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Dielectric Wedge Scattering: An Analytic Inroad

Jan A. Grzesik*

Abstract—We provide herein open-form, double series formulae describing the diffraction of
electromagnetic waves by a dielectric, dissipative wedge of finite radius a. Our procedure bypasses
altogether any attempt to enforce boundary conditions at wedge faces, and relies instead on volume
self-consistency for the total electric field, incident plus self-consistently radiated by polarization/ohmic
currents distributed throughout the wedge interior. Self-consistency of this sort is formulated as an
integral equation over the wedge cross-sectional area, an equation wherein are implicitly subsumed all
necessary boundary conditions. The crux of the ensuing solution depends upon a decomposition within
the wedge interior of both incoming (here taken as plane) wave field and the underlying Green’s (Hankel)
function into standard functional buildings blocks individually compliant with the Helmholtz equation
as adapted to the reference, exterior medium. With such decomposition in hand, the remainder of the
solution follows a more or less routine, Ewald-Oseen route, one eased by function orthogonality, by
cancellation across the board of the total field when similarly so decomposed throughout the wedge
interior, and an almost rote reading off of interior expansion coefficients against those found on the
exterior. The incoming field series decomposition across the wedge interior, it should be noted, avoids
the pitfall of a näıve recourse to Fourier series, and invokes instead a root-mean-square minimization.
That such a procedure enjoys a measure of validity is confirmed in Appendix C, wherein it is shown
that the present analytic apparatus, when permitted to confront a degenerate wedge having its exterior
angle γ tending to zero, γ → 0+, which is to say, a bona fide dielectric cylinder, recovers the classical,
boundary-value solution as to its every detail. All in all, while we do hope that the present work will
serve to broaden the prevailing viewpoint as to permeable wedge scattering, we nevertheless admit to
a measure of regret as to the complexity of the resulting formulae, whose numerical implementation
bodes ominously to be a formidable task in its own right. It would seem that we reach here a frontier
of diminishing returns as to the applications of classical analysis, a point at which its intellectual allure
can honorably surrender to direct, computer-driven point matching methods.

1. INTRODUCTION

The theory of diffraction by perfectly conducting wedges of infinite extent overlooks a vast terrain in
the electromagnetic landscape, and has attracted a voluminous, magisterial literature, with its roots
anchored to the pioneering efforts of Sommerfeld and Macdonald [1, 2]. References [3–10] 1 give some
indication of just how important, how endlessly and urgently popular this theory, now well over a
century old, has remained in scientific circles.

While both MacDonald and Sommerfeld base their arguments on field expansions in fractional-
index Bessel functions, it was only the latter who was able to recast his theory in terms of canonical
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contour integrals of an enduring allure. These integrals exhibit, on the one hand, a periodicity of
twice the wedge exterior angle 2γ, and thus invite visualization in terms of image sources placed on
nonphysical Riemann sheets, while, on the other, and much, much more cogently so, they exhibit angular
symmetry about both wedge faces. This symmetry, emphasized by Pauli [11], is well suited to enforcing
both electric and magnetic boundary conditions at wedge faces, and, in our opinion, has a far greater
physical impact than any artifice of image sources sitting on submerged Riemann sheets, no matter
how attractive such concepts may be from a purely mathematical perspective. Moreover, it becomes
self-evident that, once such a two-face symmetry has been duly ascertained, the 2γ periodicity follows
as an automatic consequence.

The natural efforts to extend such analyses to permeable, dielectric wedges had to forfeit at once all
recourse to a priori angular symmetries and thus quickly ground to a halt. There ensued a half century
or so of surrogate attempts, proceeding by fits and starts, to mimic penetration into wedge interiors
by a variety of surface impedance stratagems, invariably phrased as adaptations of the Sommerfeld
formalism, and culminating in the Malyuzhinets program [8].

The work now reported intends to turn this timid approach on its head by precisely such an entry
into wedge interiors phrased via a statement of field self-consistency, conveyed by an integral equation
wherein wedge polarization/ohmic currents are allowed full rein as radiative sources, for fields both near
and far, fields superimposed upon the excitation arriving from the exterior. 2 Once the appropriate
integral equation has been set up, here with its Green’s function gotten as3 (4i)−1× Hankel function
H

(1)
0 , its solution evolves along fairly standard lines, save for one major caveat. That caveat springs into

view once the need is recognized to produce expansions based on Helmholtz equation solutions within
the angular wedge slot not only for the interior field, with its interior radial propagation constant
k2 (q.v. Eq. (1)), but also for both the incoming excitation and for the Green’s function, the latter
two controlled of course by the exterior, reference propagation constant k1 (Eq. (2)). Once such wedge
expansions become available, the orthogonality of their terms under angular quadrature renders virtually
routine the subsequent integral equation interior field solution along Ewald-Oseen extinction lines, a
solution of the sort recently set out by [12] in a substantially simpler planar slab geometry.

Finally, with the interior wedge field duly in hand, the exterior, scattered field is gotten almost as
a quadrature afterthought, the integration over interior sources being carried out now with the Green’s
function restored to its native, trigonometric/Bessel expansion, unrestricted as to angle, 0 < ϕ ≤ 2π, and
with Bessel function indices strictly integral. In principle it is all quite simple, save for the fact that, since
both integer and non-integer angular components now enter the mix, all simplifying benefits of diagonal
outcomes vanish, and one is left to contend with doubly indexed infinite series. And so, it is because
of this computational complexity that we choose to defer all numerical implementation/comparison to
future work, and to include in our title the prudent, modest qualifier “inroad” so as to soften the thrust
of our solution claim.

2. PROBLEM SETUP

We consider a dielectric wedge having its transverse extent bounded by radius r = a as shown in Figure 1.
It is unlimited along its rim, direction êz, which serves as radial origin r = 0 in polar coördinates. The
wedge is uniform with dielectric permittivity ε2 and conductivity σ2, and is embedded in a similarly
uniform, nondissipative dielectric medium having permittivity ε1.

4 Exterior angle γ can roam full-range,
2 For the sake of methodological convenience at this initial level of reporting, we insist in what follows upon exterior excitation fields
of an exclusively plane-wave type. The analysis now given shows, ipso facto, that restrictions of this sort can be taken in stride by
suitable extensions of the steps already taken.

Furthermore, at this groundbreaking level of permeable wedge analysis, we require that wave incidence be perpendicular to the
edge, and that it be electrically polarized along it. We relinquish moreover the patent idealization of a wedge having unbounded
transverse extent. This infinite idealization is clearly the easiest to abandon, its abandonment providing by way of compensation the
freedom to illuminate the wedge from any incident direction 0 < ϕ0 ≤ 2π, and not just from directions bounded by 0 ≤ ϕ0 ≤ γ, and
it liberates all attendant quadratures from any danger of divergence.
3 We restrict ourselves to a simple harmonic time dependence exp(−iωt), with a positive angular frequency ω > 0. The requisite
analysis for negative frequencies follows under complex conjugation across the board.
4 The special case ε2 = ε1 is not excluded, provided only that σ2 �= 0. All quantities, be they geometric or electrical, adhere to SI
units, so that ε1,2 are to be measured in farads per meter and σ2 in Siemens per meter. We have in mind of course an essentially
nondissipative reference medium 1 with a vanishing conductivity σ1 ↓ 0+ (cf. Eq. (2) below).
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Figure 1. Diffracting wedge geometry: transverse radius a, exterior angle γ, plane-wave arrival along
ϕ0, reference dielectric medium (ε1, μ, σ1), dielectric wedge material (ε2, μ, σ2).

0 ≤ γ ≤ 2π, its end points γ = 0 and γ = 2π being admissible as geometrically obvious special cases.
A common value is assumed for the magnetic permeability μ, measured in henrys per meter. The

parameters thus identified provide

k2 = ω
√

μ(ε2 + iσ2/ω)

= ω

√
μ

2

⎡
⎣

√√
ε2
2 + σ2

2/ω
2 + ε2 + i

√√
ε2
2 + σ2

2/ω
2 − ε2

⎤
⎦ (1)

for the propagation constant within the wedge, and

k1 =
σ1↓0+

ω
√

μ(ε1 + iσ1/ω)

=
σ1↓0+

ω
√

ε1μ

(
1 + i

σ1

2ε1ω

) (2)

as its exterior counterpart.
The wedge is illuminated from the exterior by a plane electric wave5 of unit amplitude, polarized

along êz, and incident from direction ϕ0, viz., Einc(r, ϕ) = êz exp
(− ik1r cos(ϕ − ϕ0)

)
. On physical

grounds, the total field, incident plus scattered, is then likewise everywhere endowed with but a single
component along êz. Although incidence angle ϕ0 is a priori unrestricted, 0 ≤ ϕ0 < 2π, it is further
clear from symmetry that we need consider only one of the half-ranges γ/2 − π ≤ ϕ0 ≤ γ/2 and
γ/2 ≤ ϕ0 ≤ γ/2 + π, a natural 2π periodicity being understood. The ensuing analysis will however
offer neither a discernible opportunity for, nor any particular advantage in exploiting such symmetry.
Its benefits would only serve to alleviate the labor of some ultimate numerical implementation. And so
it is never invoked in the material below.

3. RADIATIVE SELF-CONSISTENCY

Within the wedge one encounters a distribution of ohmic/dielectric polarization currents(
σ2 − iωε2

)
E(r, ϕ), with E being the total field, incident plus that self-consistently radiated by them.

This latter distribution can, however, be regarded as an excess above a similar, reference distribution
5 A plane wave bespeaks of course nothing more than a useful idealization wherein a somewhat more credible line source recedes
to infinity. Moreover, we have the option of taking k1 to be rigorously real or else, as in Eq. (2), to include a vanishingly small
dissipative offset from the real axis. In the latter case we face the standard dilemma of witnessing a steady, physically most welcome
attenuation with wave progress, but only at the cost of insisting that the source acquire unbounded strength during its departure to
infinity. We postpone to some future date all efforts to account for finite-distance line source illumination.
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−iωε1E(r, ϕ) pervading all of space. This excess radiates a scattered magnetic field

Bscatt(r, ϕ) =
μ

{
σ2 − iω(ε2 − ε1)

}
4π

∇ ×

⎡
⎢⎣ ∫ a

0

r′dr′
∫ 2π

γ

dϕ′ E(r′, ϕ′)

⎧⎨
⎩

∫ ∞

−∞

eik1
√

|r−r′ |2+z2
dz√

|r − r′|2 + z2

⎫⎬
⎭

⎤
⎥⎦ , (3)

or else, since the integral over z is proportional to the Hankel function H
(1)
0 (k1|r− r′|),∫ ∞

−∞

eik1

√
|r−r′|2+z2

dz√
|r− r′|2 + z2

= iπH
(1)
0 (k1|r− r′|) , (4)

Bscatt(r, ϕ) =
iμ

{
σ2 − iω(ε2 − ε1)

}
4

∇ ×
⎡
⎣ ∫ a

0
r′dr′

∫ 2π

γ
H

(1)
0 (k1|r − r′|)E(r′, ϕ′)dϕ′

⎤
⎦ . (5)

The total field B(r, ϕ), gotten by augmenting Eq. (5) with that incident,

B(r, ϕ) = − i

ω
∇ × Einc(r, ϕ)

+
iμ

{
σ2 − iω(ε2 − ε1)

}
4

∇ ×
⎡
⎣∫ a

0
r′dr′

∫ 2π

γ
H

(1)
0 (k1|r − r′|)E(r′, ϕ′)dϕ′

⎤
⎦ , (6)

allows construction of the total, self-consistent field E(r, ϕ) everywhere, both inside and outside the
wedge, the latter indicated in yellow in Figure 1, as

ε(r, ϕ)E(r, ϕ) =
1

ω2μ
∇ × ∇ × Einc(r, ϕ)

−
{
σ2 − iω(ε2 − ε1)

}
4ω

∇ × ∇ ×
⎡
⎣ ∫ a

0
r′dr′

∫ 2π

γ
H

(1)
0 (k1|r− r′|)E(r′, ϕ′)dϕ′

⎤
⎦ , (7)

with

ε(r, ϕ) =
{

ε1; {0 ≤ ϕ < γ , 0 ≤ r ≤ a} ⋃ {0 ≤ ϕ < 2π , r > a}
ε2 + iσ2/ω; {γ ≤ ϕ ≤ 2π , 0 ≤ r ≤ a} .

(8)

Simplifications of Eq. (7) accrue on noting, first, that

1
ω2μ

∇ × ∇ × Einc(r, ϕ) = ε1Einc(r, ϕ) , (9)

while, in connection with the second, integral term, the divergence,

∇ ·
{

H
(1)
0 (k1|r − r′|)E(r′, ϕ′)

}
=

{
∇ H

(1)
0 (k1|r − r′|)

}
· E(r′, ϕ′)

= 0 , (10)

vanishes by virtue of the fact that the gradient ∇ H
(1)
0 (k1|r − r′|) is transverse to E(r′, ϕ′). Altogether

then Eq. (7) becomes

ε(r, ϕ)E(r, ϕ) = ε1Einc(r, ϕ)

+

{
σ2 − iω(ε2 − ε1)

}
4ω

∇2

⎡
⎣ ∫ a

0
r′dr′

∫ 2π

γ
H

(1)
0 (k1|r − r′|)E(r′, ϕ′)dϕ′

⎤
⎦ . (11)
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And finally, on invoking the rôle of (4i)−1H
(1)
0 (k1|r− r′|) as a Green’s function for the two-dimensional

Helmholtz equation,6 (∇2 + k2
1

)
H

(1)
0 (k1|r − r′|) = 4iδ

(
r − r′

)
, (12)

Eq. (11) is brought into the form

ε(r, ϕ)E(r, ϕ) = ε1Einc(r, ϕ)

− ωε1μ
{
σ2 − iω(ε2 − ε1)

}
4

∫ a

0
r′dr′

∫ 0

γ−2π
H

(1)
0 (k1|r − r′|)E(r′, ϕ′) dϕ′

+
i
{
σ2 − iω(ε2 − ε1)

}
ω

E(r, ϕ) , (13)

with the proviso that the third line is present only within the wedge interior, 0 ≤ r ≤ a, γ−2π ≤ ϕ ≤ 0,
the latter statement, in conjunction with the adjusted integration limits in the second line, serving to
emphasize the a priori 2π angular periodicity.

4. SOLVING THE INTEGRAL EQUATION

Since Eq. (13) confirms the self-consistency of having assumed that both total E(r, ϕ) and scattered
Escatt(r, ϕ) = E(r, ϕ) −Einc(r, ϕ) electric fields share with Einc(r, ϕ) a common, invariable polarization
along edge direction êz, we dispense henceforth with the boldface vector notation and write all relations
in terms of complex-valued amplitudes. Thus Eq. (13) regresses into

ε(r, ϕ)E(r, ϕ) = ε1Einc(r, ϕ)

− ωε1μ
{
σ2 − iω(ε2 − ε1)

}
4

∫ a

0
r′dr′

∫ 0

γ−2π
H

(1)
0 (k1|r − r′|)E(r′, ϕ′) dϕ′

+
i
{
σ2 − iω(ε2 − ε1)

}
ω

E(r, ϕ) . (14)

Fixing attention first upon the wedge domain per se, with the third line present, we abbreviate its
angular extent by setting 2π − γ = 2π(1 − γ/2π) = 2πγ̃. Throughout this wedge, each member of the
(r, ϕ) function system

(
Jn/γ̃(k2r)

{
cos(nϕ/γ̃), sin(nϕ/γ̃)

})∞
n=0

obeys the requisite Helmholtz equation
appropriate to propagation constant k2, and all such functions are orthogonal with respect to the inner
product

(f, g) =
∫ a

0
rdr

∫ 0

−2πγ̃
f(r, ϕ)g∗(r, ϕ)dϕ , (15)

the burden of orthogonality being carried strictly by the trigonometric terms.7 The system is presumably
complete, and on the basis of such assumption we write

E(r, ϕ) =
∞∑

n=0

Jn/γ̃(k2r)
{

An cos(nϕ/γ̃) + Bn sin(nϕ/γ̃)
}

(16)

with coefficients An, Bn still to be determined.8

6 Since it is commonly accepted that in three dimensions

(
∇2 + k2

1

)
eik1

√
|r−r′|2+z2√|r − r′|2 + z2

= −4πδ
(
r − r′

)
δ(z) ,

Eq. (12) becomes an easy consequence of (4). It is of course understood, here and elsewhere, that r , r′ represent two-dimensional
vectors, as is in any event suggested by Figure 1.
7 The elementary integrations underlying such orthogonality, and the attendant function normalizations, appear in Appendix A
below. For immediate use one may note that both squared sine and cosine integrals evaluate to πγ̃ when n ≥ 1.
8 The prospective reader is placed on high alert not to associate coefficients Bn with any sort of direct magnetic significance. If
nothing else, their dimension in the SI system is that of volt/meter, whereas magnetic fields are rendered in tesla.
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Now, in order to take advantage of the stated angular orthogonality, we must seek similar
developments for both Einc(r, ϕ) and H

(1)
0 (k1|r − r′|), but of course in a Helmholtz basis(

Jn/γ̃(k1r)
{

cos(nϕ/γ̃), sin(nϕ/γ̃)
})∞

n=0

adapted to the reference propagation constant k1. And so we set9

Einc(r, ϕ) =
∞∑

n=0

Jn/γ̃(k1r)
{

Cn cos(nϕ/γ̃) + Dn sin(nϕ/γ̃)
}

(17)

with coefficients Cn, Dn gotten in Appendix A as rather intricate structures under a root-mean-square
minimization with respect to the inner product spelled out in (15). The corresponding Hankel function
development10

H
(1)
0 (k1|r − r′|) =

1
γ̃

∞∑
m=0

(2 − δm
0 )Jm/γ̃(k1r<)H(1)

m/γ̃(k1r>) cos(m{ϕ − ϕ′}/γ̃) (18)

follows much more simply by identifying Green’s function attributes in a process that emulates a
counterpart successfully performed in a full-range, 0 ≤ ϕ < 2π scenario. It goes without saying that
representations in Eqs. (17)–(18) are strictly confined to the wedge angular domain −2πγ̃ ≤ ϕ ≤ 0. On
the wedge exterior one naturally reverts to a full-range embodiment of (18), examined, of course, only
throughout −2π < ϕ < −2πγ̃ when r < a.

Interplay between Eqs. (16) and (18) gives next11∫ a

0
r′dr′

∫ 0

−2πγ̃
H

(1)
0 (k1|r − r′|)E(r′, ϕ′) dϕ′ =

π

∞∑
n=0

(2 − δn
0 )

( (
1 + δn

0

)
An cos(nϕ/γ̃) + Bn sin(nϕ/γ̃)

)∫ a

0
r′Jn/γ̃(k2r

′)Jn/γ̃(k1r<)H(1)
n/γ̃(k1r>)dr′.(19)

But now∫ a

0
r′Jn/γ̃(k2r

′)Jn/γ̃(k1r<)H(1)
n/γ̃(k1r>)dr′ = H

(1)
n/γ̃(k1r)

∫ r

0
r′Jn/γ̃(k2r

′)Jn/γ̃(k1r
′)dr′

+Jn/γ̃(k1r)
∫ a

r
r′Jn/γ̃(k2r

′)H(1)
n/γ̃(k1r

′)dr′ , (20)

with both integrals on the right well known, and easily evaluated on the basis of the underlying Bessel
ODE. Thus

∫ r

0
r′Jn/γ̃(k2r

′)Jn/γ̃(k1r
′)dr′ =

r′
(
k1Jn/γ̃(k2r

′)J ′
n/γ̃(k1r

′) − k2Jn/γ̃(k1r
′)J ′

n/γ̃(k2r
′)
)

k2
2 − k2

1

∣∣∣∣∣∣
r′=r

r′=0

(21)

and

∫ a

r
r′Jn/γ̃(k2r

′)H(1)
n/γ̃(k1r

′)dr′ =
r′

(
k1Jn/γ̃(k2r

′)H(1)′
n/γ̃(k1r

′) − k2H
(1)
n/γ̃(k1r

′)J ′
n/γ̃(k2r

′)
)

k2
2 − k2

1

∣∣∣∣∣∣
r′=a

r′=r

. (22)

9 One may note in passing that, in (16)–(17) onward, one has available also the option of using, instead of sines and cosines, simple
exponentials indexed now from −∞ to ∞, −∞ < n < ∞, accompanied by Bessel functions J|n|/γ̃(k1,2r) which avoid the divergence
at origin r = 0 associated with negative, fractional indices. Our seemingly pedestrian, seemingly clumsy reliance on sines and cosines
provides an automatic embodiment of such fractional index non-negativity.
10 In standard notation, r< = min(r, r′), r> = max(r, r′). Series development (18) is derived in Appendix B. It is of course understood
in Eq. (18) that both ϕ and ϕ′ are here confined to the wedge angular slot, −2πγ̃ ≤ ϕ, ϕ′ ≤ 0. All other periodicity slots of width
2πγ̃, artificially adjoined up and down without end, must of course be ignored, and, in any event, do not even enter into the ensuing
calculational process.
11For the trigonometric integrals, cf. Appendix A, Eqs. (39)–(41).
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On putting Eq. (20) through Eq. (22) together we thus find∫ a

0
r′Jn/γ̃(k2r

′)Jn/γ̃(k1r<)H(1)
n/γ̃(k1r>)dr′ =

Jn/γ̃(k1r)

⎧⎨
⎩

a
(
k1Jn/γ̃(k2a)H(1)′

n/γ̃(k1a) − k2H
(1)
n/γ̃(k1a)J ′

n/γ̃(k2a)
)

k2
2 − k2

1

⎫⎬
⎭

+Jn/γ̃(k2r)

⎧⎨
⎩

k1r
(
H

(1)
n/γ̃(k1r)J ′

n/γ̃(k1r) − Jn/γ̃(k1r)H
(1)′
n/γ̃(k1r)

)
k2

2 − k2
1

⎫⎬
⎭ (23)

and can then still further condense into∫ a

0
r′Jn/γ̃(k2r

′)Jn/γ̃(k1r<)H(1)
n/γ̃(k1r>)dr′ =

Jn/γ̃(k1r)

⎧⎨
⎩

a
(
k1Jn/γ̃(k2a)H(1)′

n/γ̃(k1a) − k2H
(1)
n/γ̃(k1a)J ′

n/γ̃(k2a)
)

k2
2 − k2

1

⎫⎬
⎭

+
2

iπ(k2
2 − k2

1)
Jn/γ̃(k2r) (24)

following appeal to the well known Wronskian connection

H
(1)
n/γ̃(k1r)J ′

n/γ̃(k1r) − Jn/γ̃(k1r)H
(1)′
n/γ̃(k1r) =

2
iπk1r

. (25)

A restrospective glance at Eqs. (1)–(2) shows that k2
2 − k2

1 = iωμ
(
σ2 − iω(ε2 − ε1)

)
, whereupon the

interior field in Eq. (16) cancels identically in Eq. (14), leaving us with just
∞∑

n=0

Jn/γ̃(k1r) (Cn cos(nϕ/γ̃) + Dn sin(nϕ/γ̃)) =

πa

4i

∞∑
n=0

(2 − δn
0 )Jn/γ̃(k1r)

(
(1 + δn

0 )An cos(nϕ/γ̃) + Bn sin(nϕ/γ̃)
)
×

×
{
k1Jn/γ̃(k2a)H(1)′

n/γ̃(k1a) − k2H
(1)
n/γ̃(k1a)J ′

n/γ̃(k2a)
}

, (26)

involving only reference medium propagation and allowing us to simply read off the desired amplitudes
An and Bn in the form

An =
2i
πa

Cn

{
k1Jn/γ̃(k2a)H(1)′

n/γ̃(k1a) − k2H
(1)
n/γ̃(k1a)J ′

n/γ̃(k2a)
}−1

Bn =
2i
πa

Dn

{
k1Jn/γ̃(k2a)H(1)′

n/γ̃(k1a) − k2H
(1)
n/γ̃(k1a)J ′

n/γ̃(k2a)
}−1

, (27)

whereupon the problem is in essence solved once coefficients Cn and Dn have been duly imported
from Appendix A below. In connection with coefficients An, use has been made of the fact that
(2− δn

0 )
(
1 + δn

0

)
= 2+ δn

0 − (δn
0 )2 = 2 identically for all indices n ≥ 0, while, in connection with the Bn,

the preliminary factor 2 − δn
0 has been simply set at 2 because B0 is inoperative, algebraically moot.

5. SCATTERED FIELD ON WEDGE EXTERIOR
When seeking the scattered field on the wedge exterior we naturally revert to the standard, full-range
Hankel development [13, p. 374]

H
(1)
0 (k1|r − r′|) =

∞∑
m=0

(2 − δm
0 )Jm(k1r<)H(1)

m (k1r>) cos(m{ϕ − ϕ′}) . (28)
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On dispensing with its final term, Eq. (14) thus gives

Escatt(r, ϕ) =
i(k2

2 − k2
1)

4

∞∑
m=0

(2 − δm
0 )

∫ a

0
r′dr′ ×

×
∫ 0

−2πγ̃
E(r′, ϕ′)Jm(k1r<)H(1)

m (k1r>) cos(m{ϕ − ϕ′})dϕ′ (29)

which further becomes

Escatt(r, ϕ) =
i(k2

2 − k2
1)

4

∞∑
m=0

∞∑
n=0

(2 − δm
0 )

∫ a

0
r′Jm(k1r<)H(1)

m (k1r>)Jn/γ̃(k2r
′)dr′ ×

×
∫ 0

−2πγ̃

{
An cos(nϕ′/γ̃) + Bn sin(nϕ′/γ̃)

}
cos(m{ϕ − ϕ′}) dϕ′ (30)

once note is taken of Eq. (16). We become obliged thus to dispose first of the elementary integrals∫ 0

−2πγ̃
cos(nϕ′/γ̃) cos(m{ϕ − ϕ′}) dϕ′ = �

{∫ 0

−2πγ̃
einϕ′/γ̃ cos(m{ϕ − ϕ′}) dϕ′

}
(31)

and ∫ 0

−2πγ̃
sin(nϕ′/γ̃) cos(m{ϕ − ϕ′}) dϕ′ = �

{∫ 0

−2πγ̃
einϕ′/γ̃ cos(m{ϕ − ϕ′}) dϕ′

}
, (32)

both of which fall into place on noting that

∫ 0

−2πγ̃
einϕ′/γ̃ cos(m{ϕ − ϕ′}) dϕ′ =

γ̃

2i

⎧⎨
⎩eimϕ ei{n/γ̃−m}ϕ′

n − mγ̃

∣∣∣∣∣
ϕ′=0

ϕ′=−2πγ̃

+ e−imϕ ei{n/γ̃+m}ϕ′

n + mγ̃

∣∣∣∣∣
ϕ′=0

ϕ′=−2πγ̃

⎫⎬
⎭

=
γ̃

2i

⎧⎨
⎩eimϕ

(
1 − e2πimγ̃

n − mγ̃

)
+ e−imϕ

(
1 − e−2πimγ̃

n + mγ̃

)⎫⎬
⎭ (33)

=
γ̃

n2 − m2γ̃2

{
mγ̃

(
sin(mϕ) − sin(m{ϕ + 2πγ̃})

)
−

−in

(
cos(mϕ) − cos(m{ϕ + 2πγ̃})

)}
whereupon

∫ 0

−2πγ̃
cos(nϕ′/γ̃) cos(m{ϕ − ϕ′}) dϕ′ =

mγ̃2
{

sin(mϕ) − sin(m{ϕ + 2πγ̃})
}

n2 − m2γ̃2
(34)

whereas ∫ 0

−2πγ̃
sin(nϕ′/γ̃) cos(m{ϕ − ϕ′}) dϕ′ = −

nγ̃
{

cos(mϕ) − cos(m{ϕ + 2πγ̃})
}

n2 − m2γ̃2
. (35)

Standard sine and cosine addition formulae can now be invoked so as to further exhibit Eqs. (34)–
(35) as linear combinations of pure sin(mϕ), cos(mϕ) terms. For bona fide wedges, 0 < γ < 2π and
hence 0 < γ̃ < 1, delicate l’Hôpital limits intrude whenever γ̃ becomes rational. But when the wedge
degenerates into a complete cylinder, as is later examined in Appendix C, where γ → 0+, γ̃ → 1−,
their limits are best exhibited from the perspective of full-range trigonometric quadratures on the left
which give, respectively, π(1 + δm

0 )δm
n cos(mϕ) and π(1 + δm

0 )δm
n sin(mϕ), factor (1 + δm

0 ) being a sine
qua non in the case of (34), but a mere formality in that of Eq. (35).
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Altogether Eq. (30) now becomes

Escatt(r, ϕ) =
iγ̃(k2

2 − k2
1)

4

∞∑
m=0

∞∑
n=0

(
2 − δm

0

n2 − m2γ̃2

)
×

×
(

mγ̃An

{
sin(mϕ) − sin(m{ϕ + 2πγ̃})

}
− nBn

{
cos(mϕ) − cos(m{ϕ + 2πγ̃})

})
×

×
∫ a

0
r′Jm(k1r<)H(1)

m (k1r>)Jn/γ̃(k2r
′)dr′ , (36)

something which, when specialized to r > a, reads

Escatt(r, ϕ) =
iγ̃(k2

2 − k2
1)

4

∞∑
m=0

∞∑
n=0

(
2 − δm

0

n2 − m2γ̃2

)
H(1)

m (k1r)
∫ a

0
r′Jm(k1r

′)Jn/γ̃(k2r
′)dr′ ×

×
(

mγ̃An

{
sin(mϕ)−sin(m{ϕ+2πγ̃})

}
−nBn

{
cos(mϕ)−cos(m{ϕ+2πγ̃})

})
,(37)

while, when instead 0 ≤ r ≤ a, appears in the more complicated form

Escatt(r, ϕ) =
iγ̃(k2

2 − k2
1)

4

∞∑
m=0

∞∑
n=0

(
2 − δm

0

n2 − m2γ̃2

)(
H(1)

m (k1r)
∫ r

0
r′Jm(k1r

′)Jn/γ̃(k2r
′)dr′+

+Jm(k1r)
∫ a

r
r′H(1)

m (k1r
′)Jn/γ̃(k2r

′)dr′
)
×

× (mγ̃An {sin(mϕ) − sin(m{ϕ + 2πγ̃})} − nBn {cos(mϕ) − cos(m{ϕ + 2πγ̃})}) . (38)

Angular ranges for ϕ, even though temporarily declared as −2π < ϕ < 0 and −2π < ϕ < −2πγ̃
respectively for Eqs. (37) and (38), can naturally revert, by virtue of their inherent 2π periodicity,
respectively to 0 < ϕ < 2π and 0 < ϕ < γ. The nondiagonally indexed quadratures over cylinder
function pairs in Eqs. (37)–(38) resist any easy closed-form evaluation, and will require either outright
numerical integration, or, at the very least, series multiplication prior to integration term-by-term.

6. PARTING COMMENTS

It had naturally been our fervent hope to witness a full recovery of the Macdonald/Sommerfeld infinitely
conducting wedge results obtained from Eq. (38) in the limit as a → ∞ and σ2 → ∞.12 Such a
demonstration, alas, awaits another day. On the other hand, when γ → 0+, and thus γ̃ → 1−, the
wedge closes upon itself to form a complete dielectric cylinder whose known scattering solution is gotten
along quite elementary boundary matching lines. This particular limit, by happy contrast, we are able
to recover, as is demonstrated in Appendix C. Such limited agreement will have to serve presently by
way of validating the analysis herein evolved.

APPENDIX A. INCOMING FIELD SERIES DECOMPOSITION

When seeking to employ the functions(
Jn/γ̃(k1r)

{
cos(nϕ/γ̃), sin(nϕ/γ̃)

})∞
n=0

as an expansion basis, it is useful, albeit not entirely necessary, to be assured of member by member
orthogonality with respect to the inner product of Eq. (15). Such orthogonality is most easily established,
12 In particular, one would have to show that interior field (16), gauging a component parallel to wedge faces, is more and more
confined to thin veneers adjacent to wedge faces ϕ = −2πγ̃+ and ϕ = 0− as σ2 → ∞, its value tending toward zero in such a way
that

√
σ2 × E remains finite [14, Eqs. (31b), (40), (41)].
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and rests squarely upon the shoulders of the trigonometric components, as the following calculations
are quick to show:∫ 0

−2πγ̃
cos(mϕ/γ̃) sin(nϕ/γ̃)dϕ =

1
2

∫ 0

−2πγ̃

[
sin

({m + n}ϕ/γ̃
) − sin

({m − n}ϕ/γ̃
)]

dϕ (39)

= 0∫ 0

−2πγ̃
cos(mϕ/γ̃) cos(nϕ/γ̃)dϕ =

1
2

∫ 0

−2πγ̃

[
cos

({m + n}ϕ/γ̃
)

+ cos
({m − n}ϕ/γ̃

)]
dϕ

=

⎧⎨
⎩

0 if m 
= n

πγ̃
(
1 + δm

0

)
if m = n

(40)

∫ 0

−2πγ̃
sin(mϕ/γ̃) sin(nϕ/γ̃)dϕ =

1
2

∫ 0

−2πγ̃

[
cos

({m − n}ϕ/γ̃
) − cos

({m + n}ϕ/γ̃
)]

dϕ

=

⎧⎨
⎩

0 if m 
= n

πγ̃
(
1 − δm

0

)
if m = n

(41)

So fortified, we set down

P =
∫ a

0
rdr

∫ 0

−2πγ̃

∣∣∣∣∣e−ik1r cos(ϕ−ϕ0) −
∞∑

n=0

Jn/γ̃(k1r)
{

Cn cos(nϕ/γ̃) + Dn sin(nϕ/γ̃)
}∣∣∣∣∣

2

dϕ (42)

as a mismatch penalty associated with representation of Eq. (17) and proceed to search for coefficients
Cn, Dn which minimize it. We write Cn = |Cn| exp iϑn, Dn = |Dn| exp iθn, and thus, at each series
index n ≥ 1, have control over four discretionary parameters with respect to which first derivatives of
P can be annulled.13 Now

P = πγ̃a2 + πγ̃

∞∑
n=0

{
(1 + δn

0 ) |Cn|2 + (1 − δn
0 ) |Dn|2

}(∫ a

0
rJ2

n/γ̃(k1r)dr

)
−

−2�
∞∑

n=0

{
Cn

∫ a

0
rJn/γ̃(k1r)dr

∫ 0

−2πγ̃
eik1r cos(ϕ−ϕ0) cos(nϕ/γ̃)dϕ+

+Dn

∫ a

0
rJn/γ̃(k1r)dr

∫ 0

−2πγ̃
eik1r cos(ϕ−ϕ0) sin(nϕ/γ̃)dϕ

}
(43)

and so setting the derivative of P with respect to |Cn| equal to zero gives

N2
n

(
1 + δn

0

)
|Cn| = �

{
eiϑn

∫ a

0
rJn/γ̃(k1r)dr

∫ 0

−2πγ̃
eik1r cos(ϕ−ϕ0) cos(nϕ/γ̃)dϕ

}
, (44)

whereas that with respect to ϑn simply reads

�
{

ieiϑn

∫ a

0
rJn/γ̃(k1r)dr

∫ 0

−2πγ̃
eik1r cos(ϕ−ϕ0) cos(nϕ/γ̃)dϕ

}
= 0 . (45)

With a view to Eq. (43), we have further introduced in Eq. (44) the abbreviation

Nn =

√
πγ̃

∫ a

0
rJ2

n/γ̃(k1r)dr (46)

13 It is clear a priori that D0 is irrelevant, so that the parameter quartet is reduced to just two when n = 0.
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for the divisor Nn required to normalize the associated function basis member. Taken together,
Eqs. (44)–(45) then imply that

Cn =
(
1 + δn

0

)−1
N−2

n

∫ a

0
rJn/γ̃(k1r)dr

∫ 0

−2πγ̃
e−ik1r cos(ϕ−ϕ0) cos(nϕ/γ̃)dϕ (47)

whereas identical reasoning, whenever n > 0, leads one to

Dn = N−2
n

∫ a

0
rJn/γ̃(k1r)dr

∫ 0

−2πγ̃
e−ik1r cos(ϕ−ϕ0) sin(nϕ/γ̃)dϕ . (48)

We face now the task of reducing the several quadratures encountered in Eqs. (46)–(48). That in
Eq. (46), associated with the name of Lommel, is well known [15] and can be presented in closed form
as

N2
n = πγ̃

∫ a

0
rJ2

n/γ̃(k1r)dr

=
πγ̃

k2
1

∫ ka

0
ζJ2

n/γ̃(ζ)dζ

=
πγ̃

2k2
1

{(
(k1a)2 − (n/γ̃)2

)
J2

n/γ̃(k1a) +
(
k1aJ ′

n/γ̃(k1a)
)2

}

=
πγ̃a2

2

{
J2

n/γ̃(k1a) − Jn/γ̃−1(k1a)Jn/γ̃+1(k1a)

}

=
πγ̃a2

2

{
J2

n/γ̃−1(k1a) − 2(n/γ̃k1a)Jn/γ̃−1(k1a)Jn/γ̃(k1a) + J2
n/γ̃(k1a)

}
, (49)

the fourth and fifth lines of which follow from the third on the strength of standard Bessel function
recurrences.

More cumbersome by far are the integrals on the right in Eqs. (47)–(48), resistant to everything
but a piecemeal treatment, treatment which begins by setting

N2
n

(
1 + δn

0

)
Cn =

∫ a

0
rJn/γ̃(k1r)dr

∫ 0

−2πγ̃
e−ik1r cos(ϕ−ϕ0) cos(nϕ/γ̃)dϕ

=
∞∑

m=0

(−ik1)m

m!

∫ a

0
rm+1Jn/γ̃(k1r)dr

∫ 0

−2πγ̃
cosm(ϕ − ϕ0) cos(nϕ/γ̃)dϕ (50)

and

N2
nDn =

∫ a

0
rJn/γ̃(k1r)dr

∫ 0

−2πγ̃
e−ik1r cos(ϕ−ϕ0) sin(nϕ/γ̃)dϕ

=
∞∑

m=0

(−ik1)m

m!

∫ a

0
rm+1Jn/γ̃(k1r)dr

∫ 0

−2πγ̃
cosm(ϕ − ϕ0) sin(nϕ/γ̃)dϕ , (51)

which are usefully united by writing, for want of any better notation,

Wm,n =
∫ 0

−2πγ̃
cosm(ϕ − ϕ0)einϕ/γ̃dϕ

=
1

2m

m∑
s=0

(
m

s

)
e−i(m−2s)ϕ0

∫ 0

−2πγ̃
ei(m−2s+n/γ̃)ϕdϕ

= − iγ̃

2m

m∑
s=0

(
m

s

)
e−i(m−2s)ϕ0

(
1 − e−2πiγ̃(m−2s)

n + γ̃(m − 2s)

)
(52)
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so that∫ 0

−2πγ̃
cosm(ϕ − ϕ0) cos(nϕ/γ̃)dϕ = �

{
Wm,n

}
(53)

= − γ̃

2m

m∑
s=0

(
m

s

)(
sin({m − 2s}ϕ0) − sin({m − 2s}{ϕ0 + 2πγ̃})

n + γ̃(m − 2s)

)

and∫ 0

−2πγ̃
cosm(ϕ − ϕ0) sin(nϕ/γ̃)dϕ = �

{
Wm,n

}
(54)

= − γ̃

2m

m∑
s=0

(
m

s

)(
cos({m − 2s}ϕ0) − cos({m − 2s}{ϕ0 + 2πγ̃})

n + γ̃(m − 2s)

)
.

But, as regards the shared radial integrals in Eqs. (50)–(51), there seems to be no facile option
available save for a plodding term-by-term series quadrature. Thus∫ a

0
rm+1Jn/γ̃(k1r)dr =

1
km+2

1

∫ k1a

0
ζm+1Jn/γ̃(ζ)dζ

=
2m+1

km+2
1

∫ k1a

0

{(
ζ/2

)m+n/γ̃+1
∞∑

s=0

(−1)s
(
ζ/2

)2s

s! Γ
(
n/γ̃ + s + 1

)
}

dζ (55)

=
(

2
k1

)m+2 (
k1a

2

)m+n/γ̃+2 ∞∑
s=0

(−1)s

s! (m + n/γ̃ + 2s + 2) Γ (/γ̃ + s + 1)

(
k1a

2

)2s

.

We must hence be content with a jigsaw, mosaic assembly of coefficients Cn and Dn as

Cn =
(
1 + δn

0

)−1
N−2

n

∞∑
m=0

(−ik1)m

m!
�

{
Wm,n

}∫ a

0
rm+1Jn/γ̃(k1r)dr (56)

and, when n > 0,

Dn = N−2
n

∞∑
m=0

(−ik1)m

m!
�

{
Wm,n

} ∫ a

0
rm+1Jn/γ̃(k1r)dr (57)

via a path threading itself across Eqs. (53)–(55).

APPENDIX B. GREEN’S FUNCTION SERIES DECOMPOSITION

We seek to imitate the standard, full-range development (28)

H
(1)
0 (k1|r − r′|) =

∞∑
m=0

(2 − δm
0 )Jm(k1r<)H(1)

m (k1r>) cos(m{ϕ − ϕ′}) (58)

by writing, in one fell swoop,

H
(1)
0 (k1|r − r′|) = α

∞∑
m=0

(2 − δm
0 ) Jm/γ̃(k1r<)H(1)

m/γ̃(k1r>) cos(m{ϕ − ϕ′}/γ̃) , (59)

with both ϕ and ϕ′ confined to the wedge slot, −2πγ̃ ≤ ϕ,ϕ′ ≤ 0, and coefficient α yet to be determined.
Such determination is arrived at by noting that the radial derivative with respect to r of series (59)
exhibits a jump discontinuity Δ at the transition point r = r′ in an amount

Δ=αk1

∞∑
m=0

(2 − δm
0 )

{
Jm/γ̃(∗)H(1)′

m/γ̃(∗)
∣∣∣∣
∗=k1r′+

− J ′
m/γ̃(∗)H(1)

m/γ̃(∗)
∣∣∣∣
∗=k1r′−

}
cos(m{ϕ−ϕ′}/γ̃) . (60)
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But now the Wronskian connection in Eq. (25) once more informs us that

Jm/γ̃(∗)H(1)′
m/γ̃(∗)

∣∣∣∣
∗=k1r′+

− J ′
m/γ̃(∗)H(1)

m/γ̃(∗)
∣∣∣∣
∗=k1r′−

=
2i

πk1r′
(61)

whereas
∞∑

m=0

(2 − δm
0 ) cos(m{ϕ − ϕ′}/γ̃) =

∞∑
m=−∞

eim(ϕ−ϕ′)/γ̃

= 2π
∞∑

m=−∞
δ({ϕ − ϕ′}/γ̃ − 2mπ) (62)

= 2πγ̃
∞∑

m=−∞
δ(ϕ − ϕ′ − 2mπγ̃) .

Since, in its application to series (59) of the Helmholtz operator (∇2 + k2
1) one further radial derivative

with respect to r is still required, we see that all necessary ingredients are in place to recover Eq. (12)
in the form (

∇2 + k2
1

)
H

(1)
0 (k1|r − r′|) =

4i
r′

δ(r − r′)δ(ϕ − ϕ′) (63)

provided that one sets α = 1/γ̃. It surely needs no repeating that

1
r′

δ(r − r′)δ(ϕ − ϕ′) = δ(r − r′) (64)

since clearly ∫
rdr

∫
1
r′

δ(r − r′)δ(ϕ − ϕ′)dϕ = 1 (65)

when the quadrature extends over any domain overlapping radius r′ at angle ϕ′. The auxiliary
development in Eq. (18) has thus been vindicated. One should perhaps mention in passing that fractional
index decompositions of this sort are taken in easy stride in [16], wherein one finds a leisurely treatment
of knife edge scattering.

APPENDIX C. RECONCILIATION WITH DIELECTRIC CYLINDER SCATTERING

C.1. Classical Boundary Value Matching

When γ → 0+, γ̃ → 1−, the wedge defaults into a perfect cylinder which scatters in accordance with
elementary formulae based upon interface continuity of tangential electric E(a, ϕ) (axial, directed along
êz) and magnetic B(a, ϕ) (azimuthal, directed along êϕ; there is also a radial magnetic companion,
which need not interest us at this point) components. As is well known [13, p. 374],

Einc(r, ϕ) = e−ik1r cos(ϕ−ϕ0)

=
∞∑

n=0

(2 − δn
0 )i−nJn(k1r) cos(n{ϕ − ϕ0}) (66)

=
∞∑

n=0

(2 − δn
0 )i−nJn(k1r)

{
cos(nϕ0) cos(nϕ) + sin(nϕ0) sin(nϕ)

}
,

with an azimuthal magnetic partner

Binc(r, ϕ) =
ik1

ω

∞∑
n=0

(2 − δn
0 )i−nJ ′

n(k1r)
{

cos(nϕ0) cos(nϕ) + sin(nϕ0) sin(nϕ)
}

. (67)
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Additional coefficient arrays
{

Fn

}∞
n=0

and
{
Gn

}∞
n=0

are required to account for the reradiated or, as
one says, scattered electric field

Escatt(r, ϕ) =
∞∑

n=0

H(1)
n (k1r)

{
Fn cos(nϕ) + Gn sin(nϕ)

}
, (68)

which must be adjoined to Eq. (66) so as to assemble the total electric field, incident plus scattered,

E(r, ϕ) =
∞∑

n=0

(2 − δn
0 )i−nJn(k1r)

{
cos(nϕ0) cos(nϕ) + sin(nϕ0) sin(nϕ)

}
+

+
∞∑

n=0

H(1)
n (k1r)

{
Fn cos(nϕ) + Gn sin(nϕ)

}
, (69)

and a similarly total azimuthal magnetic field

B(r, ϕ) =
ik1

ω

∞∑
n=0

(2 − δn
0 )i−nJ ′

n(k1r)
{

cos(nϕ0) cos(nϕ) + sin(nϕ0) sin(nϕ)
}

+

+
ik1

ω

∞∑
n=0

H(1)′
n (k1r)

{
Fn cos(nϕ) + Gn sin(nϕ)

}
(70)

on the cylinder exterior r > a.
Interior to the cylinder, 0 ≤ r ≤ a, we likewise have, from Eq. (16),

E(r, ϕ) =
∞∑

n=0

Jn(k2r)
{

An cos(nϕ) + Bn sin(nϕ)
}

(71)

and

B(r, ϕ) =
ik2

ω

∞∑
n=0

J ′
n(k2r)

{
An cos(nϕ) + Bn sin(nϕ)

}
. (72)

On taking into account the natural orthogonality of the trigonometric functions cos(mϕ), sin(mϕ) on
the full angular interval 0 ≤ ϕ < 2π, the tangential field continuity at cylinder boundary r = a emerges
as four linear equations

AnJn(k2a) = (2 − δn
0 )i−nJn(k1a) cos(nϕ0) + FnH

(1)
n (k1a)

BnJn(k2a) = (2 − δn
0 )i−nJn(k1a) sin(nϕ0) + GnH

(1)
n (k1a)

k2AnJ ′
n(k2a) = k1(2 − δn

0 )i−nJ ′
n(k1a) cos(nϕ0) + k1FnH

(1)′
n (k1a)

k2BnJ ′
n(k2a) = k1(2 − δn

0 )i−nJ ′
n(k1a) sin(nϕ0) + k1GnH

(1)′
n (k1a)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(73)

mode by mode. This quartet clearly decouples into two 2×2 linear systems respectively for An, Fn and
Bn, Gn having

An = k1(2 − δn
0 )i−n cos(nϕ0)

⎛
⎝ Jn(k1a)H(1)′

n (k1a) − J ′
n(k1a)H(1)

n (k1a)

k1Jn(k2a)H(1)′
n (k1a) − k2J ′

n(k2a)H(1)
n (k1a)

⎞
⎠ (74)

Fn = (2 − δn
0 )i−n cos(nϕ0)

⎛
⎝ k2J

′
n(k2a)Jn(k1a) − k1Jn(k2a)J ′

n(k1a)

k1Jn(k2a)H(1)′
n (k1a) − k2J ′

n(k2a)H(1)
n (k1a)

⎞
⎠ (75)
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Bn = k1(2 − δn
0 )i−n sin(nϕ0)

⎛
⎝ Jn(k1a)H(1)′

n (k1a) − J ′
n(k1a)H(1)

n (k1a)

k1Jn(k2a)H(1)′
n (k1a) − k2J ′

n(k2a)H(1)
n (k1a)

⎞
⎠ (76)

Gn = (2 − δn
0 )i−n sin(nϕ0)

⎛
⎝ k2J

′
n(k2a)Jn(k1a) − k1Jn(k2a)J ′

n(k1a)

k1Jn(k2a)H(1)′
n (k1a) − k2J ′

n(k2a)H(1)
n (k1a)

⎞
⎠ (77)

as their composite solution. Equations (74) and (76) are then still further condensed into

An = − 2(−i)n+1(2 − δn
0 ) cos(nϕ0)

πa
(
k1Jn(k2a)H(1)′

n (k1a) − k2J ′
n(k2a)H(1)

n (k1a)
) (78)

and

Bn = − 2(−i)n+1(2 − δn
0 ) sin(nϕ0)

πa
(
k1Jn(k2a)H(1)′

n (k1a) − k2J ′
n(k2a)H(1)

n (k1a)
) (79)

on appeal to Wronskian in Eq. (61).

C.2. Self-consistent Reradiated Field Solution

In the limit indicated, our corresponding analysis from Appendix A simplifies enormously. Fixing
attention on Eqs. (47)–(48), we note that∫ 0

−2π
e−ik1r cos(ϕ−ϕ0) cos(nϕ)dϕ =

∫ 2π

0
e−ik1r cos(ϕ)

{
cos(nϕ0) cos(nϕ) − sin(nϕ0) sin(nϕ)

}
dϕ

= cos(nϕ0)
∫ 2π

0
e−ik1r cos(ϕ) cos(nϕ)dϕ (80)

= 2π(−i)n cos(nϕ0)Jn(k1r)

by virtue of a well known Bessel function identity [17, p. 360]. In similar fashion,∫ 0

−2π
e−ik1r cos(ϕ−ϕ0) sin(nϕ)dϕ =

∫ 2π

0
e−ik1r cos(ϕ)

{
sin(nϕ0) cos(nϕ) + cos(nϕ0) sin(nϕ)

}
dϕ

= sin(nϕ0)
∫ 2π

0
e−ik1r cos(ϕ) cos(nϕ)dϕ (81)

= 2π(−i)n sin(nϕ0)Jn(k1r) .

Equations (50)–(51), on the basis of their first lines alone, thus become

N2
nCn = 2(−i)n

(
1 + δn

0

)−1
N2

n cos(nϕ0) (82)

and
N2

nDn = 2(−i)nN2
n sin(nϕ0) , (83)

with normalizer Nn cancelling across the board, Eq. (83) clearly destined to be utilized only when
n > 0,14 and since, as already remarked, (2 − δn

0 )(1 + δn
0 ) = 2, Eq. (82) more usefully written as

Cn = (−i)n
(
2 − δn

0

)
cos(nϕ0) . (84)

Inserting Eq. (84) into the first line of Eq. (27) reproduces Eq. (78) exactly; inserting Eq. (83) into its
second similarly recovers Eq. (79), such recovery being of course purely formal when n = 0.
14Since coefficients Bn, Dn, and Gn accompany a sine having an argument proportional to n, it is self-evident that they are operative
only when n > 0. Although repeating this over and over again has no doubt belabored the point, so be it.
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On turning finally to the scattered field (37)–(38), we note that Eq. (38) is moot, whereas Eq. (37)
undergoes index diagonalization and a common mode scaling in accordance with the remarks following
Eqs. (34)–(35). Thus we get, as the counterpart of Eq. (37),

Escatt(r, ϕ) =
iπ(k2

2 − k2
1)

4

∞∑
n=0

(2 − δn
0 ) (1 + δn

0 ) H(1)
n (k1r)

∫ a

0
r′Jn(k2r

′)Jn(k1r
′)dr′ ×

× (An cos(nϕ) + Bn sin(nϕ)) . (85)

After the pattern of Eq. (21) we further find

∫ a

0
r′Jn(k2r

′)Jn(k1r
′)dr′ = −a

⎛
⎝k2J

′
n(k2a)Jn(k1a) − k1Jn(k2a)J ′

n(k1a)
k2

2 − k2
1

⎞
⎠ (86)

at which point an appeal to Eqs. (78)–(79), their compatibility with both solution methods having now
been acknowledged, gives the highly symmetric form

Escatt(r, ϕ) =
∞∑

n=0

i−n
(
2 − δn

0

) (
k2J

′
n(k2a)Jn(k1a) − k1Jn(k2a)J ′

n(k1a)

k1Jn(k2a)H(1)′
n (k1a) − k2J ′

n(k2a)H(1)
n (k1a)

)
×

× H(1)
n (k1r)

(
cos(nϕ0) cos(nϕ) + sin(nϕ0) sin(nϕ)

)
(87)

fully compliant with Eqs. (68), (75), and (77). Our self-consistent formalism has thus been shown to fly
by with full colors unfurled, at least in this special, cylindrical case. Form Eq. (87) conforms moreover
to the obvious demand that the scattering abate entirely as the cylinder blends into the background
medium, k2 → k1.

The opposite, vacuous limit, γ → 2π−, γ̃ → 0+, wherein the wedge simply evaporates, generates
throughout integrals that tend toward zero by virtue of a vanishing range −2πγ̃ ≤ ϕ ≤ 0, and are
then still further weighed down by the circumstance that Bessel functions Jn/γ̃(k1r), at least for real
arguments k1r, exhibit, as indices n/γ̃ → ∞, ever longer “carpets” of vanishingly small values preceding
the onset of their first, nonneglible peaks. An apropos asymptotic estimate is found in [17, p. 365].

APPENDIX D. AN ALTERNATIVE, UNSUITABLE SERIES DEVELOPMENT

It should be stressed that series developments in Eqs. (16)–(18), while they may appear to be Fourier
series, such they are not, and this despite the fact of their manifest periodicity over angular slots of
width 2πγ̃, none of which, save for the wedge interval per se, are of any relevance to our work. Their
members were all chosen to vanish under application of the Helmholtz operator appropriate to the
medium at hand, and their coefficients Cn and Dn were fixed on the basis of a global minimization of
the mismatch penalty P from Eqs. (42)–(43), only obliquely attentive to a demand for interior point
convergence to the incoming field as specified, and a concurrent convergence to average value/average
slope of this field at wedge boundaries.

We can suggest this divergence in viewpoint by setting down
∞∑

n=0

{
C̃n(k1r) cos(nϕ/γ̃) + D̃n(k1r) sin(nϕ/γ̃)

}
= e−ik1r cos(ϕ−ϕ0) (88)

as a Fourier series at each radius 0 ≤ r ≤ a, so that

C̃n(k1r) =
{
πγ̃

(
1 + δn

0

)}−1
∫ 0

−2πγ̃
e−ik1r cos(ϕ−ϕ0) cos(nϕ/γ̃)dϕ (89)

and, when n ≥ 1,

D̃n(k1r) =
{
πγ̃

}−1
∫ 0

−2πγ̃
e−ik1r cos(ϕ−ϕ0) sin(nϕ/γ̃)dϕ . (90)
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Now, as before in Eqs. (50)–(51), we could seek open forms for each one of C̃n(k1r) and D̃n(k1r), but
it is presently more illuminating to subject them to the Bessel operator(

d2

dr2
+

1
r

d

dr
+ k2

1 − n2

γ̃2r2

)
.

And so, via a painstaking process involving a multitude of routine integrations by parts, we duly arrive
at (

d2

dr2
+

1
r

d

dr
+ k2

1 −
n2

γ̃2r2

)
C̃n(k1r)

= (2 − δn
0 )

ik1

2πγ̃r

(
sin(ϕ0)e−ik1r cos(ϕ0) + sin(γ − ϕ0)e−ik1r cos(γ−ϕ0)

)
(91)

and (
d2

dr2
+

1
r

d

dr
+ k2

1 − n2

γ̃2r2

)
D̃n(k1r) =

n

πγ̃2r2

(
e−ik1r cos(ϕ0) − e−ik1r cos(γ−ϕ0)

)
, (92)

the right-hand source terms in Eqs. (91)–(92) being proportional to slot boundary mismatch differences
respectively in angular derivative and function value. Solutions to Eqs. (91)–(92), composed of both
homogeneous and source-driven portions as dictated by a standard variation-of-parameters process,
include of course not only an appearance of the desired Bessel function Jn/γ̃(k1r), but also of its partner
Yn/γ̃(k1r) and something more built around interlaced function-times-integral of function products, all
of it adjusted to assure finiteness at radial origin r = 0.

There is of course no point in completing these analytical details here. What is at issue instead is the
present demonstration that ansatz Eq. (17) and its analogues are not to be viewed through the canonical
prism of Fourier series, that their Bessel function multipliers Jn/γ̃(k1r) and so on, by themselves, are
inadequate to provide the necessary amplitudes for a radial continuum of Fourier series, all of them laid
down across a common, −2πγ̃ ≤ ϕ ≤ 0 angular slot. Such Fourier series continua would, conversely,
spoil the otherwise automatic compliance of vanishing under application of the relevant Helmholtz
operators.

On the other hand, since the right-hand sides of both Eqs. (91) and (92) vanish when γ → 0+,
functions C̃n(k1r) and D̃n(k1r) individually revert to being simply proportional to Bessel’s Jn(k1r), and
so representation Eq. (17), as also Eq. (16), do become genuine Fourier series. It ceases thus to be
surprising that our formalism should similarly degenerate so gracefully, that our global fitting should
capture so well the scattering features otherwise determined by boundary matching in Appendix C.
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