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Analytical Calculation of Magnetic Field Distribution in the
Consequent-Pole Bearingless PM Motor with Rotor Eccentricity

Libing Jing*, Zhangxian Huang, and Jun Gong

Abstract—In this paper, an analytical calculation of the magnetic field in a consequent-pole bearingless
permanent magnet (PM) type motor with rotor eccentricity is proposed. The analytical method is
based on the resolution of Laplace’s and Poisson’s equations. Due to the presence of consequent-pole,
the general solution of the first-order for the vector potential distribution in the air-gap is presented
considering the first harmonic. Here, the magnetic field distributions by the analytical method are
compared with those obtained from finite element (FE) analyses. Then, the corresponding performances
are quantitatively assessed by the finite-element method.

1. INTRODUCTION

Bearingless motor has been developed rapidly in recent years. In consequent-pole bearingless PM motor,
the same polarity PM is along the radial direction. The core between PMs is magnetized to another
polarity along the radial direction. The PM pole and rotor pole constitute an alternating distribution.
The suspension force of the motor is independent of the rotor position angle. The coupling degree of
suspension control and torque control is much lower than that of the traditional permanent magnet
motor. The levitation winding of this motor can provide radial electromagnetic forces in place of
bearings. It not only has a simple structure and high power factor but also inherits the advantages
of no friction, no abrasion, and no lubrication of conventional magnetic suspension motors. So it was
used widely in ultra-high speed motors [1]. Compared with conventional bearingless motor, consequent-
pole bearingless motor can produce radial electromagnetic force, which is independent of the rotor
position [2, 3]. So it can achieve the decoupling characteristics of torque and radial suspension force
control [4]. It has more practical advantages in the fields of flywheel energy storage, spindle motors of
various high-speed machine tools and sealed pumps, centrifuges, compressors, high-speed micro-hard
disk drive devices, etc. It has become one of the most promising schemes to realize bearingless motor
technology.

It is important to calculate the air-gap magnetic field and unbalanced magnet pull considering rotor
eccentricity for the bearingless motors. The air-gap magnetic field can be evaluated by analytical or
numerical techniques like finite elements (FE). FE gives accurate results considering geometric details
and nonlinearity of magnetic materials [5, 6]. However, this method is computer time consuming and
poorly flexible for the first step of design stage of a motor. Analytical methods are useful tools for first
evaluation of motor performances and for design optimization since continuous derivatives issued from
the analytical solution are of great importance in most optimization methods.

Kim and Lieu studied the magnetic field of PM motors with rotor eccentricity for both slotless
and slotted motors [7, 8]. The perturbation method was proposed to predict air-gap flux density
distributions, and the imbalance magnetic force and cogging torque in brushless PM motors were
calculated. They also gave the characteristic frequencies of the unbalanced force and cogging torque due
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to rotor eccentricity [9]. In [10], Rahideh and Korakianitis built upon their previous work and presented
the no-load magnetic field distribution of slotless brushless PM machines. Magnetic field was calculated
under different magnetization patterns of PM. The line and phase back-EMF waveforms, local traction
components, and unbalanced magnetic forces are obtained. Reference [11] presented radial component
and tangential component of air-gap flux density in different rotor position considering both rotor
eccentricity and stator slots. Reference [12] studied a magnetic field of consequent-pole bearingless
PM motor without considering the eccentricity of PM motor. However, these researchers just analyzed
magnetic field of PM machines, but did not consider primary harmonic which is brought by eccentricity.

The aim of this paper is to propose an analytical solution of the magnetic field distribution in a
consequent-pole bearingless PM motor accounting for rotor eccentricity. The Laplace and Poisson’s
equations are solved in 2-D polar coordinates. The result is proved by FEM. This work can be used for
applications regarding rotor eccentricity of other surface mounted motors and embedded PM motors.

2. ANALYTICAL MODEL AND ASSUMPTIONS

Schematic representation of the studied consequent-pole bearingless PM motor with rotor eccentricity
is shown in Fig. 1.

Figure 1. Geometry of the studied motor.

It consists of a p pole-pairs inner rotor, and Os and Or are the center of the stator and rotor,
respectively. The internal rotor rotates about the axis Or with the angular velocity of ω. The distance
between the two centers is d. The PMs are radially magnetized in the same direction. The geometrical
parameters are: Rr is the radius of the rotor, Rm the inner radius of the PM surface, and Rs the
radius of the stator. The domain of the magnetic field is divided into two subdomains: one is air-gap
subdomain, and the other one is PMs subdomain. The eccentricity ratio (ε) is defined as,

ε =
d

Rs
(1)

Figure 2 is the flowchart of its calculation.
In this paper, some assumptions are adopted as follows:

1) The rotor, stator, and PM surfaces are perfect cylinders;
2) The axes of rotor and stator are parallel;
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Figure 2. Flow chart.

3) The effects of slotting are neglected;
4) The permeability of the rotor and stator is infinite;
5) Eddy current and saturation effects are neglected;
6) The relative permeability of PM is 1.

In the 2-D coordinate system, the stator circular trajectory can be described as following [13],

r = Rs + εδ(θ) + O
(
ε2

)
(2)

As shown in Fig. 1, r can be expressed as follows:

r =
√

R2
s − (d sin θ)2 − d cos θ (3)

In the binomial expansion, Eq. (3) can be expressed as

r ≈ Rs − 1
2

d2

Rs
sin2 θ − d cos θ (4)

here
δ(θ) = −1

4
d +

1
4
d cos 2θ − Rs cos θ (5)

The stator boundary can be described by

f(r, θ, ε) = r − Rs +
1
4
εd − 1

4
εd cos 2θ + εRs cos θ (6)

2.1. Governing Equations and Boundary Conditions

Without any current, the magnetic field intensity vector is curl free. The vector potential is adopted,
and the governing equations of the two subdomains are [14];

∂2A1

∂r2
+

1
r

∂A1

∂r
+

1
r2

∂2A1

∂θ2
= 0 for

{
Rr ≤ r ≤ Rs

θj ≤ θ ≤ θj + a
(7)

∂2A2

∂r2
+

1
r

∂A2

∂r
+

1
r2

∂2A2

∂θ2
= −μ0∇× M for

{
Rm ≤ r ≤ Rr

θj ≤ θ ≤ θj + a
(8)

where M is the magnetization vector, and the radial magnetization is shown in Fig. 3, which can be
expressed as,

M(r, θ) = Mr(θ)r =

[
a0 +

∞∑
m=1

Mm sin
mπ

a
(θ − θj)

]
r (9)
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Figure 3. Radial magnetization.

where

a0 =
Br
μ0

(10)

θj = −a

2
+ (j − 1)

2π
p

+ θ0, j = 1, 2, . . . , p (11)

Mm =
2Br

μ0mπ
[1 − (−1)m], m = 1, 2, 3 . . . (12)

where Br is the radial flux density of magnets, p the number of the magnet pole pairs, a the width of
magnet, θj the position of the jth magnet, and θ0 can be written as θ0 = ωt.

The field vectors B and H are written as

B1 = μ0H1 (13)
B2 = μ0H2 + μ0M (14)

The field intensity vectors are related to the magnetic potential functions by

Hr,i =
1
μ
∇× A =

1
μ0

1
r

∂A

∂θ
(15)

Hθ,i =
1
μ0

∇× A = − 1
μ0

∂A

∂r
(16)

where i = 1, 2 represent the air-gap subdomain and the PMs subdomain, respectively.
The continuity of the radial and tangential component of the magnetic field at r = Rr leads to

Bj
r,2

= Br,1 and Hj
θ,2

= Hθ,1 (17)

else, at r = Rr, θ ∈ [θj + a, θj + 2π
p ]

Hθ,1 = 0 (18)

The boundary conditions for the jth PM subdomain are (the tangential component of the magnetic
field at the sides of the PM are null) at r = Rm, and θ ∈ [θj, θj + a],

Hj
θ,2

= 0 (19)

and else, at r = Rm or r = Rr, and θ = θj or θ = θj + a,

Hj
r,2

= 0 (20)

The regular perturbation expansion of the vector potential is proposed in the following forms [11]:

Ai(r, θ, ε) = A
(0)
i (r, θ) + εA

(1)
i (r, θ) + O

(
ε2

)
(21)
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So the field intensity in each subdomain is expressed as follows,

Hr,i(r, θ, ε) =
1

μ0r

∂A
(0)
i (r, θ)
∂θ

+ ε
1

μ0r

∂A
(1)
i (r, θ)
∂θ

+ O
(
ε2

)
(22)

Hθ,i(r, θ, ε) = − 1
μ0

∂A
(0)
i (r, θ)
∂r

− ε
1
μ0

∂A
(1)
i (r, θ)
∂r

+ O
(
ε2

)
(23)

Then groups of the governing equations and the corresponding boundary condition are derived. The
zero-order governing equations are

∂2A
(0)
1

∂r2
+

1
r

∂A
(0)
1

∂r
+

1
r2

∂2A
(0)
1

∂θ2
= 0 (24)

∂2A
(0)
2

∂r2
+

1
r

∂A
(0)
2

∂r
+

1
r2

∂2A
(0)
2

∂θ2
= −μ0∇× M (25)

The first-order governing equations are

∂2A
(1)
1

∂r2
+

1
r

∂A
(1)
1

∂r
+

1
r2

∂2A
(1)
1

∂θ2
= 0 (26)

∂2A
(1)
2

∂r2
+

1
r

∂A
(1)
2

∂r
+

1
r2

∂2A
(1)
2

∂θ2
= 0 (27)

The zero-order boundary conditions are

− 1
μ0

∂A
(0)
1 (r, θ)
∂r

∣∣∣∣∣r=Rs = 0 and − 1
μ0

∂A
(0)
2 (r, θ)
∂r

∣∣∣∣∣
r=Rm

= 0 (28)

− 1
μ0

∂A
(0)
1 (r, θ)
∂r

= 0, r = Rr and θ ∈
[
θj + a, θj +

2π
p

]
(29)

− 1
μ0

∂A
(0)
1 (r, θ)
∂r

= − 1
μ0

∂A
(0)
2 (r, θ)
∂r

r = Rr and θ ∈ [θj , θj + a] (30)

1
r

∂A
(0)
1 (r, θ)
∂θ

=
1
r

∂A
(0)
2 (r, θ)
∂θ

, r = Rr and θ ∈ [θj , θj + a] (31)

Similarly, the first-order boundary conditions are the same as the zero-order boundary conditions. It is
no longer listed here.

2.2. The Zero-Order Solution

The general solution of the zero-order for the vector potential distribution in the air-gap subdomain
and the PMs subdomain are obtained,

A
(0)
1 (r, θ) =

∞∑
n=1,2,3...

[(
A(0)

n rnp + B(0)
n r−np

)
cos npθ +

(
C(0)

n rnp + D(0)
n r−np

)
sin npθ

]
(32)

Aj(0)
2

(r, θ) =
∞∑

m=1

[
Aj(0)

m rmπ/a + Bj(0)
m r−mπ/a + μ0Mmr

mπ/a

1 − (mπ/a)2

]
cos

mπ

a
(θ − θj) (33)

the constants A
(0)
n − D

(0)
n , A

j(0)
m , B

j(0)
m are determined by the zero-order boundary conditions. In order

to solve the boundary conditions, these constants are determined using a Fourier series expansion of
the air-gap magnetic vector potentials.
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Once these constants are obtained, the zero-order flux density distribution in the air-gap subdomain
is:

B
(0)
r,1 = −

∞∑
n=1,2,3...

[(
A(0)

n rnp−1 + B(0)
n r−np−1

)
np sin npθ −

(
C(0)

n rnp−1 + D(0)
n r−np−1

)
np cos npθ

]
(34)

B
(0)
θ,1 = −

∞∑
n=1,2,3...

[
np

(
A(0)

n rnp−1 − B(0)
n r−np−1

)
cos npθ

]
(35)

2.3. The First-Order Solution

The general solution of the first-order for the vector potential distribution in the air-gap subdomain
and the PMs subdomain are presented as following,

A
(1)
1 (r, θ) =

∞∑
n=1,2,3...

{(
A

(1)
n rnp−1 + B

(1)
n r−np+1

)
cos[(np − 1)θ]

+
(
C

(1)
n rnp−1 + D

(1)
n r−np+1

)
sin[(np − 1)θ]

+
(
E

(1)
n rnp+1 + F

(1)
n r−np−1

)
cos[(np + 1)θ]

+
(
G

(1)
n rnp+1 + H

(1)
n r−np−1

)
sin[(np + 1)θ]

}

+
∞∑

n=1,2,3...

{(
P

(1)
n rnp−2 + Q

(1)
n r−np+2

)
cos[(np − 2)θ]

+
(
L

(1)
n rnp−2 + S

(1)
n r−np+2

)
sin[(np − 2)θ]

+
(
T

(1)
n rnp+2 + U

(1)
n r−np−2

)
cos[(np + 2)θ]

+
(
V

(1)
n rnp+2 + W

(1)
n r−np−2

)
sin[(np + 2)θ]

}

+
∞∑

n=1,2,3...

{(
X

(1)
n rnp + Y

(1)
n r−np

)
cos[npθ]

+
(
Z

(1)
n rnp + M

(1)
n r−np

)
sin[npθ]

}
+

[(
AA(1)

n r1 + BB(1)
n r−1

)
cos θ +

(
CC(1)

n r(1) + DD(1)
n r−1

)
sin θ

]
(36)

A
j(1)
2 (r, θ) =

∞∑
m=1,2,3...

(
Aj(1)

m rmπ/a + Bj(1)
m r−mπ/a

)
cos

[mπ

a
(θ − θj)

]
(37)

The constants A
(1)
n − M

(1)
n , AA

(1)
n − DD

(1)
n , A

j(1)
m , B

j(1)
m are determined by the first-order boundary

conditions. In order to solve the boundary conditions, these constants are determined using a Fourier
series expansion of the air-gap magnetic vector potentials.

Once these constants are obtained, the first-order flux density distribution in the air-gap subdomain
is:

B
(1)
r,1 (r, θ) =

∞∑
n=1,3,5...

{
−(np − 1)

(
A

(1)
n rnp−2 + B

(1)
n r−np

)
sin[(np − 1)θ]

+(np − 1)
(
C

(1)
n rnp−2 + D

(1)
n r−np

)
cos[(np − 1)θ]

−(np + 1)
(
E

(1)
n rnp + F

(1)
n r−np−2

)
sin[(np + 1)θ]

+(np + 1)
(
G

(1)
n rnp + H

(1)
n r−np−2

)
cos[(np + 1)θ]

}
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+
∞∑

n=1,2,3...

{
−(np − 2)

(
P

(1)
n rnp−3 + Q

(1)
n r−np+1

)
sin[(np − 2)θ]

+(np − 2)
(
L

(1)
n rnp−3 + S

(1)
n r−np+1

)
cos[(np − 2)θ]

−(np + 2)
(
T

(1)
n rnp+1 + U

(1)
n r−np−3

)
sin[(np + 2)θ]

+(np + 2)
(
V

(1)
n rnp+1 + W

(1)
n r−np−3

)
cos[(np + 2)θ]

}

+
∞∑

n=1,2,3...

{
−np

(
X

(1)
n rnp−1 + Y

(1)
n r−np−1

)
sin[npθ]

+np
(
Z

(1)
n rnp−1 + M

(1)
n r−np−1

)
cos[npθ]

}
+

[
−

(
AA(1)

n + BB(1)
n r−2

)
sin θ +

(
CC(1)

n + DD(1)
n r−2

)
cos θ

]
(38)

B
(1)
θ,1(r, θ) =

∞∑
n=1,2,3...

{
(np − 1)

(
A

(1)
n rnp−2 − B

(1)
n r−np

)
cos[(np − 1)θ]

+(np − 1)
(
C

(1)
n rnp−2 − D

(1)
n r−np

)
sin[(np − 1)θ]

+(np + 1)
(
E

(1)
n rnp − F

(1)
n r−np−2

)
cos[(np + 1)θ]

+(np + 1)
(
G

(1)
n rnp − H

(1)
n r−np−2

)
sin[(np + 1)θ]

}

−
∞∑

n=1,2,3...

{
(np − 2)

(
P

(1)
n rnp−3 − Q

(1)
n r−np+1

)
cos[(np − 2)θ]

+(np − 2)
(
L

(1)
n rnp−3 − S

(1)
n r−np+1

)
sin[(np − 2)θ]

+(np + 2)
(
T

(1)
n rnp+1 − U

(1)
n r−np−3

)
cos[(np + 2)θ]

+(np + 2)
(
V

(1)
n rnp+1 − W

(1)
n r−np−3

)
sin[(np + 2)θ]

}

−
∞∑

n=1,2,3...

{
np

(
X

(1)
n rnp−1 − Y

(1)
n r−np−1

)
cos[npθ]

+np
(
Z

(1)
n rnp−1 − M

(1)
n r−np−1

)
sin[npθ]

}
−

[(
AA(1)

n − BB(1)
n r−2

)
cos θ +

(
CC(1)

n − DD(1)
n r−2

)
sin θ

]
(39)

2.4. Magnetic Field Solution of Air-gap

Based on Eqs. (36), (37), (38), and (39), the flux density distribution in the air-gap subdomain can be
easily obtained:

Br,1(r, θ, ε) = B
(0)
r,1 (r, θ) + εB

(1)
r,1 (r, θ) (40)

Bθ,1(r, θ, ε) = B
(0)
θ,1(r, θ) + εB

(1)
θ,1(r, θ) (41)

Note that the original unperturbed flux density distribution can be easily derived when ε = 0.

3. APPLICATION EXAMPLE

In order to validate the proposed model, the analytical results have been compared with 2-D finite
element simulations obtained using ANSYS software. In the finite-element analysis, the surfaces of
the rotors and stator yokes as well as those of the ferromagnetic pole-pieces have been modeled by
homogeneous Neumann boundary conditions as in the analytical study. The mesh in the air-gap has
been refined until convergent results are obtained. In this paper, the relative permeability of the
stator/rotor iron is finite, i.e., μr = 2000. Because of the eccentricity, the finite element model needs
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to be meshed when the rotor position or the eccentricity parameter changes. The FEM may not be
suitable for solving eccentricity problem of motor. The solutions of this paper are presented for the case
of nmax = 80 and mmax = 40.

The geometrical parameters given in Table 1 are considered in the simulation studies.

Table 1. Parameters of the model.

Symbol Quantity Value
Rs Inner radius of the stator yoke 31.8 mm
Rr outer radius of the rotor yoke 30.9 mm
Rm Inner radius of the PM 24.9 mm
hm thickness of PM 6 mm
a Width of PM 45◦

g Air-gap length 0.9 mm
Br Remanence of the PMs 1.12 T
p Number of pole-pairs 4

Lef Axial length 48 mm

Figure 4 shows the magnetic flux lines for the proposed model excited by PMs.

Figure 4. Magnetic flux line distribution for the studied motor.

Figure 5 shows the radial and tangential flux densities on a circle of the air-gap, and there is no
rotor eccentricity at an instant of ωt = 0◦. A good agreement is noticed between the analytical and
numerical computations.

Figure 6 shows the flux density distribution in the air-gap for the case of d = 0.2 mm at an instant
of ωt = 30◦. Again, the distributions show good agreement in two methods.

The analytical and finite element results of the eccentric force at different eccentricities are listed
in Table 2, in which the rotor is at ωt = 0◦.
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Figure 5. Flux density distribution in the air-gap predicted by analytical and FE at r = Rr + g/2 and
ωt = 0◦ with no rotor eccentricity. (a) Radial component. (b) Tangential component.

Table 2. Comparisons between analytical solution and FE solution of eccentric force.

d/mm Eccentric force/N Relative error/(%)
Analytical FEM

0.018 10.167 10.186 0.19
0.045 50.842 50.982 0.27
0.09 101.72 100.89 0.82
0.18 203.565 202.35 0.64
0.27 305.372 307.94 0.83
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Figure 6. Flux density distribution in the air-gap predicted by analytical and FE at r = Rr +(g−d)/2
and ωt = 30◦. (a) Radial component. (b) Tangential component.

4. CONCLUSION

In this paper, an exact 2-D analytical method for predicting the magnetic field distribution in a
consequent-pole bearingless motor considering the rotor eccentricity has been presented. The proposed
method is utilized to formulate the governing equations and boundary conditions. Due to consequent-
pole, the general solution of the first-order for the vector potential distribution in the air-gap is
presented considering first harmonic. Flux density computation is in close agreement with those of
FE predictions. The results show that this method is sufficiently accurate for the prediction of the
magnetic field distribution of consequent-pole bearingless motor. This method is easy to modify and
can conveniently calculate the magnetic field distribution of the motor under various rotor positions
and eccentric parameters. It will also help to develop motors with better design.
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