
Progress In Electromagnetics Research M, Vol. 82, 183–194, 2019

A Novel Four-Step Weakly Conditionally Stable HIE-FDTD
Algorithm and Numerical Analysis

Yong-Dan Kong*, Chu-Bin Zhang, Min Lai, and Qing-Xin Chu

Abstract—A novel four-step weakly conditionally stable hybrid implicit-explicit finite-difference time-
domain (HIE-FDTD) algorithm in three-dimensional (3-D) domains is presented in this paper, which
is suitable for a finer discretization in one dimension. Based on the exponential evolution operator
(EEO), the Maxwell’s equations in a matrix form can be split into four sub-procedures. Accordingly,
the time step is divided into four sub-steps. In addition, by taking second-order central finite-difference
approximation for both the temporal and spatial derivatives, the formulation of the proposed four-
step HIE-FDTD method is obtained. The proposed four-step HIE-FDTD algorithm is implemented,
in which the implicit scheme was applied only in one direction with a fine grid, and the explicit
scheme was applied in two other directions with coarser grids. Compared with the existing HIE-
FDTD methods, the proposed method has a weaker Courant-Friedrichs-Lewy (CFL) stability condition
(Δt ≤ 2Δx/c and Δt ≤ 2Δz/c), which means that the proposed method can improve computational
efficiency by taking larger time step size. Since the CFLN stability condition of the proposed method
is determined by the smaller grid size of the two coarse grid sizes, the proposed method is suitable
for analyzing the electromagnetic objects with fine structures in one direction effectively. Besides, the
numerical dispersion analysis is given, and the comparisons of the numerical dispersion analysis among
the proposed method, traditional FDTD method, ADI-FDTD method, and two existing HIE-FDTD
methods are given. Finally, to testify the computational accuracy and efficiency, numerical experiments
of the five FDTD methods are presented.

1. INTRODUCTION

Finite-difference time-domain method (FDTD) [1], as one of the main numerical simulation methods
in computational electromagnetics, has been developed rapidly since it was presented. However, as
FDTD method is an explicit difference algorithm, the time step of the FDTD method is limited by the
Courant-Friedrichs-Lewy (CFL) stability condition [2]. Therefore, the computational efficiency of this
method is decreased in simulating fine structures or low frequency problems.

To overcome the limitation of CFL stability, several unconditionally stable FDTD algorithms have
been proposed in recent years, which can effectively analyze the fine structures. The first proposed
unconditionally stable algorithm is alternating-direction implicit (ADI) FDTD [3, 4], which divides a
time step into two sub-time steps, and solves three-dimensional Maxwell’s equation by using explicit and
implicit alternating methods. However, the dispersion error of the ADI-FDTD method increases with
the increase of time step size. Moreover, an error-reduced ADI-FDTD method based on the fourth-order
central difference is shown in [5]. Furthermore, the analysis of the numerical stability and dispersion
for the high order 3-D ADI-FDTD method is given in [6]. Other unconditionally stable methods, such as
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the Crank-Nicolson (CN) FDTD method [7, 8], split-step (SS) FDTD method [9–12], and locally-one-
dimensional (LOD) FDTD method [13–15], have also been developed. They also present large numerical
dispersion errors with large time steps.

As a matter of fact, some electromagnetic structures, such as patch antennas, have fine structures
only in one or two directions where the fine grids are required rather than in all three directions. In
order to study the electromagnetic objects with fine grids in one or two directions, two classes weakly
conditionally stability FDTD algorithms have been presented [16–26]. Specifically, the first class is the
weakly conditionally stable FDTD (WCS-FDTD) method proposed by Chen and Wang [16], which is
suitable for the simulation of electromagnetic field problems with fine structures in two directions. The
time step size of this algorithm is determined only by the length of spatial grid in one direction with a
coarse grid. Furthermore, Wang et al. developed an efficient one-step leapfrog WCS-FDTD method [17].
The second class is the hybrid implicit-explicit FDTD (HIE-FDTD) method [18–22], which is suitable
for investigating electromagnetic field problems with fine structures in one direction. Concretely, the
HIE-FDTD method in two-dimensional (2-D) domains is proposed by Huang et al. in [18]. Chen and
Wang have extended it to three-dimensional (3-D) domains in [19], and the CFL stability condition is
Δt ≤ 1/(c

√
1/Δx2 + 1/Δz2) (Here premise that the fine grid is only in the y-direction). Moreover, the

HIE-FDTD method is compared with the ADI-FDTD method in [20], and the results show that the
HIE-FDTD method is better than the ADI-FDTD method in both accuracy and efficiency. In practice,
Chen and Wang have performed numerical simulation on different antennas [21] and metal shells [22]
with fine structures in one direction by using the HIE-FDTD method.

Although the CFL condition of the HIE-FDTD method is relaxed, the numerical dispersion error
of the HIE-FDTD method increases as the time step size increases, and this deficiency restricts the
application of the HIE-FDTD method in calculating practical problems. Recently, to optimize the HIE-
FDTD algorithm further, Zhang et al. have proposed a novel HIE-FDTD method with large time-step
size (Δt ≤ 2Δx/c and Δt ≤ 2Δz/c) in 2-D domains [23, 24]. Then, the leapfrog HIE-FDTD method in 3-
D domains has been studied by Wang et al. in [25], and the CFL condition of this method is Δt ≤ Δx/c,
Δt ≤ Δz/c (suppose the fine grid only in the y-direction). In addition, Wang et al. have presented an
efficient 3-D HIE-FDTD method with weaker stability condition of Δt ≤ 2/(c

√
1/Δx2 + 1/Δz2) [26].

In this paper, a novel four-step 3-D HIE-FDTD method with weaker stability condition (Δt ≤
2Δx/c and Δt ≤ 2Δz/c) is developed. First, based on the exponential evolution operator (EEO),
the Maxwell’s equations can be split into four sub-procedures, in which the implicit scheme is applied
only in one direction with a fine grid, and the explicit scheme is applied in two other directions with
coarser grids. Accordingly, the time step is divided into four sub-steps; then the second-order central
difference approximation is adopted for time and space derivatives; the formulation of the proposed
four-step 3-D HIE-FDTD method is generated. Second, the numerical stability analysis shows that the
CFL stability condition of the proposed algorithm is more relaxed than those of existing HIE-FDTD
algorithms [19, 25, 26], which implies that the proposed method is more efficient due to the possibility of
choosing the larger time step size. The proposed method is suitable for simulating the electromagnetic
field problems with fine structures in one direction. Then, this work is significant in further extension
of the stability condition of the HIE-FDTD method. Third, the numerical dispersion relation of the
proposed method is shown, and the dispersion characteristic is studied. Compared with the ADI-FDTD
method, the numerical dispersion error is reduced. Finally, to demonstrate the accuracy and efficiency
of the proposed method, numerical experiments are provided. It can be concluded that the proposed
method achieves better accuracy even with coarser grids, and the improvement actually leads to higher
computational efficiency.

2. NUMERICAL FORMULATIONS OF THE PROPOSED METHOD

In a linear, isotropic, lossless, and non-dispersive medium, the 3-D Maxwell’s curl equations can be
written in a matrix form as

∂�u

∂t
= [R] �u (1)
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where �u = [Ex, Ey, Ez,Hx,Hy,Hz],

[R] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 − ∂
ε∂z

∂
ε∂y

0 0 0 ∂
ε∂z 0 − ∂

ε∂x

0 0 0 − ∂
ε∂y

∂
ε∂x 0

0 ∂
μ∂z − ∂

μ∂y 0 0 0

− ∂
μ∂z 0 ∂

μ∂x 0 0 0
∂

μ∂y − ∂
μ∂x 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

ε and μ are the electric permittivity and magnetic permeability, respectively.
Here, suppose that the fine mesh is only in the y-direction but not in the x- and z-directions.

Therefore, the implicit equations are established only in the y-direction, and the explicit equations are
built in x- and z-directions. In other words, the electric and magnetic fields are coupled to each other
only in the y-direction and decoupled to each other in the x- and z-directions. In such a way, the matrix
[R] can be decomposed into four sub-matrices, which are denoted as [M ]/2, [N ]/2, [M ]/2, and [N ]/2,
respectively. Furthermore, the constructions of matrices [M ] and [N ] are chosen as

[M ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 ∂
ε∂y

0 0 0 0 0 − ∂
ε∂x

0 0 0 0 ∂
ε∂x 0

0 ∂
μ∂z 0 0 0 0

− ∂
μ∂z 0 0 0 0 0
∂

μ∂y 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[N ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 − ∂
ε∂z 0

0 0 0 ∂
ε∂z 0 0

0 0 0 − ∂
ε∂y 0 0

0 0 − ∂
μ∂y 0 0 0

0 0 ∂
μ∂x 0 0 0

0 − ∂
μ∂x 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Then, the above choices of [M ] and [N ] can ensure that the time step size is no longer limited by
the fine grid size Δy and determined only by the two coarser grid sizes Δx and Δz. The numerical
stability of the proposed method will be analyzed in detail in Section 3.

Then, Equation (1) can be written as

∂�u

∂t
=

[M ]
2

�u +
[N ]
2

�u +
[M ]
2

�u +
[N ]
2

�u (4)

Suppose that a numerical solution u(t) at a given time tn = nΔt is transported into the next time
tn+1 = (n + 1)Δt. Now, from the forward Taylor series development

�u n+1 =

(
1 + Δt

∂

∂t
+

(Δt)2

2!
∂2

∂t2
+ · · ·

)
�u n = exp

(
Δt

∂

∂t

)
�u n. (5)

Then, by combining with Eq. (5), the solution to Eq. (4) can be easily found as

�u n+1 = exp
(

Δt

2
[M ] +

Δt

2
[N ] +

Δt

2
[M ] +

Δt

2
[N ]
)

�u n. (6)

The exponential evolution operator (EEO) in Eq. (6) can be reformulated as follows

�u n+1 =
exp

(
Δt
4 [M ] + Δt

4 [N ] + Δt
4 [M ] + Δt

4 [N ]
)

exp
(−Δt

4 [M ] − Δt
4 [N ] − Δt

4 [M ] − Δt
4 [N ]

)
�u n =

exp
(

Δt
4 [M ] + Δt

4 [N ] + Δt
4 [M ] + Δt

4 [N ]
)

exp
(−Δt

4 [N ] − Δt
4 [M ] − Δt

4 [N ] − Δt
4 [M ]

) �u n. (7)

Note that in the above equation [M ] + [N ] = [N ] + [M ], but [M ][N ] �= [N ][M ].
By using sequential splitting to split these EEOs, the following expression is obtained.

�u n+1 =
exp

(
Δt
4 [M ]

)
exp

(−Δt
4 [N ]

) · exp
(

Δt
4 [N ]

)
exp

(−Δt
4 [M ]

) · exp
(

Δt
4 [M ]

)
exp

(−Δt
4 [N ]

) · exp
(

Δt
4 [N ]

)
exp

(−Δt
4 [M ]

)�u n. (8)
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By using the following Taylor series approximation,

exp (δ [M ]) =
∞∑

k=0

(δ [M ])k /k! ≈ 1 + δ [M ] for |δ| � 1. (9)

Eq. (8) can be approximated in the following manner for small Δt

�u n+1 ≈
(
[I] + Δt

4 [M ]
)

(
[I] − Δt

4 [N ]
) ·
(
[I] + Δt

4 [N ]
)

(
[I] − Δt

4 [M ]
) ·
(
[I] + Δt

4 [M ]
)

(
[I] − Δt

4 [N ]
) ·
(
[I] + Δt

4 [N ]
)

(
[I] − Δt

4 [M ]
)�u n. (10)

Furthermore, the intermediate variables �u n+1/4, �u n+2/4, and �u n+3/4 are introduced between �u n and
�u n+1. Then, Eq. (10) can be computed in the following four sub-steps(

[I] − Δt

4
[M ]

)
�u n+1/4 =

(
[I] +

Δt

4
[N ]
)

�u n (11a)(
[I] − Δt

4
[N ]
)

�u n+2/4 =
(

[I] +
Δt

4
[M ]

)
�u n+1/4 (11b)(

[I] − Δt

4
[M ]

)
�u n+3/4 =

(
[I] +

Δt

4
[N ]
)

�u n+2/4 (11c)(
[I] − Δt

4
[N ]
)

�u n+1 =
(

[I] +
Δt

4
[M ]

)
�u n+3/4 (11d)

where [I] is an identity matrix of 6 × 6, and Δt is the time step size.
Taking the central difference approximation for both the temporal and spatial derivatives, the

calculation equations in the first of two sub-steps are shown as
Sub-step 1:

Ex|n+1/4
i+1/2, j, k − Δt

4εΔy

(
Hz|n+1/4

i+1/2, j+1/2, k − Hz|n+1/4
i+1/2, j−1/2, k

)
= Ex|ni+1/2, j, k − Δt

4εΔz

(
Hy|ni+1/2, j, k+1/2 − Hy|ni+1/2, j, k−1/2

)
(12a)

Ey|n+1/4
i, j+1/2, k +

Δt

4εΔx

(
Hz|n+1/4

i+1/2, j+1/2, k − Hz|n+1/4
i−1/2, j+1/2, k

)
= Ey|ni, j+1/2, k +

Δt

4εΔz

(
Hx|ni, j+1/2, k+1/2 − Hx|ni, j+1/2, k−1/2

)
(12b)

Ez|n+1/4
i, j, k+1/2 −

Δt

4εΔx

(
Hy|n+1/4

i+1/2, j, k+1/2 − Hy|n+1/4
i−1/2, j, k+1/2

)
= Ez|ni, j, k+1/2 −

Δt

4εΔy

(
Hx|ni, j+1/2, k+1/2 − Hx|ni, j−1/2, k+1/2

)
(12c)

Hx|n+1/4
i, j+1/2, k+1/2 −

Δt

4μΔz

(
Ey|n+1/4

i, j+1/2, k+1 − Ey|n+1/4
i, j+1/2, k

)
= Hx|ni, j+1/2, k+1/2 −

Δt

4μΔy

(
Ez|ni, j+1, k+1/2 − Ez|ni, j, k+1/2

)
(12d)

Hy|n+1/4
i+1/2, j, k+1/2 +

Δt

4μΔz

(
Ex|n+1/4

i+1/2, j, k+1 − Ex|n+1/4
i+1/2, j, k

)
= Hy|ni+1/2, j, k+1/2 +

Δt

4μΔx

(
Ez|ni+1, j, k+1/2 − Ez|ni, j, k+1/2

)
(12e)

Hz|n+1/4
i+1/2, j+1/2, k −

Δt

4μΔy

(
Ex|n+1/4

i+1/2, j+1, k − Ex|n+1/4
i+1/2, j, k

)
= Hz|ni+1/2, j+1/2, k −

Δt

4μΔx

(
Ey|ni+1, j+1/2, k − Ey|ni, j+1/2, k

)
(12f)
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Sub-step 2:

Ex|n+2/4
i+1/2, j, k +

Δt

4εΔz

(
Hy|n+2/4

i+1/2, j, k+1/2 − Hy|n+2/4
i+1/2, j, k−1/2

)
= Ex|n+1/4

i+1/2, j, k +
Δt

4εΔy

(
Hz|n+1/4

i+1/2, j+1/2, k − Hz|n+1/4
i+1/2, j−1/2, k

)
(13a)

Ey|n+2/4
i, j+1/2, k − Δt

4εΔz

(
Hx|n+2/4

i, j+1/2, k+1/2 − Hx|n+2/4
i, j+1/2, k−1/2

)
= Ey|n+1/4

i, j+1/2, k − Δt

4εΔx

(
Hz|n+1/4

i+1/2, j+1/2, k − Hz|n+1/4
i−1/2, j+1/2, k

)
(13b)

Ez|n+2/4
i, j, k+1/2 +

Δt

4εΔy

(
Hx|n+2/4

i, j+1/2, k+1/2 − Hx|n+2/4
i, j−1/2, k+1/2

)
= Ez|n+1/4

i, j, k+1/2 +
Δt

4εΔx

(
Hy|n+1/4

i+1/2, j, k+1/2 − Hy|n+1/4
i−1/2, j, k+1/2

)
(13c)

Hx|n+2/4
i, j+1/2, k+1/2 +

Δt

4μΔy

(
Ez|n+2/4

i, j+1, k+1/2 − Ez|n+2/4
i, j, k+1/2

)
= Hx|n+1/4

i, j+1/2, k+1/2 +
Δt

4μΔz

(
Ey|n+1/4

i, j+1/2, k+1 − Ey|n+1/4
i, j+1/2, k

)
(13d)

Hy|n+2/4
i+1/2, j, k+1/2 −

Δt

4μΔx

(
Ez|n+2/4

i+1, j, k+1/2 − Ez|n+2/4
i, j, k+1/2

)
= Hy|n+1/4

i+1/2, j, k+1/2 −
Δt

4μΔz

(
Ex|n+1/4

i+1/2, j, k+1 − Ex|n+1/4
i+1/2, j, k

)
(13e)

Hz|n+2/4
i+1/2, j+1/2, k

+
Δt

4μΔx

(
Ey|n+2/4

i+1, j+1/2, k
− Ey|n+2/4

i, j+1/2, k

)
= Hz|n+1/4

i+1/2, j+1/2, k +
Δt

4μΔy

(
Ex|n+1/4

i+1/2, j+1, k − Ex|n+1/4
i+1/2, j, k

)
(13f)

where b = Δt/2ε, d = Δt/2μ, and Δα (α = x, y, z) is the spatial increment in the α-direction. The
operations of sub-step 3 and sub-step 4 are similar to those of sub-step 1 and sub-step 2, which are not
described here.

In sub-step 1, it can be seen that the variables of Ex|n+1/4
i+1/2, j, k and Hz|n+1/4

i+1/2, j+1/2, k are coupled in

Equations (12a) and (12f). By substituting Eq. (12f) into Eq. (12a) to eliminate Hz|n+1/4
i+1/2, j+1/2, k in

Eq. (12a), we can get the triangular matrix for the solution of Ex|n+1/4
i+1/2,j,k as(

1 +
Δt2

8εμ
1

Δy2

)
Ex|n+1/4

i+1/2, j, k − Δt2

16εμ
1

Δy2

(
Ex|n+1/4

i+1/2, j+1, k + Ex|n+1/4
i+1/2, j−1, k

)

= Ex|ni+1/2, j, k − Δt2

16εμ
1

ΔxΔy

(
Ey|ni+1, j+1/2, k − Ey|ni+1, j−1/2, k − Ey|ni, j+1/2, k + Ey|ni,j−1/2,k

)
−Δt

4ε
1

Δz

(
Hy|ni+1/2, j, k+1/2−Hy|ni+1/2, j, k−1/2

)
+

Δt

4ε
1

Δy

(
Hz|ni+1/2, j+1/2, k − Hz|ni+1/2, j−1/2, k

)
(14)

After calculating Ex|n+1/4
i+1/2, j, k implicitly by using Equation (14), the remaining five field components

can be calculated explicitly. Therefore, one implicit and five explicit equations are needed to solve in
sub-step 1.

Analogously, for sub-step 2, by substituting Eq. (13d) into Eq. (13c), the solution equation for
Ez|n+2/4

i, j, k+1/2 can be obtained as(
1 +

Δt2

8εμ
1

Δy2

)
Ez|n+2/4

i, j, k+1/2 −
Δt2

16εμ
1

Δy2

(
Ez|n+2/4

i, j+1, k+1/2 + Ez|n+2/4
i, j−1, k+1/2

)

= Ez|n+1/4
i, j, k+1/2 −

Δt2

16εμ
1

ΔzΔy

(
Ey|n+1/4

i, j+1/2, k+1 − Ey|n+1/4
i, j−1/2, k+1 − Ey|n+1/4

i, j+1/2, k + Ey|n+1/4
i, j−1/2, k

)
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−Δt

4ε
1

Δx

(
Hy|n+1/4

i+1/2, j, k+1/2−Hy|n+1/4
i−1/2, j, k+1/2

)
+

Δt

4ε
1

Δy

(
Hx|n+1/4

i, j+1/2, k+1/2−Hx|n+1/4
i, j−1/2, k+1/2

)
(15)

It is obvious that one implicit and five explicit equations are also required in sub-step 2. According
to the analysis above, four implicit and twenty explicit equations are needed to solve in an entire time
step.

3. NUMERICAL STABILITY ANALYSIS

In this section, Fourier method is used for analyzing the numerical stability of the presented method.
Assume that kx, ky, and kz are the propagation constants in the x, y, and z directions. From time steps
of n to n + 1, the expression of the field component in the spatial spectral domain can be denoted as

U |nI, J, K = Une−j(kxIΔx+kyJΔy+kzKΔz) (16)

Substituting Equation (16) into Equations (11a)–(11d), the matrix form of the proposed method in one
whole time step is obtained as

Un+1 = [Λ4] [Λ3] [Λ2] [Λ1] Un = [Λ]Un (17)

where [Λ] is the growth matrix in one whole time step, and [Λ1], [Λ2], [Λ3], and [Λ4] are the growth
matrices of sub-steps 1, 2, 3, and 4, respectively. The expressions of [Λ1], [Λ2], [Λ3], and [Λ4] are defined
as Eq. (18), where ∂/∂α = jPα = −2j sin(kαΔα/2)/Δα, r2

α = bdP 2
α, α = x, y, z, A = bdP 2

y /ε2
y + 1.

[Λ1] = [Λ3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
Ay

rxry

Ay
0 0 −2jrz

Ay

2jrz

Ay

rxry

Ay
1 − r2

x
Ay

0 jrz

2 − jrxryrz

2Ay
−2jrx

Ay

rxrz
Ay

r2
xryrz

4Ay
1 − r2

x
4 − jry

2 − jrxr2
z

2Ay
+ jrx

2
jrxryrz

2Ay

jrxryrz

2Ay

jrz

2 − r2
xrz

2Ay
− jry

2 0 rxryr2
z

4Ay

rxrz
Ay

−2jrz

Ay
− jrxryrz

2Ay

jrx

2 0 1 − r2
z

Ay

ryrz

Ay

2jry

Ay
−2jrx

Ay
0 0 rxrz

Ay

4
Ay

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[Λ2] = [Λ4] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − r2
z
4

rxryr2
z

4Ay

rxrz
Ay

jrxryrz

2Ay

r2
xrz

2Ay
− jrz

2
jry

2

0 1 − r2
z

Ay

ryrz

Ay

2jrz

Ay

jrxryrz

2Ay
− jrx

2

0 ryrz

Ay

4
Ay

−2jry

Ay

2jrx

Ay
0

0 2jrz

Ay

2jry

Ay

4
Ay

rxry

Ay
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(18)

In order to maintain the stability of the iterative process, the magnitudes of all the eigenvalues of
the matrix [Λ] must be less than or equal to unity. The eigenvalues of the matrix [Λ] can be obtained
by Maple 18, as

λ1 = λ2 = 1 (19a)

λ3 = λ4 = λ∗
5 = λ∗

6 =
C + j

√
4E2 − C2

2E
(19b)

where C = bd(bdP 2
x − 4)(r2

z − 4)(P 2
x (r2

z − 4) − 4(P 2
y + P 2

z )) + 2(r2
y + 4)2, E = (bdP 2

y + 4)2.
It is obvious that the eigenvalues of λ1 and λ2 are equal to unity, and |λ3| = |λ4| = |λ5| = |λ6| ≤ 1

can be satisfied when 4E2 − C2 ≥ 0. Then we can get

4E2 − C2 = −bdT1T2

(
P 2

xT2 − 4T3

)
T4 (20)
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where T1 = r2
x − 4, T2 = r2

z − 4, T3 = P 2
y + P 2

z , T4 = (b2d2P 2
xP 2

z − 2bd(2P 2
x + P 2

y + 2P 2
z ) + 8)2.

It can be noticed that T4 ≥ 0 and T3 ≥ 0, then 4E2 − C2 ≥ 0 can be satisfied while T1 ≤ 0 and
T2 ≤ 0. That is to say, when both Δt ≤ 2Δx/c and Δt ≤ 2Δz/c are satisfied, the proposed method
is stable, where c is the speed of the light in the free space. Here, Δx ≤ Δz is supposed, then the
condition of Δt ≤ 2Δz/c can be gotten from Δt ≤ 2Δx/c. Meanwhile, T1 ≤ 0 and T2 ≤ 0 are satisfied.
It means that the inequality 4E2 − C2 ≥ 0 is true. Consequently, the proposed four-step HIE-FDTD
method is conditionally stable, whose CFL stability condition is generated as

Δt ≤ 2Δx

c
, Δt ≤ 2Δz

c
(21)

From Equation (21), it can be seen that the time step size of the proposed method is only determined by
one spatial increment (the smaller value in the Δx and Δz), and then the proposed method is effective
for the problems with the fine structures in the y direction. At the same time, the CFL stability
condition of the proposed method is weaker than those of the traditional FDTD method, HIE-FDTD
method, leapfrog HIE-FDTD method, and efficient HIE-FDTD method, whose CFL stability conditions
are Δt ≤ 1/(c

√
1/Δx2 + 1/Δy2 + 1/Δz2) [1], Δt ≤ 1/(c

√
1/Δx2 + 1/Δz2) [19], Δt ≤ Δx/c [25], and

Δt ≤ 2/(c
√

1/Δx2 + 1/Δz2) [26], respectively. For comparison, if Δx = Δz = 10Δy is chosen, the
time step radios are Δt1/Δt0 ≈ 20.2, Δt2/Δt0 ≈ 7.14, Δt3/Δt0 ≈ 10.1, and Δt4/Δt0 ≈ 14.3, where
Δt1, Δt2, Δt3, Δt4, and Δt0 are the maximum allowed time step sizes of the proposed four-step HIE-
FDTD method, HIE-FDTD method, leapfrog HIE-FDTD method, efficient HIE-FDTD method, and
traditional FDTD method, respectively. Therefore, as the possibility of selecting the larger time step
size, the proposed method has the advantage in computational efficiency.

4. NUMERICAL DISPERSION ANALYSIS

Assume the field to be a monochromatic wave with the angular frequency ω

En
α = EαejωΔtn, Hn

α = HαejωΔtn, α = x, y, z (22)

Substituting Equation (22) into Equation (17), we can obtain(
ejωΔt [I] − [Λ]

)
Un = 0 (23)

where Un is related to the initial value U0, and its specific relation is defined as Un = U0ejωΔtn.
For a nontrivial solution of Equation (23), the determinant of the coefficient matrix should be zero,

and it is shown as follows,
det
(
ejωΔt [I] − [Λ]

)
= 0 (24)

According to the eigenvalues of [Λ] which are given above, the numerical dispersion relation of the
proposed method can be generated as

cos (ωΔt) =
bdT1T2

(
T2P

2
x − 4T3

)
+ 2A2

y

2A2
y

(25)

Assume that φ and θ are the angles in the spherical coordinate system, which represents the angle
of the propagation direction away from the x-axis and z-axis, respectively. Then kx = k sin θ cos φ,
ky = k sin θ sin φ, kz = k cos θ, where k = 2π/λ, λ is the wavelength. Substituting them into
the dispersion relation in Eq. (25), the numerical phase velocity vp = ω/k can be obtained. The
cell per wavelength (CPW): λ/Δx. The normalized numerical phase velocity error (NNPVE) is
defined as |1 − vp/c| × 100%, and CFLN (CFL number) is defined as CFLN = Δt/Δt0, where
Δt0 = 1/(c

√
1/Δx2 + 1/Δy2 + 1/Δz2), and Δt is the time step size adopted by different FDTD

methods.
To demonstrate the numerical dispersion characteristics of the proposed method, the maximum

NNPVE of uniform and nonuniform grid systems is presented.
First, letting Δx = Δy = Δz = λ/15 means that CPW = 15 and CFLN = 1.2 for the five FDTD

methods mentioned above, and the maximum NNPVE versus θ in the uniform grid system is calculated
and shown in Fig. 1. It is obvious that the maximum NNPVE of the proposed method is greatly less
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Figure 1. Maximum normalized numerical phase velocity error (NNPVE) versus θ with CFLN = 1.2,
CPW = 15 and Δx = Δy = Δz for the five FDTD methods. (Notice that the maximum NNPVE is the
same between HIE-FDTD and leapfrog HIE-FDTD).

than that of the ADI-FDTD method and less than those of the other two HIE-FDTD methods when
θ is between 36◦ and 144◦. Furthermore, it is noticed that the maximum NNPVE of the HIE-FDTD
method is consistent with that of the one-step leapfrog HIE-FDTD method.

Fig. 2 shows the maximum NNPVE versus θ with CFLN = 3.6, CPW = 15 and Δx = Δz = 5Δy for
the five FDTD methods in the nonuniform grid system. From Fig. 2, it can be seen that the maximum
NNPVE of the proposed method is significantly lower than that of the ADI-FDTD method, and this
result is similar to that in the uniform grid system. Moreover, the maximum NNPVE of the proposed
method is slightly lower than those of the other two HIE-FDTD methods, when θ is between 40◦ and
140◦.

Figure 2. Maximum NNPVE versus θ with CFLN = 3.6, CPW = 15 and Δx = Δz = 5Δy for the
five FDTD methods. (Notice that the maximum NNPVE is the same between HIE-FDTD and leapfrog
HIE-FDTD).

Moreover, the comparison for the maximum NNPVE of the proposed method with different grid
systems is shown in Fig. 3. It is indicated that the proposed method has higher performance in the
nonuniform grid system than the uniform grid system. Fig. 4 demonstrates the maximum NNPVE of
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Figure 3. Maximum NNPVE versus θ with CPW = 15 and Δx = Δz = (Δy, 2Δy, 5Δy, 10Δy) for the
proposed method.

Figure 4. Maximum NNPVE versus θ with CFLN = 3.6, CPW = (10, 15, 20, 25) and Δx = Δz = 5Δy
for the proposed method.

the proposed method with different CPW values. As shown in Fig. 4, it is clear that the maximum
NNPVE of the proposed method decreases when the CPW value increases. It can be inferred that the
maximum NNPVE of the proposed method can be reduced by adopting the fine grid.

5. NUMERICAL RESULTS

In order to validate the accuracy and efficiency of the proposed method, the simulated results of the
FDTD method, HIE-FDTD method, leapfrog HIE-FDTD method, ADI-FDTD method, and proposed
four-step HIE-FDTD method are presented. The five FDTD methods are used to simulate a cavity
of 9mm × 6mm × 15 mm in size. Moreover, the cavity is filled with air and terminated with perfect
electric conducting (PEC) boundaries. In the central region of this cavity, a sinusoidal modulated
Gaussian pulse source with the expression of exp[−(t − t0)2/T 2] × sin[2πf0(t − t0)] is used, where
T = 30 ps, t0 = 3 × T , and f0 = 20 GHz. Two different grid sizes are used in the simulation, which are
Δx = Δz = 5Δy = 0.3 mm and Δx = Δz = 5Δy = 0.6 mm, respectively, and it means that their grid
numbers are 30 × 100 × 50 and 15 × 50 × 25, respectively. In addition, the observation point is located
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at 4.2 mm away from the central point in the x-direction, and the total simulation time is selected to
be 5.7735 ns.

Figure 5 shows the Ex-field for the five FDTD methods at the observation point with Δx = Δz =
5Δy = 0.6 mm and CFLN = 1 for the traditional FDTD method, CFLN = 3 for other four FDTD
methods. From Fig. 5, it can be demonstrated that the result of the proposed method agrees well with
that of the traditional FDTD method.

Figure 5. Ex-field for the five FDTD methods with Δx = Δz = 5Δy = 0.6 mm and CFLN = 1 for the
traditional FDTD method, CFLN = 3 for other FDTD methods.

Table 1. The comparisons of the simulation results of the five FDTD methods using the coarse and
the fine grid.

Methods CFLN

Grid size: Δx = 5Δy = Δz = 0.6 mm Grid size: Δx = 5Δy = Δz = 0.3mm

Step

number

CPU

times (s)

Result (GHz)

TE011 (26.926)

Relative

error (%)

Step

number

CPU

times (s)

Result (GHz)

TE011 (26.926)

Relative

error (%)

FDTD 1 15000 14 26.92 0.0223 30000 216 26.92 0.0223

HIE-FDTD

1 15000 3 26.91 0.0594 30000 1038 26.92 0.0223

2 7500 22 26.89 0.1337 15000 574 26.92 0.0223

3 500 17 26.85 0.2822 10000 383 26.91 0.0594

Leapfrog

HIE-FDTD

1 15000 35 26.91 0.0594 30000 1161 26.92 0.0223

2 7500 19 26.89 0.1337 15000 640 26.92 0.0223

3 500 13 26.85 0.2822 10000 443 26.91 0.0594

5 300 9 26.73 0.7279 600 260 26.88 0.1708

Four-Step

HIE-FDTD

1 15000 74 26.92 0.0223 30000 1709 26.92 0.0223

2 7500 38 26.91 0.0594 15000 837 26.92 0.0223

3 500 28 26.90 0.0966 10000 573 26.92 0.0223

5 300 17 26.87 0.2080 600 348 26.91 0.0594

1 1500 8 26.73 0.7279 300 174 26.87 0.2080

ADI-FDTD

1 15000 75 26.91 0.0594 30000 1854 26.92 0.0223

2 7500 45 26.89 0.1337 15000 1057 26.91 0.0594

3 500 28 26.85 0.2822 10000 695 26.91 0.0594

5 300 16 26.73 0.7279 600 416 26.87 0.2080

10 1500 8 26.18 2.7706 300 207 26.73 0.7279
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Table 1 indicates the comparisons of the simulation results of the five FDTD methods by using the
coarse grid Δx = Δz = 5Δy = 0.6 mm and fine grid Δx = Δz = 5Δy = 0.3 mm with different CFLN
values, respectively. For the fine grid and CFLN = 10, a comparison of the proposed method and ADI-
FDTD method shows that the former method improves the computational accuracy from 0.7279% to
0.2080% and reduces the CPU time from 207 s to 174 s. Consequently, with the better level of accuracy,
the former method saves the CPU time by more than 15.9%. From the results mentioned above, it can
be inferred that the proposed method is superior to the ADI-FDTD method in both the computational
efficiency and accuracy.

Moreover, for the HIE-FDTD method, leapfrog HIE-FDTD method, and ADI-FDTD method with
CFLN = 3, and for the proposed method with CFLN = 2, it can be seen from Table 1 that the proposed
method using the coarse grid has the same level of computational accuracy as other three FDTD methods
using the fine grid, but the CPU time is reduced from 383 s, 443 s, and 695 s of the HIE-FDTD method,
leapfrog HIE-FDTD method, and ADI-FDTD method to 38 s of the proposed method. In other words,
with the same level of accuracy, the proposed method can reduce the computational time by increasing
the grid size, thus the efficiency of the proposed method is improved. Consequently, with the same level
of accuracy, the proposed method has higher computational efficiency than other three FDTD methods.

6. CONCLUSION

A novel four-step HIE-FDTD method with weaker stability condition and higher computational
efficiency in 3-D domains has been proposed in this paper. Based on the exponential evolution operator
(EEO), the Maxwell’s equations are split into four sub-procedures first, and then the implicit scheme is
applied only in one direction with the fine mesh; the explicit scheme is applied in two other directions
with the coarser mesh; and the formulation of the proposed method has been generated.

The CFL stability condition of the proposed method is more relaxed than those of existing HIE-
FDTD methods. Besides, the maximum NNPVE of the proposed method is less than that of the ADI-
FDTD method obviously. Finally, the numerical experiments have demonstrated that the proposed
method agrees very well with the traditional FDTD method. Compared with the ADI-FDTD method,
the proposed method has a better level of accuracy and higher computational efficiency. Moreover, with
the same level of computational accuracy, the proposed method has higher computational efficiency than
those of the HIE-FDTD method, leapfrog HIE-FDTD method, and ADI-FDTD method. Therefore, the
four-step HIE-FDTD method can be used for solving electromagnetic field problems with fine structures
in one direction with higher computational efficiency. In addition, extending the proposed method into
the dispersive media and applying it to solve some electromagnetic problems, such as the waveguide,
antenna, and electromagnetic compatability (EMC) problems, will be our future work.
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