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A Sparse-Based Clutter Suppression Methodology for Single
Channel SAR

Xin Wang* and Teng Li

Abstract—A sparse imaging-based clutter suppression method for one channel synthetic aperture radar
(SAR) is proposed in this paper. The Doppler characteristic differences between the radar received signal
of clutter and moving targets are utilized in this method. A joint projection operator is formulated,
and the norm constraint is employed to realize and promote clutter suppression. The reconstructed
MT results with suppressed clutter can be applied to moving target detection and imaging. Numerical
simulation can verify the validity and robustness of the proposed methodology.

1. INTRODUCTION

Ground moving target indication (GMTI) [1–3] in synthetic aperture radar (SAR) has received more
and more interest in recent years. When there are multiple moving targets (MT) located inside a
strong clutter in a single channel SAR, the implementation of GMTI becomes difficult. In this case, the
undesirable clutter which will mask true MTs should be suppressed before detecting.

However, the degree of freedom in single channel SAR systems is limited, which affects the
application of multi-channel clutter suppression methods [4–6]. The space Doppler adaptive processing
(SDAP) operation [7] has been proposed to suppress a clutter by constructing virtual multi-channel
data. Nevertheless, a high pulse repetition frequency is required in this method, and residual clutter still
exists. Based on multi-look or sub-aperture imageries, interferometry [8], non-coherent subtraction [9],
and low-rank matrix decomposition methods [10, 11] can be employed to suppress a clutter for GMTI.
The phase information of sub-imageries is used in interferometry processing while the amplitude is
utilized in the other two methods. However, the phase terms might be affected by noise and strong
clutter in SAR data and thus degrade the performance of interferometry. Moreover, the amplitude
information of MTs could be masked by strong clutters in low signal to clutter ratio (SCR) cases. The
performance of no-coherent subtraction and low-rank matrix decomposition methods will thus degrade
severely.

Generally, the Doppler modulation rate of MT is different from that of a static clutter. This has
been used as the basis of GMTI processing after time-frequency analysis [12–14]. Though these methods
fail to detect slow-moving objects located inside strong clutter regions, the Doppler rate differences can
still be utilized to suppress clutters by applying some suitable regularization constraint. To solve the
GMTI problem in single channel SAR, we propose a joint sparse-imaging based method for clutter
suppression. Only one channel SAR signal is provided and used in this method. The mix-received SAR
data will be separated, and clutters will be suppressed significantly by using a sparse constraint. The
SAR signal model will be described and formulated in Section 2 firstly. Then, the joint sparse imaging
methodology will be presented and discussed in Section 3. Finally, numerical simulations will verify
that the algorithm can realize clutter suppression successfully.
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2. SAR SIGNAL MODEL

In a SAR system, a linear frequency modulated signal is generally used as the transmitted signal. The
received radar back data after range compression can be denoted as

Y = C + FmTm + n0, (1)

where Y ∈ RNd×1 is a column vector derived by stacking the range compressed SAR data; C ∈ RNI×1

is the clutter; Tm ∈ RNI×1 corresponds to the radar cross section (RCS) of MT; Fm ∈ RNd×NI is the
radar projection operator of the illuminated MTs; and n0 is the noise vector. The notations Nd and NI

are referred to as the length of radar data and imagery, respectively.

3. JOINT SPARSE-BASED CLUTTER SUPPRESSION

As radar data are a collection of the reflected electromagnetic waves from the illuminated static scene
and moving objects, weak MT signal might be submerged by strong clutters in low SCR cases. An
effective clutter suppression or separation method becomes necessary for the following GMTI operation.
An imaging-based clutter suppression method is developed in this section by utilizing the Doppler
characteristic differences between clutter and MT radar data. The detailed processing flow is given in
the following discussions.

3.1. Mismatched Signal Model

Since the real velocities of MT are unknown, the exact expression of Fm cannot be derived directly.
Instead, a mismatched radar projection operator Fmis is constructed and used here based on the
initialized velocities v′x = vx + Δvx and v′y = vy + Δvy. Notations vx and vx are real velocities of
MT along x and y axes, respectively, and Δvx and Δvy are referred to as the initialized mismatched
velocity errors. Radar signal model in Eq. (1) can then be rewritten as

Y ≈ C + FmisTm + n0

=
�

FT + n0

, (2)

where
�

F = [F,Fmis]T ,

In Eq. (2),
�

F ∈ RNd×2NI is the joint radar projection operator consisting of F ∈ RNd×NI and Fmis;
F ∈ RNd×NI is the system operator of the illuminated static scene; and T =[Tc, ϕresTm]T ∈ R2NI×1

incorporates the static scene field Tc and MT field Tm. To implement imaging processing, we formulate
the following optimization problem as

�

T = min
T

J (T )

= min
T

∥∥∥Y − �

FT
∥∥∥2

2
+ λ1 ‖T‖p

p , (3)

where ‖·‖p
p denotes �p norm, and λ1 is a positive scaling parameter. In Eq. (3), the first term is a data

fidelity term, which incorporates the SAR observation model in Eq. (1) and the RCS information of
illuminated targets. The adoption of the data fidelity term aims to implement the inversion of radar back
data while the second term implies prior information about the field T . Since the Doppler modulation
rates of radar back data from static and moving targets are different, the clutter and MT signal in the
mix-received radar data will thus be matched to distinct projection operators F and Fmis, respectively.
The utilization of the �p norm in the second term in Eq. (3), which means a sparse constraint of T , can
promote the separation of the static scene and MT and implement the suppression of artefacts and side
lobe in the reconstructed results simultaneously. Hence, solving the optimization problem in Eq. (3)
will finally result in the generation of a static-scene imagery and an MT imagery Tm with a suppressed
clutter.
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3.2. Iterative Solution

Many papers employ the �p norm with p = 0 to constrain the reconstructed result to be sparse. Greedy
methodologies and iterative hard thresholding algorithm have been developed to solve this regularization
problem approximately, whereas the accuracy of these methods will degrade as a mismatched MT radar
projection operator Fmis is utilized in this paper. Moreover, the �1 norm relaxation is widely used
instead of directly solving the �0 regularization problem. However, as discussed in [15], the �p norm
with 0 < p < 1 will result in a more sparse solution and thus is used in our method.

As �p norm is non-differentiable around the origin, the exact solution of Eq. (3) is difficult to be
derived. The following approximation expression is applied instead

‖z‖p
p ≈

Nz∑
i=1

(
|z(i)|2 + ε

)p/2
, (4)

where ε ≥ 0 is a very small positive constant; Nz denotes the length of the vector z; z(i) is referred to
as the ith element in z. Substituting Eq. (4) into Eq. (3), a new cost equation can be derived as

Jm (T ) =
∥∥∥Y − �

FT
∥∥∥2

2
+ λ1

Nz∑
i=1

(
|T (i)|2 + ε

)p/2
, (5)

The modified cost function Jm(T ) will be always close to J(T ) when ε → 0 [15].
Based on the Hessian matrix approximation [12], the minimization of Eq. (5) can be solved according

to the following iterative formula

�

T
(n+1)

=
�

T
(n)

− γ

[
H

(
�

T
(n)
)]−1

∇Jm

(
�

T
(n)
)

, (6)

where

H

(
�

T
(n)
)

2
�

F
H �

F + pλ1diag

⎧⎨
⎩
(∣∣∣∣�T (n)

(j)
∣∣∣∣
2

+ ε
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⎭ , (7a)

∇Jm

(
�

T
(n)
)

= H

(
�

T
(n)
)

�

T
(n)

−2
�

F
H

Y, (7b)

In Eq. (6), γ denotes the iteration step; ∇Jm(·) is the complex gradient of the cost function Jm(T );

T (n) is the estimation result after the nth iteration;
[
H

(
�

T
(n)
)]−1

is the inversion matrix of H

(
�

T
(n)
)

;

and superscript H denotes the conjugate transposition of a matrix.
After substituting Eq. (7b) into Eq. (6), we can derive the following equation[

H

(
�

T
(n)
)]

�

T
(n+1)

= (1−γ)
[
H

(
�

T
(n)
)]

�

T
(n)

+ 2γ
�

F
H

Y, (8)

Neglecting the elements in
�

F
H �

F whose magnitudes are smaller than 1% of the largest element, we find

that the coefficient H

(
�

T
(n)

i

)
in Eq. (8) becomes a sparse conjugate coefficient matrix. Hence, the

conjugate gradient method could be applied to search for the solution of Eq. (8). The real part and
imaginary part of the range compressed data Y and the projection operator

�

F are stacked to derive two
combinatorial vectors to compute the solution. When the converge condition is satisfied, MT imagery
will be obtained by restacking operation.
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3.3. Large Mismatched Error

In Section 3.2, field T is derived based on an initialized mismatched system operator Fmis. Owing
to the �p norm constraint, the energy of clutter will be suppressed in the derived MT imagery when
the mismatched velocity error is not too large, which can be verified by the numerical simulation in
the next section. When the assumed velocities deviate from real values severely, the performance of
data separation and clutter suppression might degrade. To solve this problem, we try to reduce the
mismatched error after the iteration computation.

We discuss to update the MT radar projection operator Fmis to reduce the mismatched error. MT
radar patch data reconstruction and Doppler parameter estimation operations are developed here to
realize the updating. As the phase information is not retained in the joint sparse-based processing,
the amplitude information of the results obtained after iteration computation might be combined with
the phase term of the initialized imageries to produce the reconstruction. Then, the approximately
constructed MT data will be used to update MT radar projection, which can be expressed as

�

Y
(n)

m = Fmis

[∣∣∣∣�T (n)

m

∣∣∣∣� exp
(

∠
�

T
(0)

m

)]
, (9)

where � denotes the elementwise product; | · | and ∠· indicate computing the amplitude and angle of

vector;
�

T
(n)

m and
�

T
(0)

m are referred to as the constructed MT imagery after nth iteration and initialized

MT imagery, respectively. The reconstructed data
�

Y
(n)

m , which is an approximation of real MT radar
data with suppressed clutter, can be used for accurate Doppler parameter estimation [16, 17]. Then,
MT radar projection operator is updated to continue the subsequent iteration to output the results.

Considering that the response functions of MTs are usually distributed in small patches of SAR
imagery, we do not need to use the original radar data directly. The patch decomposition operation,
which can be acquired by motion compensation, filtering, and down-sampling operations [18], will be
employed to improve the efficiency. In practical data processing procedure, the size of MT patch is
generally very small (the patch size for one MT might be restricted as 30 × 30 in some cases). The
computational burden in joint sparse imaging thus will be reduced significantly, much lower than that
of frequency domain imaging processing of original radar data. The detailed processing flow is listed in
Algorithm 1 and depicted in Fig. 1.

 SAR Data

Range Compresion

Patch Data
Decomposition

Joint Sparse Imaging

MT data Reconstruction

Update MT
projection operator

MT Imagery

Initialization

Output

Iteration
finished or not

Figure 1. Joint sparse-based clutter suppression.
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Algorithm 1 Joint sparse-based clutter suppression.
1: Input: Range compressed radar patch data, joint radar projection operator;

2: Initialization:
�

T
(0) �

F
(0)

, λ1, γ, p;
3: While not converge do

4: Update
�

T
(n+1)

according to Eq. (8);
5: End
6: Update MT projection operator based on Doppler parameter estimation results of the reconstructed

MT radar data;
7: Repeat step 3–5.
8: Output

4. SIMULATION

In this section, numerical simulations will be performed to verify the proposed joint sparse-based
algorithm, where the parameters are given in Table 1. Radar back data from 4 ground moving targets,
marked as MT1-4 in Fig. 2(a), are simulated. The range compressed SAR data combined with and
without clutter are given in Fig. 2(b) and Fig. 2(c), respectively.

Table 1. Simulation parameters.

Carrier frequency 10GHz

Range bandwidth 300 MHz

Resolution in x dimension 0.41 m

Resolution in y dimension 0.23 m

(a) (b) (c)

Figure 2. MTs and radar data. (a) 4MTs; (b) Range compressed radar data combined with clutter;
(c) Range compressed MT data without clutter.

The velocities and positions of simulated MTs are listed in Table 2, and the imaging results after
traditional matched filtering (MF) processing are given in Fig. 3(a) and Fig. 3(b). As the motion of
MTs is not considered in MF processing, smearing and geometry deviation emerge in the constructed
SAR imagery, as shown in Fig. 3(b), where the five ellipses indicate the locations of defocused MTs. The
SCR values of MTs, which are calculated as the ratio of the energies of MT and clutter in SAR imagery,
are listed in Table 2. It can be seen from Table 2 and Fig. 3(b) that most of the energies of MT3 and
MT3 are masked by the clutter which should be suppressed before detecting and MT refocusing.

Here, for comparison, the non-coherent subtraction, interferometry, and our joint sparse-based
processing are performed on the defocused MT imagery in Fig. 3(b), respectively. It can be seen from
Fig. 3(c) and Fig. 3(d) that the clutter is suppressed after subtraction and interferometry operations,
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Table 2. MT simulation parameters.

MT1 MT2 MT3 MT4

Azimuth position(pixel) 30 70 70 70

Range position(pixel) 30 30 10 50

vx 17 m/s 22 m/s 21 m/s 21m/s

vy 0.8 m/s 0.8 m/s 0.8 m/s 0.8 m/s

SCR 8 dB 3dB −4 dB −7 dB

Initialized Doppler Rate Error 20.04 Hz/s 9.81 Hz/s 9.98 Hz/s 9.93 Hz/s

Updated Doppler Rate Error 0.04 Hz/s 0.01 Hz/s 0.02 Hz/s 0.02 Hz/s

(e) (f) (g) 

(a) 

(b) (c) (d)

Figure 3. MF and sparse imaging result. (a) Three-dimensional figure of MT imagery; (b) SAR MT
imagery; (c) Imagery result derived by non-coherent subtraction; (d) Imagery result after interferometry;
(e) Imagery derived based on the initialized parameters; (f) and (g) Reconstructed MT imagery and
radar data after joint sparse imaging.

but weak MTs are still difficult to be detected. In the joint sparse-based processing, two initialized
velocities v′x and v′y, which are defined as 25 m/s and 0 m/s, are used in the first iteration to formulate
the MT radar projection matrix. Though the initialized MT operator is mismatched, most of the energy
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(c) (d)

(a) (b)

Figure 4. Doppler rate estimation results based on the reconstructed MT patch data. (a) MT1; (b)
MT2; (c) MT3; (d) MT4.

of the clutter is still suppressed in the imagery derived after iteration, as shown in Fig. 3(d). MT radar
patch data are then reconstructed based on Eq. (9), and Doppler parameter estimation is performed
after keystone transform and range cell migration correction. The fractional Fourier transform is used
for estimation, and the results are given in Fig. 4. We can find from this figure that the Doppler rate
derived from reconstructed MT patch data is very close to the real values which are obtained from the
simulated phase history of MT without clutter. Finally, updating the MT system operator based on
the computed Doppler parameters, we can get the MT imagery and radar patch data with significantly
reduced clutter, as shown in Figs. 3(f) and 3(g). To further verify our method, the azimuth profiles of
the 4 MTs in the defocused SAR imagery and the results derived by subtraction, interferometry, and
our method are depicted in Fig. 5. It could be concluded from these figure that our joint sparse-based
algorithm can implement the suppression of clutter effectively, and the values of SCR are decreased to
around 60 dB–80 dB.

Moreover, radar signal illuminated from 3 MTs with velocities 13 m/s and 1.8 m/s along azimuth
and range dimensions combined with real SAR data (provided by AFRL) is processed by our method.
The scene imagery is given in Fig. 6(a), where the white rectangular frames indicate the positions of
the defocused MTs. Patch decomposition operation is employed on the original radar data, where the
obtained sub-imagery and radar patch data are given in Figs. 6(b) and 6(c), respectively. In these
two figures, most of the energy of MTs is masked by clutters. The joint sparse-based processing is
then used to process the radar patch data with the initialized velocities v′x = 18 m/s and v′x = 0 m/s.
The obtained MT imagery based on the initialized velocities is depicted in Fig. 6(d), in which residual
clutter still exists as a result of the utilization of a mismatched radar projection operator. After MT
data reconstruction and radar system operator updating, MT imagery and radar data can be derived as
Figs. 6(e) and 6(f). It can be seen from Figs. 6(e) and 6(f) that the clutter is suppressed significantly,
which further verifies the validity of our method.
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(a) (b) (c)

Figure 5. Comparison of azimuth profiles of MTs before and after clutter suppression. (a) MT1 and
MT2; (b) MT3; (c) MT4.

(b)(a)

(e)(d)

(c)

(f)

Figure 6. MF and sparse imaging result. (a) Scene imagery; (b) Enlarged rectangular area in Fig. 5(a);
(c) Decomposed radar back data of rectangular area in Fig. 6(a); (d) Reconstructed MT imagery based
on the initialized parameters; (e) and (f) Reconstructed MT imagery and radar data after joint sparse
imaging.

5. CONCLUSION

A clutter suppression methodology based on joint sparse imaging is proposed in this paper. Due to
the lack of moving parameters, an initialized mismatched MT radar projection operator is used in the
iteration computation. Even so, the strong clutter will be suppressed significantly in the derived results
as MT data reconstruction and projection operator update is employed in our method. The derived
MT imagery and patch data with suppressed clutter can be used for detecting, imaging, and parameter
estimation directly. In our method, a fixed regularization coefficient is used in the iteration. How to
choose the regularization coefficient to promote the performance of data separation will be our future
work.
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