increased per-grid-point computational load due to inclusion of more Riemann waves for
updating grid values. The time-domain Maxwell’s equations in finite difference time-domain (FDTD)
or finite volume time-domain (FVTD) context can be computationally very expensive if the explicit
time step Δt is small due to fine meshes resulting from point-per-wavelength (PPW) requirements.

The LTS method was extended to the solution of time-domain Maxwell’s equations, in free space in
a FVTD framework in [10]. It was shown that Δt (and ν) can be unconditionally large for 1D problems
given that the time-domain Maxwell’s equations constitute a system of linear hyperbolic conservation
laws. Fewer time steps in the LTS method also result in enhanced accuracy because of reduced
discretization errors. Extension to multidimensions through operator splitting is also unconditionally
stable using LTS, but the accuracy may degrade for ν � 1. This is attributed to splitting error
arising from the fact that Jacobian matrices in the multidimensional form of the time-domain Maxwell’s
equations do not commute [11].

In the present work, we extend the LTS method in an FVTD framework to multilayered
homogeneous media. We consider perfect dielectrics in a 1D domain. Dielectric slabs result in material
interfaces which require special treatment in the LTS framework. Material interfaces can separate
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material of constant or variable impedance. Propagating waves resulting from Riemann problem in the
LTS method, encountering a constant impedance material interface, continue to update cells only in
downwind direction of the interface. But the range of downwind cells is now dictated by the new wave
speed downwind of the interface. Riemann waves encountering dielectric interface of variable impedance,
on the other hand, produce reflected and transmitted waves at the interface. The amplitudes of the
waves depend on reflection and transmission coefficients based on satisfying conservation at the material
interface. Riemann waves encountering such an interface update both upwind and downwind cells to
the interface. The range of cells, in both directions to be updated, depend on the local wave speed.
Appropriate interface boundary conditions will form a part of the LTS framework involving layered
media consisting of perfect dielectrics considered in this work. In a simple 1D domain Riemann waves,
in-principle, can cross multiple dielectric interfaces in a single time step in an LTS method. This would
be difficult to implement for practical problems in multidimension involving variable impedance media.
The 1D problem solved here can also provide a condition for minimum thickness of dielectric slabs that
can be efficiently solved using LTS for variable impedance media in more practical problems.

2. GOVERNING EQUATIONS

The time-domain Maxwell equations in differential form for a linear medium can be written as

∇× E = −∂B
∂t

(1a)

∇× H =
∂D
∂t

+ J (1b)

where E is the electric field vector, H the magnetic field vector, D the electric flux density, B the
magnetic flux density, and J the electric current density.

The constitutive relation for homogeneous and non-dispersive medium are given by

D = εE = ε0εrE, (2a)

B = μH = μ0μrH (2b)

where ε is the electric permittivity and μ the magnetic permeability of the medium. In Equation (2),
ε0 = 8.854×10−12 (farad/meter) and μ0 = 4π×10−7 (henrys/meter) are free space electric permittivity
and magnetic permeability, while εr and μr are relative permittivity and permeability of the medium.
εr = 1 and μr = 1 for free space. We initially present an overview of the LTS formulation for the solution
of 1D Maxwell’s equations in homogeneous medium. This formulation is then extended to multilayered
homogeneous media and numerical examples solved.

3. LTS METHOD IN HOMOGENEOUS MEDIUM

The source free x-directed and y-polarized 1D Maxwell’s equations are given by

∂Ey

∂t
= −1

ε

∂Hz

∂x
(3a)

∂Hz

∂t
= − 1

μ

∂Ey

∂x
(3b)

For the solution of Equation (3) using the LTS approach in an FVTD framework, the equations are
written in conservative form as

∂u
∂t

+ A
∂u
∂x

= 0 (4)

where conserved variable u and Jacobian matrix A = ∂f(u)/∂x are given as

u =
[

Ey

Hz

]
and A =

[
0 1/ε

1/μ 0

]
. (5)
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The eigenvalues and eigenvectors matrix of A are

Λ =
[ −c 0

0 c

]
and R =

[ −Z Z
1 1

]
(6)

where c = 1/
√

με is the wave speed, and Z =
√

μ/ε is the impedance of the medium. In an FVTD
framework [11], the spatial domain is subdivided into a number of finite volumes (cells), and over each
cell the conservative form of Maxwell’s equations (4) is solved in an integral form. For a finite volume
vi = [xi−1/2, xi+1/2], the integral form of Eq. (4) over a time interval tn to tn+1 can be written in a cell
centered discrete form as

Un+1
i = Un

i − Δt

Δx

(
A+ΔUn

i−1/2 + A−ΔUn
i+1/2

)
(7)

where Un
i is the approximated cell average value of u over the cell interval [xi−1/2, xi+1/2] at time tn, and

A±ΔUn
i∓1/2 is the numerical flux function at cell interface xi∓1/2. A± can be defined as A± = RΛ±R−1

where, Λ± = diag(λ±), and ΔUi−1/2 = Ui − Ui−1. λ+ = max(λ, 0), λ− = min(λ, 0) where λ are
the eigenvalues of the Jacobian matrix A as in Equation (6) and Λ = Λ+ + Λ−. For the solution of
Equation (7) using a wave propagation form of LeVeque’s LTS method, the variable Ui is updated at
each time step by incorporating the solution of Riemann problem at each cell interface of the upwind
grid cells [3, 12]. The waves arising out of a Riemann problem at an interface xi−1/2 is written as [11]

Un
i − Un

i−1 =
m∑

p=1

αp
i−1/2r

p =
m∑

p=1

Δup
i−1/2 (8)

The 1D problem in Equation (3) has m = 2 with wave speeds (−c, c). αp
i−1/2 are the scalar coefficient

or amplitudes of eigenvectors rp, which represents the linear waves in the eigenvector expansion in
Equation (8), and are expressed as

α1
i−1/2 =

−(Ey|i − Ey|i−1) + Z(Hz|i − Hz|i−1)
2Z

(9a)

α2
i−1/2 =

(Ey|i − Ey|i−1) + Z(Hz|i − Hz|i−1)
2Z

(9b)

where Ey|i is the field Ey defined at the ith grid point. In homogeneous medium, the pth wave
propagates with wave speed λp and propagates a distance |λp|Δt in each time step Δt. Thus, if the pth
wave propagates an entire cell interval [xi−1/2, xi+1/2] the cell average gets incremented by a quantity
αp

i−1/2r
p. If the wave traverses a part of the cell, a fraction of αp

i−1/2r
p contributes to increment the cell

average [3, 11, 12]. As shown in Figure 1, at each time step, the pth wave contributes to �ν� downwind
grid cells by updating the cell averages, where ν = |λmax|Δt/Δx is the CFL number, and �ν� maps ν to
the least integer ≥ ν. λmax is the maximum wave speed [12]. The classical LTS method due to LeVeque
is also shown in the form of a flowchart in Figure 2. In the flowchart �ν	 is the integer counterpart of ν.

Figure 1. Wave propagation in computational domain using LTS (schematic).
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Figure 2. LTS algorithm, homogeneous medium.

4. EXTENSION OF THE LTS METHOD TO MULTILAYERED HOMOGENEOUS
MEDIA

For multilayered homogeneous media, the permittivity ε and permeability μ are considered constant in
a finite volume cell but can vary across cell faces. Equation (4) is now written as

∂u
∂t

+ A(x)
∂u
∂x

= 0 (10)

where,

A(x) =
[

0 1/ε(x)
1/μ(x) 0

]
.

The eigenvalues and eigenvectors of Jacobian matrix A(x) are given by

Λ(x) =
[ −c(x) 0

0 c(x)

]
and R(x) =

[ −Z(x) Z(x)
1 1

]
(11)

where wave speed c(x) and impedance Z(x) are defined as

c(x) =
1√

μ(x)ε(x)
and Z(x) =

√
μ(x)
ε(x)

. (12)

For the solution of Eq. (10) in an FVTD framework, u is approximated over each grid cell and
similarly updated by solving the Riemann problems at each interface of the grid cell. The wave speed
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and impedance in each grid cell i are ci = 1/
√

μiεi and Zi =
√

μi/εi with εi and μi the cell-wise
values. For the conventional Godunov’s method (ν ≤ 1), a Riemann problem can straddle a material
interface and influence evolution of the solution only in constituent cells containing that interface. The
solution to the Riemann problem would then consist of single wave moving into either material for
the 1D problem [11]. In the LTS framework multiple left and right moving waves can encounter a
material interface. Interaction with the interface can create transmitted and reflected waves which will
appropriately affect the domain traversed by the waves for ν > 1.

4.1. Constant Impedance Media

A special case of constant impedance Z(x) = Z arises when the relation between μ(x) and ε(x) in the
entire region of interest is μ(x) = Z2ε(x). In such cases, the eigenvectors rp(x) = rp are constant in
space. Hence, waves in Riemann problems are defined identically as in Eq. (8) with the strength of
the waves αp

i−1/2 as in Eq. (9). The matrix of eigenvalues Λ(x) which represent wave speeds varies
spatially with x for the multilayered homogeneous media. The wave speed in the Riemann problem at
an arbitrary cell interface xi−1/2 can be defined in an upwind sense as λ1

i−1/2 = −ci−1 and λ2
i−1/2 = +ci.

As shown in Figure 3, if the pth wave propagates entirely either in medium 1 or 2, with a wave speed
λp

i−1/2 in time Δt, then the wave propagates λp
i−1/2Δt distance and contributes to �νi� downwind grid

cells to update cell averages, with νi defined as |λp
i−1/2|Δt/Δx. On the other hand, if the pth wave with

wave speed λp
i−1/2 encounters a material interface after propagating k < �νi� downwind grid cells, the

wave transmits completely from one layer to another but with a change in wave speed λp′
i−1/2 = ηλp

i−1/2.

For a right running wave (p = 2), η =
√

μ1ε1/μ2ε2 is the refractive index between two layers. Due to
change in speed of wave to λp′

i−1/2, the wave propagates (k + η(νi − k))Δx distance and updates cell
averages in a total of �k + η(νi − k)� downwind cells instead of �νi� cells in time Δt (ν > 1). In this case
the entire wave is transmitted from one layer to another with compression/expansion of the original
profile.

Figure 3. Right moving wave propagation in constant Z computational domain using LTS (schematic).

4.2. Variable Impedance Media

In the case of a change in impedance, along with the speed c(x), the eigenvector matrix R(x) suffers
from a change across a material interface. The eigenvectors at an arbitrary cell interface xi−1/2 can
again be defined as

r1
i−1/2 =

[ −Zi−1

1

]
and r2

i−1/2 =
[

Zi

1

]
. (13)
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Figure 4. Right moving wave propagation in variable Z computational domain using LTS (schematic).

With these spatially varying eigenvectors rp
i−1/2, local waves in each Riemann problem are defined as

previously in Equation (8), and the strength of waves αp
i−1/2 can be written as [11]

α1
i−1/2 =

−(Ey|i − Ey|i−1) + Zi(Hz|i − Hz|i−1)
Zi−1 + Zi

(14a)

α2
i−1/2 =

(Ey|i − Ey|i−1) + Zi−1(Hz|i − Hz|i−1)
Zi−1 + Zi

. (14b)

As shown in Figure 4, if the pth wave originating from the Riemann problem at xi−1/2 propagates
either entirely in medium 1 or 2, in time Δt with wave speed λp

i−1/2, then the pth wave updates �νi�
downwind grid cells with αp

i−1/2r
p
i−1/2 as in homogeneous medium or constant impedance case. However,

if the pth wave interacts with a material interface after propagating k < �νi� downwind grid cells during
time Δt only a part of the incident wave is transmitted while the rest is reflected back from the material
interface. This is in order to maintain conservation when a jump in impedance is encountered. The
strength (amplitude) of transmitted and reflected wave are given by Ctα

p
i−1/2 and Crα

p
i−1/2, respectively.

The transmission coefficient Ct and reflection coefficient Cr for a right moving wave (p = 2) originating
at an arbitrary interface xi−1/2 and encountering a material interface of refractive index η =

√
μ1ε1/μ2ε2

are
Ct =

Zi−1 + Zi

Zi−1 + ηZi
and Cr =

ηZi − Zi

Zi−1 + ηZi
. (15)

For right moving waves (p = 2), the transmitted wave propagates η(νi − k)Δx distance and updates
�η(νi−k)� downwind grid cells of the material interface. Cell averages are augmented by Ctα

2
i−1/2r

2′
i−1/2

where r2′
i−1/2 is defined as in Eq. (13) with Zi = ηZi. Similarly, reflected wave propagates (νi − k)Δx

distance and updates �νi − k� cells upwind of the material interface with Crα
2
i−1/2r

1
i−1/2. The range of

updates are calculated taking into account local wave speed (λ1
i−1/2). The effect of left moving waves

(p = 1) encountering a material interface with refractive index η =
√

μ2ε2/μ1ε1 can similarly be taken
into account in the LTS method.

A limitation on ν (and Δt) can result from the condition that a single wave is allowed to cross
a single dielectric interface per time step in variable impedance media. This would be relevant for
practical problems in multidimesions. This will set a limit on the minimum dielectric slab thickness
that can be treated efficiently by LTS. For ν = K the minimum dielectric slab size is L = KΔx/

√
μrεr.

K is based on free space considerations, and dielectric slab has property μr, εr.
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5. NUMERICAL RESULTS

We present results for EM wave propagation in layered media involving constant and variable impedance.
The incident field is a Gaussian pulse expressed as

Ey(x, t) = E0 exp [β(x − xp − ct)2] (16)

with
β =

ln(0.001)
(w · Δx)2

. (17)

E0 is the peak amplitude of the pulse, xp the original location of the peak, and 2wΔx defines the
incident pulse width. The incident pulse width is set to 400 ps, and original location of the peak is
xp/c = 4.5wΔx ps. The computational domain has 600 grid cells with Δx = 1.5 mm [13].

Initially, we consider the case of constant impedance, for which relative permittivity εr = 2 and
relative permeability μr = 2 are set between cells 250 to 309 (Figure 5). Except this, the medium
is considered free space with εr = 1 and μr = 1. Computational results are presented after time
0.1251, 0.4378, 0.7505, 1.0632, 1.1258, and 1.5636 ns. Figure 5 shows the electric field propagation. The
required number of time steps for varying ν is denoted by n in Figure 5. As shown in Figure 5(b), when
the pulse encounters interface 1, it propagates from free space to dielectric medium and is compressed
due to change in wave speed. In contrast, when the pulse hits interface 2 (Figure 5(d)), it transits
into free space, and the pulse width increases back to the original state (Figure 5(f)). Numerical
results are compared with analytical solution for increasing ν � 1. The LTS method improves the
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Figure 5. LTS method, Gaussian pulse, Z(x) = Z0. (a) t = 0.1251 ns, (b) t = 0.4378 ns, (c)
t = 0.7505 ns, (d) t = 1.0632 ns, (e) t = 1.1258 ns, (f) t = 1.5636 ns.

Table 1. Performance of LTS algorithm with varying ν, Z(x) = Z0.

ν Peak (V/m) ‖error‖L2 CPU time (s)
0.5 0.5437 7.8448 × 10−2 2.8829 × 10−2

2.5 0.8223 2.8698 × 10−2 1.2073 × 10−2

6.25 0.9427 8.9766 × 10−3 7.6969 × 10−3

12.5 0.9547 7.0125 × 10−3 7.0941 × 10−3

62.5 0.9905 1.5680 × 10−3 6.7842 × 10−3

312.5 0.9983 5.0818 × 10−4 4.8998 × 10−3

resolution and preserves better amplitude of the Gaussian pulse with increasing Courant number ν due
to lower discretization errors. The lower discretization errors are a consequence of the fewer explicit
time steps required in LTS than that in a standard ν ≤ 1 propagation. The quantitative performances
of LTS method in terms of peak amplitude of transmitted wave and overall ‖error‖L2 for varying ν at
t = 1.5636 ns are also tabulated in Table 1. The required CPU time (processor Intel R©CoreTM i5-2500
CPU @3.30 GHz), measured in s, is reduced with increasing ν as shown in the table. The LTS method
requires the change in wave speed because material change is factored in the range of downwind cells
to be updated by waves arising out of upwind Riemann problems.

In the next example, we consider a case of varying impedance Z(x). The relative permittivity is set
to εr = 4 between cells 250 and 309, while in other grid cells it is set to free space (εr = 1) [13]. In this
case, when the Gaussian pulse propagates from one layer to another, a part of the wave is transmitted
while the rest reflects back from the interface. Figure 6 shows the propagated electric field at time
0.1251, 0.4378, 0.7505, 1.0632, 1.1258, and 1.5636 ns. In the case of variable impedance, Riemann waves
interacting with an interface will affect both downwind (transmitted wave) and upwind (reflected wave)
cells. The LTS method will require the range of both upwind and downwind cells to be updated by
individual Riemann waves. The magnitudes of the update will depend on reflection and transmission
coefficients based on direction of travel and impedances involved. Table 2 gives measured amplitude
of transmitted and reflected waves from respective interfaces along with ‖error‖L2 of the signal and
the required CPU time for varying ν at 1.5636 ns. In this table, the amplitude of transmitted wave is
Et while Er1 and Er2 are the amplitudes of reflected waves from interfaces 1 and 2, respectively. The
results again show the amplitudes of transmitted and reflected waves at interfaces 1 and 2 to be better
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Figure 6. LTS method, Gaussian pulse, Z(x) = Z0. (a) t = 0.1251 ns, (b) t = 0.4378 ns, (c)
t = 0.7505 ns, (d) t = 1.0632 ns, (e) t = 1.1258 ns, (f) t = 1.5636 ns.
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Table 2. Performance of LTS algorithm with varying ν, Z(x) = Z0.

ν Et (V/m) Er1 (V/m) Er2 (V/m) ‖error‖L2 CPU time (s)
0.5 0.4834 −0.2173 0.1410 7.6155 × 10−2 2.6202 × 10−2

2.5 0.7309 −0.2956 0.2282 2.8872 × 10−2 1.1435 × 10−2

6.25 0.8380 −0.3204 0.2746 1.2244 × 10−2 8.6917 × 10−3

12.5 0.8486 −0.3245 0.2779 1.1051 × 10−2 7.2581 × 10−3

62.5 0.8804 −0.3313 0.2930 9.1832 × 10−3 7.1695 × 10−3

Analytical 0.8889 −0.3333 0.2963 - -

preserved for ν � 1. Overall CPU time again decreases with increasing ν. In this case, the Courant
number ν is limited to 120 based on the self imposed limitation restricting interaction of waves with
multiple interfaces to one per time step. The number of time steps decreases with increasing ν again
resulting in lower discretization error as ν � 1 due to LTS.

The previous examples involved unbounded computational domain. In the next example, the
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Figure 7. LTS method, Gaussian pulse, Z(x) = Z0, PEC boundaries. (a) t = 0.1418 ns, (b)
t = 0.2752 ns, (c) t = 0.4186 ns.
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Gaussian pulse propagates in a perfect conducting cavity [14]. The cavity has 200 grid cells with
Δx = 0.0005 m, and the first fifty cells have dielectric material with relative permittivity εr = 2.3.
Other grid cells in the cavity are considered to be free space (εr = 1). The Gaussian pulse is initialized
at the centre of the domain and is expressed as e−w2t2 , where w = 4.14 × 1010 1/s. As time advances
the pulse propagates left [14]. The representation of the electric fields after time t = 0.1418, 0.2752,
and 0.4186 ns are shown in Figure 7. As in the previous case of variable impedance media, when waves
originating in a Riemann problem hit a material interface, part of the wave is transmitted, and part
reflects back from the interface. These transmitted and reflected waves update appropriate range of
downwind and upwind grid cell relative to the interface depending on locally defined wave speed. The
computational domain is also bounded with the perfect electric conducting (PEC) boundaries. As
shown in Figures 7(b) and 7(c), the outgoing wave from the boundaries completely reflect back into the
computational domain so as to have n×E = Ey = 0 at PEC boundaries. This PEC boundary condition
implementation was earlier described in detail by the authors in [10] for homogeneous medium. From
the results the profile of electric field again agrees very well with the analytical solution for ν � 1. The
measured amplitude of transmitted and reflected waves, ‖error‖L2 , and CPU time for varying ν are
again tabulated in Table 3 at t = 0.4186 ns. In this table Et is the amplitude of transmitted wave. The
incident pulse initially hits the interface, and the amplitude of reflected wave is Er1 in the table. As
shown in Figure 7(b), the left moving transmitted wave after reflection from PEC boundary again hits
the dielectric interface. A part of the wave is again reflected from the interface, and amplitude of this
reflected wave is represented by Er2 in the table. As in the homogeneous case [10], the discretization
error decreases with increase in ν due to decrease in the number of operations with increasing Δt.

Table 3. Performance of LTS algorithm with varying ν, Z(x) = Z0, PEC boundaries.

ν Et (V/m) Er1 (V/m) Er2 (V/m) ‖error‖L2 CPU time (s)
0.5 −0.5594 0.1316 −0.0877 1.1744 × 10−1 6.7667 × 10−3

2.51 −0.8122 0.1841 −0.1358 3.9937 × 10−2 3.1229 × 10−3

12.55 −0.9260 0.2003 -0.1571 9.0897 × 10−3 2.0558 × 10−3

25.1 −0.9415 0.2041 -0.1596 5.9795 × 10−3 1.9650 × 10−3

62.75 −0.9500 0.2043 -0.1617 4.8474 × 10−3 1.5927 × 10−3

83.67 −0.9548 0.2044 -0.1624 4.6716 × 10−3 1.4546 × 10−3

Analytical −0.9379 0.2053 -1.1631 - -

6. CONCLUSIONS

The classical LTS approach originally proposed for nonlinear hyperbolic conservation law was previously
adopted in an FVTD framework to accelerate numerical solution of time-domain Maxwell’s equations
in free space [10]. This allowed the use of very large time steps much larger than that dictated by
conventional stability criterion. This method is now extended to EM wave propagation with dielectric
interfaces. The LTS method is shown to be unconditionally stable for constant impedance media for
1D domain with increasing ν similar to that for homogeneous problems. But the LTS method requires
special handling of interface boundaries. In the case of constant impedance, Riemann waves only update
downwind grid points, but the range of cells will be dictated by incorporating the change in wave speed
across dielectric interfaces. On the other hand, in the case of variable impedance, Riemann waves on
encountering dielectric interface result in both transmitted and reflected waves. This results in updating
both upwind and downwind cells of dielectric interface taking into account coefficients of reflection and
transmission across the interface. A possible limitation of ν (and Δt) can result from the condition
that waves are allowed to cross a single dielectric interface in a time step for more practical problems
in multidimesions. This sets a limit to the thickness of dielectric slab that can be treated efficiently by
LTS in variable impedance media. Extension to multidimensions can in-principle be brought through
an operator splitting approach. This extension is analysed in detail by the authors for LTS involving
homogeneous medium in [10]. The same analysis holds true for multilayered homogeneous media.
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