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Two-Way Pattern Synthesis of MIMO Radar with Sidelobe
Reduction and Null Control via Improved Whale

Optimization Algorithm

Pengliang Yuan*, Chenjiang Guo, Guofeng Jiang, and Qi Zheng

Abstract—This paper proposes an improvement to the whale optimization algorithm (WOA), which
is based on the Levy flight technique. The improvement allows improved whale optimization algorithm
(IWOA) to have a good diversity of population, faster convergence and overcome premature. The test
by using different benchmark functions is conducted to demonstrate the effectiveness of improvement
on the algorithm performance. Finally, IWO algorithm is applied to optimize the problems of two-way
pattern of MIMO radar system, involving the achievements of sidelobe reduction, deep null, and wide
null at the prescribed directions. The obtained numerical results demonstrate that IWOA can not only
efficiently fulfill the expected deep nulls and wide nulls at the prescribed directions, but also enable
the peak sidelobe level to retain in the smaller level at the same time than several state-of-the-art
algorithms.

1. INTRODUCTION

In recent years, MIMO radar has received much attention due to superior characteristics [1–12]. Unlike
a traditional phased array system, MIMO radar allows emitting orthogonal or noncoherent waveforms
at transmitter, and these waveforms can be extracted at receiver by a set of matched filters. In the case
of emitting orthogonal waveforms, a virtual array can be formed by exploiting the MIMO concept. Due
to the feature of virtual array, MIMO radar has many superior characteristics, such as good detective
ability, high resolution, and accurate localization.

However, interference is always an inevitable problem in practice= and would cause the distortion
of signals, ultimately degrade the performance of entire system. Generally in terms of antenna array,
there are two approaches available to overcome this problem: one is to suppress the peak sidelobe level
(Psll) [3, 13, 14], and the other is to form the deep nulls at the directions of interferences in the radiation
pattern [13]. Herein we only focus on the two-way pattern [2] of MIMO radar.

Presently, some evolutionary algorithms have been used to solve the problems of sidelobe
suppression, deep null, and capacity of system associated with the array configuration, such
as generic algorithm (GA) [2, 15], differential particle swarm optimization (DPSO)) [3], galaxy-
based search algorithm [16], chaotic differential evolution(DE) [17], and chaotic whale optimization
algorithm(CWOA) [18]. For the optimization of system capacity, some evolutionary algorithms have
also been utilized to improve the capacity of system by optimizing the array configuration [15, 16, 19, 20].
Ref. [19] uses GA to optimize the element spacing to achieve the optimal capacity of system. In [15],
a hybrid algorithm, integrating with GA and Taguchi algorithm, is proposed to improve the capacity
of a MIMO wireless system for the linear array with the different geometrical configurations, hence the

Received 15 April 2019, Accepted 5 June 2019, Scheduled 12 July 2019
* Corresponding author: Pengliang Yuan (yuanpengliang@mail.nwpu.edu.cn).
The authors are with the School of Electronics and Information, Northwestern Polytechnical University, Xi’an, Shannxi 710072,
China.



46 Yuan et al.

rectangular array is taken in further consideration in [16]. For the optimization of sidelobe suppression
and deep null, generic algorithm (GA) is adopted to suppress the Psll of pattern by optimizing the
positions of elements in the literature [2]. This method obtains a desired Psll, but suffers from a
heavier computational cost. On the basis of [2], a hybrid algorithm called differential particle swarm
optimization (DPSO) algorithm is proposed in [3], in which the crossover and mutual operator from
the differential evolution algorithm are integrated into particle swarm optimization scheme, to use the
superiority of DE operators to improve the diversity of population and avoid premature of PSO. Its
experimental results demonstrate that the ability of global optimization is greatly improved, and the
diversity of population is enhanced. In [17], chaotic optimization is introduced into DE scheme to
enhance the diversity of population of DE. The basic idea of this algorithm is to make full use of the
diversity property of chaotic optimization to reduce the risk of trapping into local optimality, further
to avoid the premature of algorithm. Due to the emerging of WOA, the CWOA integrating the chaotic
optimization with WOA is used to optimize the problem of sidelobe suppression [18].

In 2016, [21] proposes WOA inspired by the hunting behavior of humpback whales. The WOA
is very competitive, in comparison with several state-of-the-art meta-heuristic algorithms [21]. So far,
WOA has been applied in general array synthesis [22]. However, each evolutionary algorithm has its
own advantage and disadvantage, and WOA directly applied in the synthesis problem of MIMO radar
is not always effective. Therefore, we propose an improved whale optimization algorithm called IWOA,
which is applied to solve the optimization problem of MIMO radar, involving the sidelobe reduction,
null control, and wide null. Since we need to consider the two arrays simultaneously for synthesis the
problem of MIMO radar, the synthesis of wide null in MIMO radar using evolutionary algorithms is
thus a challenge problem.

This paper is organized as follows. Section 2 formulates the specific problem mathematically. The
description and performance evaluation of the proposed algorithm are presented in Section 3. The
simulation results are shown in the Section 4. Section 5 contains our conclusion.

2. PROBLEM FORMULATION

Considering a narrow-band MIMO radar system, the transmitter consists of M antennas, and the
receiver consists of N antennas. These antennas are all linear omnidirectional antennas. Then the
direction functions of transmitter and receiver, fT (u) and fR(u), can be stated as follows

fT(u) =
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where j =
√−1, wT

i , and dT
i are the ith excitation and location of transmitter subarray; wR

i denotes
the ith excitation of receiver subarray; dR

i stands for the ith location of receiver subarray; {·}T is the
transpose of a vector; λ is the operating wavelength. Let u = sin θ−sin θ0, where θ is the beam direction
of plane wave, uniformly divided by k, i.e., θ = {θi|i = 1, . . . , k}, and θ0 is the direction of maximum
beam. For the linear array, θ and θ0 are limited in [−π/2, π/2], therefore the variable u ∈ [−2, 2]. In the
transmitter, assuming that the maximum steering of main lobe is located at u = 0, then fT(u) = fT(−u).
Since the pattern in transmitter is symmetric about u = 1, we have fT(1 + Δu) = fT(1−Δu). Similar
to the transmitter, the receiver has fR(u) = fR(−u), fR(1 + Δu) = fR(1 − Δu). The two-way pattern
of MIMO radar [3, 7] associated with u can be written as

f(u) = fT(u) · fR(u) =
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To compute more efficiently in Matlab software, we adopt Kronecker operator ⊗ to rewrite Eq. (3) as
follows
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This is because the computation load of using Eq. (4) to compute is much less than that of using Eq. (3),
which has been proved in [3].

3. IMPROVED WHALE OPTIMIZATION ALGORITHM

The main steps of IWOA algorithm are summarized in Algorithm 1, and the corresponding parameters
are specified in Table 1. In the following, we only complete some details as supplement to Algorithm 1.

Algorithm 1: Pseudo code of the IWOA algorithm
Input: input parameters t, tmax, l, r
Output: X∗
Initialize the whales population Xi(i = 1, 2, . . . , n)1

Calculate the fitness of each search agent2

X∗ =the best search agent3

while t < tmax do4

for each search agent do5

Update α,A,C, l and p6

if p< th then7

if |A| ≤ 1 then8

Update the position of the current search agent by D = |C · x∗(t) − X(t)|9

X(t + 1) = X∗(t) − A · D
else10

Update the position of the current search agent by the (5)11

end12

else13

Update the position of the current search agent by D
′
= |X∗(t) − X(t)|14

X(t + 1) = D
′ · ebl + cos(2πl) + X(t)

end15

end16

Correct the search agent beyond the search space17

Calculate the fitness of each search agent18

Update X∗ if there is a better solution19

t = t + 120

end21

At the beginning of initialization, we select a known solution as an initial population, since a better
initial population will contribute to fast convergence of algorithm [23]. On the other hand, it will also
relieve the sensitivity of the evolutionary algorithm to an initial population.

Compared with some traditional algorithms, WOA has demonstrated to have good performance;
however, it has some demerits, such as slow convergence, low precision, and being easily trapped into
local optimum because of insufficient diversity of population [24]. Levy flight is an effective method to
implement the large jump in the search space and is used in many optimization techniques to produce
random step size in the design region [25–27]. Moreover, using Levy flight can improve the fast moving
ability of WOA, pull WOA to jump out of the stagnation on the problem, and reduce the number
of spiral paths or number of iterations. Thus, it can get better various search spaces for detecting
the global optimal. Herein the update of position vector for search agent is based on the Sine Cosine
Algorithm (SCA), proposed by Mirjalili in 2016 [28]. SCA makes full use of the periodic behavior of
sine and cosine trigonometric functions to generate a new candidate solution around the other, so as to
enhance the capability of exploitation.

To obtain better diversity, Levy flight distribution [29] is used and defined by the following:

Xi(t + 1) = Levy(Xi(t)) + α · sin(τ) |γX∗ − Xi(t)| (5)
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Table 1. Parameters specification.

Symbol Quantity Value

(5)
α control parameter 2(1 − t/tmax)
τ random number [0, 2π]
γ random number [0, 2]

(8) scale scale factor 0.01
(9) β control parameter 1.5

Algorithm1

t iteration times [1, tmax]
tmax maximum of iteration 100

l random number (−1, 1)
r random number [0,1]
b random number (0, 10)
C control parameter 2 · r
α control parameter 2(1 − t/tmax)
A control parameter 2α · r − α

th threshold of probability 0.5
p random number [0, 1]

where Xi is the position vector of the ith individual; α, τ and γ are the parameters to obtain the position
of the new solution, the specifications of α, τ , and γ are listed in Table 1. In Eq. (5), Levy(Xi(t)) can
be defined by the following:

Levy(Xi(t)) = Xi(t) + step ⊕ random(size(Xi(t))) (6)

where random(size(Xi(t))) is the dimension of vector and equals the dimension of the objective problem.
The term step is obtained by the following:

step = stepsize ⊕ Xi(t) (7)

where parameter stepsize is given by the following:

stepsize = scale × s (8)

where scale is the scale factor, s = u
υ1/β , where u and υ are Gaussian distributions, respectively, i.e.,

u ∼ N(0, σ2
u), υ ∼ N(0, σ2

υ), where σ2
υ = 1, σ2

u is defined by the following:

σ2
u =

{
Γ(1 + β) sin(πβ/2)

Γ((1 + β)/2)β2(β−1)/2

}1/β

,where β ∈ (0, 2] (9)

where Γ stands for the standard Gamma function.
In Algorithm 1, the choice of b mainly depends on the feature of problem. Generally, b will be

limited between 0 and 10. We choose b = 4 according to our observation in the experiments. Also,
IWOA will dramatically worsen in performance if b is more than 8. Additionally, the threshold th can
be tuned, but there is only a slight effect on the performance of IWOA. th equals 0.5. We still take
th = 0.5 [21] in our experiments.

The improved algorithm IWOA is tested by solving the eight benchmark functions F1-F8, listed in
Table 2. Such functions are used in [21, 30–32]. Table 2 also gives the number of design variables Vno,
dynamic range of optimization variables Range, and the optimum fmin.

For the sake of comparison, the population size and maximum iteration are consistent with those
of [21], i.e., population size = 30, tmax = 500. Functions F1–F4 have only one global optimum to
evaluate the capability of exploitation for meta-heuristic algorithm. F5–F8 are multi-modal functions
including many local optima, whose numbers increase exponentially with the number of design variables.
Functions F5–F8 can evaluate the capability of exploration for meta-heuristic algorithm.
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Table 2. Table of testbench functions.

Function Vno Range fmin

F1(x) =
∑n

i=1 x2
i 30 [−100, 100] 0

F2(x) =
∑n

i=1 |xi| + ∏n
i=1 |xi| 30 [−10, 10] 0

F3(x) =
∑n

i=1

(∑i
j=1 xj

)2

30 [−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) =
∑n

i=1

[
x2

i − 10 cos (2πxi) + 10
]

30 [−5.12, 5.12] 0

F6(x) = −20 exp
(
−0.2

√
1
n
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i=1 x2

i

)
− exp

(
1
n
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i=1 cos(2πxi)

)
+ 20 + e 30 [−32, 32] 0

F7(x) = 1
4000

∑n
i=1 x2
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i=1 cos

(
xi√

i

)
+ 1 30 [−600, 600] 0

F8(x) = π
n

{
10 sin(πy1) +

∑n−1
i=1 (yi − 1)2[1 + 10 sin2(πyi+1] + (yn − 1)2

}
+
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i=1 u(xi, 10, 100, 4)}

yi = 1 + xi+1
4

, u(xi, a, k, m) =

⎧⎪⎨
⎪⎩

k(xi − a)m, xi > a

0, −a < xi < a

k(−xi − a)m, xi < −a

30 [−50, 50] 0

For each benchmark function, starting from different populations randomly generated, IWOA will
run 100 times,

The corresponding results are shown in Table 3. To facilitate comparison, we also provide the
statistical results of WOA, PSO, Gravitational Search Algorithm (GSA) [33], DE, and Fast Evolutionary
Programming (FEP) [34]. As can be seen, IWOA is the most efficient algorithm or the second best one,
and exhibits a better performance than other algorithms. IWOA has the ability of good exploitation
and exploration.

Table 3. Average and standard deviation (Std) for F1-F8 benchmark functions with different
algorithms.

Algorithms F1 F2 F3 F4 F5 F6 F7 F8

Average

IWOA 2.76E-82 1.51E-50 6.49E-11 7.00E-02 0 2.07E-15 0 8.2425E-18

WOA 1.41E-30 1.06E-21 5.39E-07 0.072581 0 7.4043 0.000289 0.339676

PSO 0.000136 0.042144 7.01E+01 1.086481 46.70423 0.276015 0.009215 0.006917

GSA 2.53E-16 0.055655 8.97E+02 7.35487 25.96841 0.062087 27.70154 1.799617

DE 8.20E-14 1.50E-09 6.80E-11 0 69.2 9.70E-08 0 7.9E-15

FEP 5.70E-04 8.10E-03 0.016 0.3 0.046 0.018 0.016 9.2E-06

Std

IWOA 3.89E-82 4.52E-50 7.27E-11 8.43E-02 0 1.67E-15 0 6.25E-18

WOA 4.91E-30 2.39E-21 2.93E-06 0.39747 0 9.897572 0.001586 0.214864

PSO 0.000202 4.54E-02 2.21E+01 0.317039 11.62938 0.50901 0.007724 0.026301

GSA 9.67E-17 0.194074 3.19E+02 1.741452 7.470068 0.23628 5.040343 0.95114

DE 5.90E-14 9.90E-10 7.40E-11 0 38.8 4.20E-08 0 8E-15

FEP 0.00013 0.00077 1.40E-02 0.5 0.012 0.0021 0.022 3.6E-06

The convergence curves of IWOA, GSA, PSO, and SSA are provided in Fig. 1 to see the convergence
rates of these algorithms. Herein the average of the best solution is attained in each iteration over 30
runs. As can be seen in the figure, IWOA shows different behaviors when optimizing the benchmark
functions. Firstly, the convergence rate is accelerated with the increase of iteration. It is evident in F5,
F6, and F7. This results from the adaptive mechanism in IWOA that helps to move to the promising
regions of the search space and rapid convergence. Secondly, the final iterations all reach better optima,
and these results show that the IWOA benefits from the modification and obtains better diversity. In
summary, it seems that IWOA has the success convergence rate in optimizing the benchmark functions.
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Figure 1. Comparison of convergence curves between IWOA and other algorithms.

4. SIMULATION RESULTS

Herein we present three cases on synthesis of the array problems. The computer configuration and
parameters specification used in simulation are listed in Table 4. The parameter configuration is as
follows: the elevation angle θ ∈ [−90◦, 90◦] is divided by 1024. One hundred independent runs are
repeated for reliability in the next examples. In consideration of the effect of mutual coupling, tthe
minimum spacing will be restricted not to be lower than λ/2.

Table 4. Computer configuration and parameters specification.

Computer configuration

RAM 2GB DDR
Language Matlab 2016

CPU 2.66 GHz Intel Core2TM

Parameters specification

Iteration Initial population Aperture (T/R) No. elements (T/R)

100 60 50λ 25

4.1. Synthesis of Psll with Spacing

This case is to optimize the spacing of both subarrays for the lower Psll on pattern, thus the spacings of
transmitter and receiver, dT

i , dR
i , are viewed as the variables of optimization. This problem is subject to

the given excitation, the fixed aperture and the constrained spacing. In summary, it can be formulated
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in the form of optimization problem as follows

find
(
dT

i , dR
i

)
min fitness

s.t. �T = �R = 50λ,∣∣wT
i

∣∣ =
∣∣wR

i

∣∣ = 1, dT
i , dR

i � λ/2.

(10)

where �T, �R respectively denote the apertures of transmitter and receiver; wT
i , wR

i are the excitations
of both subarrays; and the fitness function fitness is defined by

fitness =
n∑

i=1

1
Δθi

∫ θiu

θil

|f(θs) − Pslld|2 dθ,where

Δθi = |θiu − θil|, θs ∈ θsidelobe region

(11)

where θil and θiu represent the upper bound and lower bound of the ith angular interval θi, and Pslld
denotes the desired Psll.

The simulation results by IWOA are shown in Table 5 and Fig. 2. Table 5 provides Psll and
Psllave of [2, 3, 7] to compare with that of IWOA. It can be observed that IWOA reaches the best Psll
−32.82 dB, which outperforms the other three algorithms. Fig. 2 gives the resultant radiation pattern
obtained by IWOA. Here we only compare it with those of GA [2], because the specifically numerical
results of DPSO and CDE on patterns are not provided in [3, 7]. As can be clearly seen, the dynamic
varying range of IWOA is less than that of GA over the sidelobe region.

Figure 2. Resultant radiation patterns obtained by GA and IWOA.

Table 5. Performance comparison with different algorithms.

Algorithm GA [2] DPSO [3] CDE [7] IWOA

Psll (dB) −28.65 −30.23 −30.93 −32.82
Psllave (dB) – −29.15 – −41.26

4.2. Synthesis of Psll and Null with Spacing and Excitation

This case is based on the multi-objective optimization problem of MIMO radar, i.e., for the lower Psll
and deeper nulls. The excitations and spacings of transmitter and receiver, dT

i , dR
i , wT

i , wR
i , are all taken
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as the optimization variables to optimize simultaneously. The numbers of the variables and objectives
are twice as many as Example A. This problem can be formulated as follows

find
(
dT

i , dR
i , wT

i , wR
i

)
min fitness

s.t. �T = �R = 50λ,

0 ≺ wT
i , wR

i ≺ 1, dT
i , dR

i � λ/2.

(12)

where the fitness function fitness can be defined by

fitness = α|Psll − Pslld| + β|Null − Nulld| (13)

where Nulld denotes the desired null level, and α, β are the weight coefficients used to tune. In this
case, Pslld, Nulld are equal to −33 dB, −95 dB, respectively. The weight coefficients α = 0.9, β = 0.1.

After the iteration process is finished, the simulation results are shown in Table 6, which shows
the best results obtained by IWOA, comparing Psll, Psllave, Null, and Nullave with those of DPSO [3],
GA [2], and CDE [7]. It can be seen that IWOA achieves better results.

Table 6. Performance comparison with different algorithms in Example B (Pslld = −33 dB, Nulld =
−95 dB).

Algorithms Psll Psllave Null Nullave

IWOA −33.12 −41.61 −94.99 −55.81
DPSO [3] −32.2 −28.32 −79.03 –
GA [2] – – – –
CDE [7] – – – –

Then we further investigate the influence of the varying desired nulls on the resultant Psll in the
presence of a fixed desired Psll. Table 7 gives the resultant results when null levels are decreased by
the step of −20 dB from −50 dB to −90 dB, whose radiation patterns are plotted in Fig. 3. As can be
observed, when we decrease the desired null Nulld, the real null level Null will be decreased. Thus in
practice, we have to make a tradeoff between the lower Psll and lower Null.

Table 7. Performance comparison under the varying desired nulls (Nulld) and the same desired Psll
(Pslld) (dB).

Nulld Pslld Psll Psllave Null Nullave

−50 −33 −33.05 −39.96 −65.91 −53.23
−70 −33 −32.99 −39.89 −69.99 −58.71
−90 −33 −32.58 −41.01 −89.99 −59.12

4.3. Imposing Wide Null by Optimizing the Spacing and Excitation for Both Subarrays

This case is based on imposing wide nulls at the specified angles on radiation pattern to reject the
interferences. We consider not only the case of imposing a wide null, but also the case of imposing two
wide nulls.

For imposing a wide null, assume that the inference is located in [−40◦, −35◦]. Thus to overcome
such interference by imposing wide null, a wide null should be placed in [−40◦, −35◦] and is assumed
below −40 dB. At the same time, we expect the obtained Psll to be as small as possible. Several related
parameters are assigned as follows: Pslld = −25 dB, Nulld = −40 dB.
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Figure 3. Resultant radiation patterns under the varying desired nulls.

Figure 4. Radiation pattern with a wide null
locating in [−40◦, −35◦].

Figure 5. Converge curve to implement
a wide null locating in [−40◦,−35◦] (Pattern
corresponding to Fig. 4).

In this optimization, the fitness function fitness [35] will be defined by the following

fitness =
n∑

i=1

1
Δθi

∫ θiu

θil

|δ(θ)|2 dθ +
m∑

j=1

|f(θj)|,where

δ(θi) =
{

Nulld − f(θi), if θi ∈ [−40◦,−35◦]
0, otherwise.

(14)

where n and m stand for the number of θi and the desired null.



54 Yuan et al.

In the right-hand side of Eq. (14), the first term aims at suppressing the sidelobe level of radiation
pattern, and the second term is used to control the null at the prescribed directions.

The simulation results are shown in Table 8, Fig. 4, and Fig. 5. Table 8 gives the excitation and
position of each element, together with the related metric measurements, including Psll, Psllave, Nullmin,
and Nullave. The corresponding radiation pattern is depicted in Fig. 4. As can be seen, a wide null
located in [−40◦, −35◦] is implemented as expected, and meets the required Psll as well. Fig. 5 shows
the convergence curve with iteration, as can be seen in the figure. IWOA has a rapid convergence rate
that is consistent with the previous test result.

For imposing the two wide nulls, assume that the inferences are located in [−40◦, −35◦] and [−65◦,
−60◦]. To overcome such interferences by imposing the wide nulls, we need to place the two wide nulls
in the locations of the corresponding interferences. To exhibit the flexibility of the method, one wide
null located in [−40◦, −35◦] will be required to be below −43 dB, which remains the same with the case
of the single wide null, and the other wide null located in [−65◦, −60◦] will be required to be below
−50 dB. At the same time, we hope the obtained Psll as small as possible. In this case, Pslld = −25 dB,
(Nulld ∈ [−40◦, −35◦], Nulld ∈ [−65◦, −60◦]) = (−43 dB, −50 dB).

The simulated results are shown in Table 9, Fig. 6, and Fig. 7. Table 9 gives the excitation and
position of each element, together with the related metric measurements, including Psll, Psllave, Nullmin,
and Nullave. The corresponding radiation pattern is depicted in Fig. 6. As can be seen, the two wide

Table 8. Positions and excitations of elements
with null in [−40◦, −35◦] of Fig. 4.

No. dT dR wT wR

1 0.00 0.00 0.15 0.13
2 1.39 1.34 0.14 0.14
3 2.06 2.02 0.12 0.13
4 2.75 2.72 0.15 0.12
5 3.45 3.85 0.13 0.15
6 4.12 4.55 0.15 0.13
7 4.81 5.23 0.13 0.11
8 5.48 5.88 0.12 0.13
9 6.15 6.55 0.11 0.13
10 6.84 7.25 0.13 0.13
11 7.51 7.95 0.13 0.12
12 8.66 8.63 0.13 0.11
13 9.33 9.30 0.13 0.13
14 10.00 10.00 0.12 0.14
15 10.66 10.66 0.15 0.23
16 11.31 11.35 0.10 0.13
17 11.98 12.05 0.13 0.12
18 13.13 12.71 0.12 0.13
19 14.26 13.38 0.12 0.23
20 14.91 14.05 0.14 0.13
21 15.57 14.70 0.14 0.23
22 16.24 15.36 0.11 0.12
23 17.37 16.04 0.12 0.15
24 18.51 16.71 0.13 0.12
25 50.00 50.00 0.13 0.11

Results Psll Psllave Nullmin Nullave

(dB) 26.83 −40.34 −62.56 −49.09

Table 9. Positions and excitations of elements
with both nulls in [−40◦, −35◦] and [−65◦, −60◦]
of Fig. 6.

No. dT dR wT wR

1 0.00 0.00 0.14 0.13
2 1.00 1.00 0.10 0.10
3 1.50 1.50 0.10 0.10
4 2.00 2.00 0.10 0.16
5 2.50 2.50 0.10 0.10
6 3.00 3.00 0.10 0.10
7 3.50 3.75 0.10 0.14
8 4.00 4.25 0.17 0.16
9 4.50 4.75 0.11 0.10
10 5.27 5.25 0.10 0.10
11 6.02 5.75 0.10 0.10
12 6.52 6.25 0.10 0.15
13 7.02 7.08 0.15 0.10
14 7.52 7.73 0.11 0.10
15 8.02 8.23 0.10 0.10
16 8.52 8.73 0.10 0.10
17 9.02 9.23 0.15 0.10
18 9.52 9.76 0.13 0.10
19 10.18 10.42 0.14 0.10
20 10.68 10.92 0.15 0.10
21 11.18 11.42 0.10 0.13
22 11.68 11.92 0.16 0.10
23 12.18 12.59 0.10 0.10
24 12.68 13.09 0.13 0.10
25 50 50 0.1 0.1

Results Psll Psllave Nullmin Nullave

(dB) −26.16 −39.41 −69.84 −52.01
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Figure 6. Radiation pattern with the two wide
nulls in [−40◦,−35◦] ∪ [−65◦,−60◦].

Figure 7. Converge curve to implement the two
wide nulls locating in [−40◦,−35◦]∪ [−65◦,−60◦]
(Pattern corresponding to Fig. 6).

nulls located in [−40◦,−35◦] ∪ [−65◦,−60◦] are implemented as expected and also reach the required
Psll, respectively. Fig. 7 shows the convergence curve with iteration, and it shows that IWOA improves
the solution continually.

5. CONCLUSION

In this study, we adapt WOA to optimize the problems of two-way pattern of MIMO radar, involving
the achievements of sidelobe suppression, deep null, and wide null. The test of IWOA based on the
benchmark functions is conducted and compared with those of several state-of-the-are algorithms.
The obtained results show that the improvement enhances the performance in population diversity,
exploration and exploitation capabilities, and exhibits a better convergence rate. Finally, examples on
MIMO radar are given, and the obtained numerical results validate that IWOA is able to efficiently
optimize the synthesis problem of MIMO radar system. Additionally, the effect of varying desired nulls
on Psll is also investigated.
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