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Abstract—Simple, compact and high sensitivity metamaterial-inspired microfluid sensors are
developed to detect and classify dielectric fluids in the X-band regime using reflection coefficients. Multi-
negative refractive index band metamaterial structure is specifically designed as a sensing enhancer,
where the multi-negative bands can effectively trigger the electromagnetic properties, as well as enhance
the differentiation between the testing samples. The geometry of the metamaterial enhancer and its
arrangement with the microfluidic channel and radiating patch antenna are optimized to reach the
highest sensitivity of the samples’ depiction. The proposed sensors were tested on ethanol traces, where
sets of complex permittivity were varied. Distinguishable frequency responses generated from different
samples at four resonances specify the capability of classifying the fluid concentration.

1. INTRODUCTION

In recent years, an alternative sensing system, based on engineered materials or metamaterials (MTMs),
MTM-inspired sensors [1–35], passive devices ranging from GHz to THz range, has been introduced for
testing different substances such as solid (dielectric and metallic) materials [5, 14], liquids [2–4, 7, 9–
13, 15–23], microparticles [8], and biomolecules [24, 35], to name a few. Microfluidic sensors [36] with
their label-free, non-destructive characteristics, no-contact, instant measurements, low-cost, and low-
profile [1, 2], can be a substitute for optical, electrochemical and biological sensors. It was also shown
that a single negative MTM surface can have multifunctional usages, i.e., sensors and absorbers [22].

The fundamental principle of these MTM-inspired microfluid microwave sensors is correlated with
the dielectric perturbation phenomenon. The electromagnetic boundary conditions are stimulated and
resonated when a testing sample is integrated in the sensor system, resulting in: (i) the shift of the
resonant frequency, associated with material polarization, and (ii) the change in quality (Q-) factors,
related to the dielectric loss of material [2]. Both changes have been implemented to measure the
relative complex dielectric constant or permittivity of the testing sample. In addition, based on various
applications, ones may focus on four sensing strategies, i.e., (i) resonance frequency variation, (ii)
coupling modulation through symmetry disruption, (iii) frequency splitting, also exploiting symmetry
properties, and (iv) amplitude modulation of a harmonic signal [5].

MTM-inspired microfluid microwave sensors generally consist of a microstrip transmission line
loaded with MTM structures and a fluidic channel of various shapes. Most MTM-inspired microfluidic
sensor prototypes [1, 6, 18, 20] presented a similar testing setup preforming the transmission response
measurements, where the complex permittivity extracted from the transmission (S21) and reflection
(S11) coefficients is used to classify the testing material. The MTMs designed for specific electromagnetic
properties are integrated into the sensor system in order to effectively manipulate the shift of the
resonant frequency and the change in Q-factors, resulting in a more pronounced dielectric perturbation
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phenomenon. The MTMs, offering improved compactness and a high Q-factor, play a significant
role in creating a bridge between the testing sample and the electromagnetic (EM) resonance. The
fluidic channel between the inlet and outlet is designed to ensure a constant volume and shape of
the fluid sample across the sensing area. The sensing capability and efficiency are directly influenced
by the correlation between the MTM structures and the fluidic channel. To differentiate the sensing
performance, symmetry properties in transmission line loaded with one or more MTM structures need
to be considered to avoid the lack of coupling due to the complete cancellation between electric and
magnetic fields [6, 37–40]. All the MTM structures implemented for microfluidic microwave sensors are
either a split ring resonator (SRR), a complementary SRR (CSRR), an open SRR (OSRR), or a split-
ring-cross resonator (SRCR) [1, 2–4, 7, 8, 10–13, 15–20, 22], which are typical magnetic resonators first
introduced as negative permeability MTMs [41]. The inductive-capacitive (LC) resonance frequency of
the SRR is determined by the inductance (L) of the ring and capacitance (C) of the gap region. Since
C is a function of permittivity, any changes in the dielectric property of the material positioned in
the gap region will change its effective C, thereby resulting in a spectral shift of the LC resonance [8].
These SRRs with various orientation, e.g., single-ring, double-ring, square, circular, or rectangular
shape, can be easily designed to generate a magnetic resonance, where the negative real part of the
permeability is located. A single magnetic resonance from the SRRs is normally narrow, resulting in
a narrow sensing frequency band; for example, a 0.05 GHz band for a sensor with a 1GHz operating
frequency [6]. 4-circular double SRRs with different dimensions have been designed for multi-bands
in order to optimize the permittivity characterization [1]. Hence, different MTM structure types, for
instance, negative refraction index (NRI) MTMs [42–44, 52], chiral MTMs [4, 45–47], and near-zero-
index (NZI) MTMs [48, 49], can be additional choices, where more parameters can be manipulated.

In this article, we propose to design a multi-NRI band MTM to aid the sensing ability of the
microfluid sensor in the X-band frequency range. The broad multi-NRI bands of the MTMs, generated
from both electric and magnetic couplings, will furthermore assist the sensor to generate stronger multi-
band transmission responses covering a broader frequency of interest, while testing a sample, hence more
accurate and more detailed data will be obtained. While optimizing the MTMs orientation, the fluidic
channel will be modified accordingly in order to cover all sensing areas, as well as to ensure a constant
volume and shape of the fluid sample. Although a simple quarter wavelength transmission line is
commonly used in most microfluidic sensors as a microwave transmission part, there was an attempt
to implement a complementary SRR-loaded patch as an excitation port [12], where only reflection
coefficients (S11) were collected. In fact, a stand-alone patch antenna can be employed as a main
sensing element [50]. In this research we also propose to implement a microstrip patch antenna as
the only port to collect the reflection coefficient data. Since the patch antenna can be specifically
designed to operate in a particular observing frequency range, more precise data can be obtained,
which is adequate for detecting different sample types. However, if both transmission and reflection
coefficients are required for some particular samples to further extract other electromagnetic properties,
e.g., permittivity, permeability, chirality, refractive index, etc., another identical patch antenna can be
set as a receiving port.

2. MICROSTRIP PATCH ANTENNA AND MICROFLUIDIC CHANNEL

While a simple quarter wavelength transmission line is commonly used in most microfluidic sensors as
a microwave transmission part, in this research we propose to implement a microstrip patch antenna
as the only port to collect the reflection coefficient or S11 data. Not only can the radiation pattern
and beamwidth of the patch antenna be designed to focus on the microfluidic channel and the MTM
enhancer, but also the observing frequency range can be controlled effectively. Therefore, more accurate
data can be obtained, which is adequate for detecting different sample types.

2.1. X-Band Microstrip Patch Antenna

An X-band patch antenna was made by a two-sided 1 oz Cu FR-4 substrate with εr = 4.4, shown in
Figure 4(a), where a = 4.83 mm, b = 9 mm, c = 6.5 mm, d = 3.5 mm, and e = 3 mm was designed for
the X-band transmission. The transmission coefficients and the far-field of the patch are presented in
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Figure 1. X-band patch antenna and its transmission coefficient and far-field distribution.

Figure 1.
There were two resonances of the reflection coefficient at 8.14 GHz (−4.8 dB) and 10.53 GHz

(−18.59 dB), generated from this 9 cm × 6.5 cm patch antenna. The 3-dimensional (Figure 1(c)) and
2-dimensional (Figure 1(d)) far-field patterns indicate a good main lobe magnitude and direction within
8–12 GHz with the angular width of 100.2◦.

2.2. X-Band Microstrip Patch Antenna and Sampling Fluid Layer

The patch antenna was then used to investigate its sensing responses, where a large λ/15 thin layer of
ethanol of different concentrations [51] was placed on top of the radiating patch, as shown in Figure 2(a).
The resonances of the sensing system depend on the permittivity of its surrounding materials. Therefore,
when the testing fluid with different permittivities is included, the electric field is perturbed, and the
resonant frequencies are changed. Figure 2(b) presents the far-field distribution recorded at 10 GHz

(a) (b)
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(c) (d)

Figure 2. (a) Orientation of the patch and the testing ethanol layer. (b) Far-field distribution at
10 GHz from the 50% ethanol, and (c) the reflection and (d) transmission coefficients of the testing set.

from the 50% ethanol. The transmission (S21) and reflection (S11) coefficients collected from the patch
and the testing ethanol layer are presented in Figures 2(c)–(d).

As the ethanol samples were tested, the two resonances were observed around 8 GHz and 10 GHz.
Different transmission levels from different ethanol concentrations were found in the first dip, while the
more obvious frequency shift in the second resonance was demonstrated.

These results are similar to those of multi-band double rings microfluidic sensors [1], where a pair
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Figure 3. (a), (b) A 1-line fluidic channel and patch system and (c), (d) their sensing responses on
different ethanol concentrations.



Progress In Electromagnetics Research C, Vol. 94, 2019 33

of resonances was also found, but at slightly lower frequencies. The differences mainly come from the
different microwave transmission parts.

2.3. X-Band Microstrip Patch Antenna and Sampling Microfluidic Channels

To fulfill label-free and non-destructive purposes, instead of testing with the thin layer, three settings
of a fluidic channel designed from a very simple one-line channel to four-line channel were implemented.
The sensing capability of the antenna and microfluidic channels was investigated. The channel was
created with a 0.5 mm diameter cylinder tube where the testing ethanol was later flowing through. The
three sensing systems, and their transmission and reflection responses are presented in Figures 3–5.

Dual resonances were found in all three systems, though the more noticeable results, where different

(a)

(b)

(c)

(d)

Figure 4. (a), (b) A 3-line fluidic channel and patch system and (c), (d) their sensing responses on
different ethanol concentrations.

(a) (c)
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(b) (d)

Figure 5. (a), (b) A 4-line fluidic channel and patch system and (c), (d) their sensing responses on
different ethanol concentrations.

samples can be easily differentiated, were observed in both 3-line and 4-line channel sensor systems, as
presented in the zoomed S11 results in Figures 3(c), 4(c), and 5(c).

This sensing aptitude is comparable to several literatures, where only single [12, 13, 17, 18, 20] and
double resonances [1] were established while sensing ethanol traces in the microwave range. The level
of this detecting performance may already satisfy several fluids with unpretentious properties; however,
in order to improve the sensitivity and accuracy, extra bands (resonances) created from the proposed
multi-negative-refractive-index (NRI) metamaterial structure will better serve the objective.

3. MULTI-NEGATIVE-REFRACTIVE-INDEX BAND METAMATERIAL

A multi-NRI band MTM structure, shown in Figure 6(a), is designed through various iterations of a
complementary I-beam design, as the combination of an (−)ε (epsilon or permittivity) and a (−)μ (mu
or permeability) structure. The NRI band is generated from the overlap between a broad (−)ε band
and a magnetic resonance, where the resonance frequency (ωm) is controlled by the total inductances
(LT ) and total capacitances (CT ) of the MTM structure: ωm = 1/

√
LT CT . The conventional (−)ε

(a) (b)

(b1)

(b2)

Figure 6. (a) Proposed multi-NRI band MTM structure and (b) its equivalent circuit.
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structure is simply an array of straight conductive wires, where the wires must be set parallel to the
electric field direction [52, 53]. On the other hand, the standard (−)μ structure is a magnetic resonator,
where strong magnetic couplings, resulting in (−)μ response, is built between the magnetic field and
its broken symmetric ring structure [39]. It was proved that the electric couplings can also create the

(a) (c)

(b) (d)

Figure 7. EM parameters of the multi-NRI band MTM: (a) S parameter, (b) refractive index and loss
factor, (c) permittivity and (d) permeability.

(a) (b) (c)

Figure 8. Patch antenna and NRI MTM with (a) 1-line, (b) 3-line and (c) 4-line microfluidic channel,
and their far-field distribution when testing with the 50% ethanol at 10 GHz.
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(−)μ [54], but a more careful EM field setting needs to be taken into consideration, i.e., the electric
field must be parallel to the broken part or a gap of the structure. The advantage of this orientation
choice is that the EM field direction can be set to be parallel to the structure plane. In order to create
multiple NRI bands, a couple broken rings (split ring) of different sizes are required to generate multiple
magnetic resonances.

An equivalent simplified circuit of the multi-NRI band MTM is presented in Figure 6(b1). Each
inductance (L) represents the line segments of the MTM structure, whilst the generating gaps are

Figure 9. An MTM 1-line fluidic channel sensor system and their sensing responses on different ethanol
concentrations.
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represented by capacitances (C). These inductances and capacitances are added in series and in
parallel depending on their respective nodes. The inductance and capacitance are calculated using an
approximation for the self-inductance of a thin, conducting strip [55], and for a coplanar capacitor [56],
respectively. When increasing the segment lengths, the total inductance increases, which has an inverse
relation to the resonance frequency. Similarly, by decreasing the distance between segments, the
capacitance increases, which also results in a shift of the resonance frequency to the lower end of
the X-band. Depending on their series and parallel orientation, these components can be combined

Figure 10. An MTM 3-line fluidic channel sensor system and their sensing responses on different
ethanol concentrations.
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to form a simplified circuit, as shown in Figure 6(b2), where Cint and L are the total C and L of an
individual MTM structure, and Cext is the capacitance created from adjacent structures [57].

The MTM structure is fabricated using a 10 × 10 mm FR-4 substrate (εr = 4.4) with a 1.54 mm
thickness and loss-free copper with a 0.03 mm thickness. In order to control the operating frequency
within the X-band frequency range, the MTM dimensions are designed as follows: a = 2.25 mm,
b = 1.75 mm, c = 6 mm, d = 0.5 mm, e = 1.5 mm, and f = 4 mm, presented in Figure 6(a).

The S21 and S11 coefficients of the multi-NRI band MTM are presented in Figure 7(a). A good

Figure 11. An MTM 4-line fluidic channel sensor system and their sensing responses on different
ethanol concentrations.
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transmission band of at least 50% transmission at −6 dB, observed from S21, is generated covering
all the X-band range, from 8GHz to 14 GHz, with two narrow stopbands at 9.62 GHz and 11.36 GHz.
These good transmission passbands are proved to have a negative index, the real part, from 8.22 GHz
to 16.84 GHz, marked in the refractive index plot in Figure 7(b). The imaginary part of the refractive
index, signifying material loss, is low within the operating range. Hence, the significantly low loss factor
(LF ), LF = Img(n)

Real(n) , less than 0.5, within the entire X-band, confirms the satisfactory transmission.
The complex permittivity and permeability of the MTM are shown in Figures 7(c) and 7(d). The

Figure 12. An optimized MTM 4-line fluidic channel sensor system and their sensing responses on
different ethanol concentrations.
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real part of both the permittivity and permeability are negative within the observing frequency range,
confirming the NRI band. To effectively manipulate the NRI band, complex values of permittivity and
permeability must be taken into consideration [58–60].

Within the operating frequency range, both electric and magnetic coupling responses are generated
by the MTM structure, enhancing the interaction between the testing fluid and the EM wave, excited
by the X-band patch antenna. In order to further improve the EM responses, the orientation, location,
and dimensions of the microfluidic channel will need to be determined.

Figure 13. An optimized MTM 8-line fluidic channel sensor system and their sensing responses on
different ethanol concentrations.
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4. MULTI-NRI BAND MTM MICROFLUIDIC CHANNEL SENSORS

The NRI MTM was placed on top of the 1-line, 3-line and 4-line fluidic channels, shown in Figure 8. The
sensor set consisted of three main layers of a patch antenna, microfluidic channel, and a MTM-enhancer,
respectively. The fluidic channel location was adjusted to optimize the sensing responses.

Adding the MTM created two extra resonances in all three cases. Four resonances were observed
in between 7.7–8.4 GHz, 8.5–9.5 GHz, 10.1–10.7 GHz, and 10.8–11.1 GHz, presented in Figures 9–11.

The disparity among the reflection coefficients from different ethanol samples was significantly
noticeable as the number of channel lines increased to 3 and 4, respectively, which was noted at all four
resonances.

In order to maximize the electric field perturbation, the microfluidic channel must be loaded where
the strongest electric field is generated [12]. The fluidic channel was then further optimized in order
to cover all sensing areas to create the best sensing responses, as well as to ensure a constant volume
and shape of the fluid sample. Figures 12–13 present the other two optimized cases and their reflection
coefficients.

The fluidic channel of the optimized sensor case 1 (Figure 12) was designed to fit inside the patch
area. Although the testing fluid volume was reduced by almost half, this sensor set still demonstrated
a great sensitivity. The best results were found in the second optimized sensor (Figure 13). 2-line
channel meanders were added to both ends of the first optimized channel case. All four resonances
clearly stressed the distinction of the ethanol of different concentrations.

5. CONCLUSION

Alternative metamaterial-inspired microwave microfluid sensors are designed to classify dielectric fluids
with different concentrations. The multi-negative index bands generated by an I-beam metamaterial
structure electrically and magnetically couple with the testing fluids, resulting in four distinct
resonances. The differences from the reflection responses of the resonances are sufficient to distinguish
the fluid types.
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