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Enhanced Radio Tomographic Imaging Method for Device-Free
Localization Using a Gradual-Changing Weight Model
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Abstract—Radio tomographic imaging (RTI) is a main method in device-free localization (DFL) that
can locate a target by analyzing its shadowing effect on wireless links, while removing the requirement
of equipping the target with a device. The accuracy of RTI method closely depends on the accuracy of
shadowing weight model, which represents the relationship between the shadowing effect of the target
on wireless links and target location. However, most existing models have not been accurate enough
for many applications since they cannot explain some phenomena observed in DFL practices. To
overcome the shortcoming of the existing weight model, this paper proposes a gradual-changing weight
model to enhance the imaging quality of RTI. Meanwhile, a foreground target detection algorithm
based on the shape feature of the target image is proposed to reduce the negative impact of background
noises and pseudo-targets, thereby further enhancing the localization accuracy. The indoor and outdoor
experimental results highlight the advantages of using the proposed method in improving the imaging
quality and the positioning accuracy.

1. INTRODUCTION

The availability of high-accuracy location awareness in outdoor and indoor environments is a key enabler
for a wide range of pervasive wireless applications. Recently, an emerging received signal strength (RSS)-
based device-free localization (DFL) [1, 2] technology has attracted much attention. In the DFL system
based on radiofrequency (RF) signal, radio transmitters (RTs) and radio receivers (RXs) are used as
sensors to sense a target, and the location of the target can be estimated by fusing the changes of
RSS measurements of wireless links. In contrast to traditional localization techniques that the tracked
entities are required to carry radio devices such as radio frequency identification (RFID) tag, DFL can
localize the target without attaching any electronic device and does not require the target to cooperate
with the localization system. In some applications, such as battlefield surveillance, emergency rescue,
and security safeguard, it is impractical to require a target to carry a cooperative device. Under the
situations that traditional localization systems do not work, RSS-based DFL can still infer the target’s
location by measuring the target’s effect on the RSS of the network’s links and becomes an effective
method for passive localization.

So far, there are two widely used approaches to perform DFL: fingerprint-based method [3–5]
and model-based method [6–15]. Fingerprint-based methods need to obtain a pre-trained database of
training data labeled with a target’s position in the offline stage. During the online stage, the current
RSS measurements are compared to those in the database to estimate the current target’s position.
The fingerprint-based method can well describe the relationship between link measurements and target
location, but the training process is time consuming. Moreover, this time consuming process needs to
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be repeated once the environment is changed. Another significant approach of DFL is to model the RSS
variation, due to the shadowing or reflection of the target, as a function of the target’s position. Unlike
the fingerprint-based method, model-based approaches use a semi-empirical spatial weight model for
the changes in RSS with respect to the locations of the sensors and a target. Inspired by the computed
tomography method in medical systems, Wilson and Patwari [6] firstly introduced shadowing-based
radio tomography imaging (RTI) method for model-based DFL that can estimate the RSS changes in
the RF propagation field of a monitored area using RF sensor networks and then form an image of the
changed field by using the regularized method. This image is then used to infer the positions of targets
within the deployed network. The performance of the shadowing-based RTI is further improved by the
subsequent studies on variance-based RTI [7], histogram-based RTI [8], channel diversity RTI [9, 10],
fade-level RTI [11], directional RTI [12], or compressive sensing (CS) methods [13–15]. The benefits
of the RTI approach are its intuitive expression through images and high computational efficiency.
However, due to the dynamic and sensitive nature of RSS and the mismatch between the a priori model
and the actual RSS changes, there are usually lots of noise points or false targets in the RTI image,
which may result in large localization errors.

This paper focuses on RTI approaches, and we present an enhanced RTI (ERTI) method to improve
the imaging quality of RTI using the gradual-changing weight elliptical model (GEM). Meanwhile, a
foreground target detection (FTD) algorithm based on the circular neighborhood model is used to
extract the target’ image in order to reduce the negative impact of background noise points and pseudo-
targets. The remainder of the paper is organized as follows. Section 2 describes the basic principle of
RTI and problem formulation. The details of the gradual-changing weight elliptical model are addressed
in Section 3. The target detection algorithm is described in Section 4. The experimental setup and
experimental results are given in Section 5. Finally, Section 6 concludes the paper.

2. THE BASIC PRINCIPLE OF RTI AND PROBLEM FORMULATION

Assuming that L wireless nodes are arranged around the localization area, which can make up
M = (L − 1)L wireless links. The two-dimensional localization space is evenly divided into N grids,
and these grids can be called pixels in RTI. Then, the original RTI work in [6] has been proposed to
use a linear model that relates the image to RSS variations:

y = Wx + n (1)

where y = [y1, . . ., yM ] is a M × 1 vector that represents the target-affected RSS changes on M links
compared with the RSS measurements when the deployment area is vacant. x = [x1, . . ., xN ]T is a
N × 1 vector to be estimated, where xj (1 ≤ j ≤ N) represents the RSS attenuation at the grid j which
corresponds to the fact that whether a target affects the jth grid. The M ×1 vector n represents noises.
W is a M × N weight matrix. For the often-used elliptical model (EM) in [6], the weight of pixel j on
link i is

wij =
1√
di

{
1, if dij1 + dij2 < di + β

0, otherwise
(2)

where dij1 and dij2 are the distances from the center of pixel j to the two nodes of link i; di is the
distance between two nodes of link i; and β is a tunable parameter defining the width of the ellipse.

Since the above problem is an ill-posed inverse problem when M < N , regularization techniques
such as Tikhonov regularization [6] and regularized least squares estimators [9] have been used to handle
the ill-posedness. Here, we use the Tikhonov regularization approach, which is given as:

x =
(
WT W + αQTQ

)−1
WT y = Ay (3)

where Q is the Tikhonov matrix, and α is the regularization parameter. The linear transformation A
can be calculated beforehand enabling real-time image reconstruction.

Due to its strong intuitiveness, the RTI method has attracted lots of attention in recent years.
The core of the RTI method is to construct the relationship between RSS changes and target-affected
pixels through a shadowing weight model. Therefore, the shadowing weight model is one key factor that
determines the imaging quality of RTI, and it also becomes one research focus of RTI. Although the
elliptical weight model is widely used and significantly promotes the research of RTI, it only considers
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the influence of link length on weight and ignores the distance relationship between the target and links.
More importantly, the elliptical weight model assumes that all the weights in an ellipse are the same, but
this is also not consistent with the real target influence that may be different at the different positions
in an ellipse. To handle these drawbacks of the elliptical model, Hamilton et al. [16] proposed a novel
inverse area elliptical model (IAEM), which defines that the shadowing effect of a target on a wireless
link is inversely proportional to the size of the smallest ellipse that contains the target. As a more
effective model, exponential-Rayleigh (ER) model [17] is successfully used to capture the shadow fading
effect from the line-of-sight (LOS) path to non-line-of-sight (NLOS) area and predict the enhancement
phenomenon due to target-induced multipath interferences. However, the ER model fails to take the
diffraction fading into account. Different from the ER model, the diffraction-based model [18] exploits
the proximity to TX/RX nodes to parameterize the RSS variations, but it ignores the NLOS fading.
Recently, based on extensive experiments, the saddle surface model (SaS) [19] is proposed to model the
RSS variations in terms of both target-induced multipath interferences and the proximity to TX/RX
nodes. Although the above models in [17–19] are more reasonable than the traditional elliptical weight
model, they only provide a specific amount of RSS change rather than give a simple weight, which
cannot be directly used in existing RTI methods. Coincidentally, these models are all incorporated into
the particle filter framework to realize DFL.

In addition, although the above models significantly enrich the research of the model-based RTI,
most models that are obtained empirically or constructed according to the diffraction theory only
describe the shadowing effect under the ideal conditions. Due to the dynamic and sensitive nature of
RSS, a slight variation of the environment will cause the changes of RSS measurements. Hence, noise
points are often unavoidable for RTI results due to the model mismatch. Even some spots that represent
pseudo-targets include the brighter pixels appearing on the image as shown in Fig. 1(b) (the detailed
experimental setup will be introduced in Section 5). Since the RTI method usually chooses the brightest
pixel to represent the target position, the pseudo-target spot may bring large localization error once
one pseudo-target is regarded as the real target. Therefore, how to reduce background noise points and
pseudo-target spots has become one hot issue of RTI research in recent years.

   

                 (a) (b)

Real Target 

Pseudo-target

The brightest pixel

Figure 1. (a) Geometry of the target position. (b) The illustration of a pseudo-target example.

In view of the above problems, this paper firstly proposes a gradual-changed elliptical weight model
to achieve a more accurate description about the relationship between the RSS change and the target
influence. At the same time, a foreground target detection algorithm is used to extract the target’ image
in order to mitigate the negative impact of background noises and pseudo-targets.

3. GRADUAL-CHANGING WEIGHT MODEL AND MODEL ASSESSMENT

So far, most RTI methods concentrate mainly on the elliptical weight model in [6]. However, there are
still some limitations for the elliptical weight model. First, the weights inside an ellipse are the same
values. Second, the minor axis width of the ellipse is empirical and unchanged for different ellipses.
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Third, the existing elliptical weight model only considers the influence of link length on weight while
ignoring the distance relationship between the target and links.

In fact, many experiments have demonstrated that the weight of pixels in different areas inside an
ellipse should be different [16–19]. For example, the target’s influence on the link when a person stands
near the LOS path is greater than that when a person is far from the LOS path. Similarly, when a
person stands on a LOS path, the influence on the link is greater than when a person stands on an
NLOS path inside the same weighting area. In addition, when the distance between a person and nodes
is smaller, the influence of the target is greater. Hence, the existing elliptical weight model that uses
the unchanged weight in an ellipse is usually unreasonable for real applications.

Based on the above analysis, we propose a gradual-changed weight elliptical model which is
mathematically described in Eq. (4), and the geometry of the GEM is illustrated in Fig. 2.

wij =

⎧⎨
⎩

ai − (dij1 + dij2)
ai − di

× (dij1 − dij2)2

d2
i

if dji1 + dji2 < dj + ρi max

0 else
(4)

where ai is the length of elliptical major axis on link i, and ρimax =
√

λdi/2 is the maximum first
Fresnel radius [20, 21]. In this model, (dij1 − dij2)2/d2

i represents the weight variation along the ith link
direction, while (ai − (dij1 + dij2))/(ai − di) describes the weight variation along the vertical direction
of link i.

The main differences between the GEM and traditional elliptical weight model are twofold. Firstly,
according to the diffraction theory in [20, 21], most target-affected electromagnetics energy is spread
in the first Fresnel zone, while the influence of the target is very small when the target is outside the
first Fresnel zone. Different from the existing elliptical model with the unchanged minor axis length,
therefore, in our model the minor axis length of each ellipse is equal to the largest first-Fresnel radius,
which is related to the link length. Second, the weight inside the ellipse region is not fixed any more.
On the contrary, the weight changes according to the position that a target stands.

Figure 2. Geometry of the gradual-changed elliptical weight model.

To evaluate the performance of our model, we perform some experiments that use a similar method
to that [18, 19] to validate the model and compare its performance with other elliptical models, i.e.,
traditional EM [6], and IAEM [16] under the same experimental environment. In the experiment, the
nodes are put on top of tripods with a height of 1 m from the ground. Two nodes are placed 6m apart,
and the whole experimental scenario is half-space limited by a ground. The transceiver of the wireless
nodes is turned to work on 2.45 GHz. All the nodes are equipped with omnidirectional whip antennas
with gain of 3 dB. In our experiments, one node transmits a packet to another node while a person
stands at each test position along two special trajectories that are designed as illustrated in Fig. 3(b),
and the RSS of the link is recorded simultaneously. In order to facilitate comparisons, the RSS change
values are normalized to [0, 1].

The experimental measurements and modeling results of three models are shown in Fig. 3(c) and
Fig. 3(d). These results confirm our thought and indicate that RSS attenuation changes gradually
when the link is crossed by the target, and the RSS experiences larger attenuation in the region around
the transmitter or receiver or near the LOS path. From the figures, we can see that the simulated
shadowing effect curve generated by the GEM model is more close to the measured shadowing effect
points, while EM and IAEM fail to match the measurements. Especially, the curves of EM and IAEM
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Figure 3. (a) Photograph of the experiment scenario. (b) Illustration of the experimental setup. (c)
RSS variations along the path 1. (d) RSS variations along the path 2.

are presented as straight lines or segmental straight lines, which means that the weights are same at
different locations. Obviously, these models are not satisfied with the experimental measurements and
cannot effectively overcome the mismatch between the weight model and real measurements. Further,
the unreasonable weight relationship will reduce the imaging quality of RTI and even result in some
pseudo-target spots appearing on the image.

4. FOREGROUND TARGET DETECTION ALGORITHM

To more accurately represent the relationship between the weight model and the RSS attenuations
caused by the target, a modified elliptical weight model has been proposed and verified by experiments.
However, this model is still constructed according to the extensive experimental data and the diffraction
theory under normal conditions. Since RSS is sensitive to environmental variations in practice, not only
RSS measurements are time varying, but also a slight variation of the environment may possibly cause
the mismatch between the weight model and the changes of RSS measurements. Therefore, some
pseudo-target spots and background noise points can still appear on the image, even if the modified
elliptical weight model is used. Once these pseudo-targets are mistakenly regarded as true targets, the
localization error will significantly increase. Hence, this paper proposes a foreground target detection
algorithm based on the shape feature of the real target image to further reduce the negative effect of
pseudotargets and background noises. This algorithm includes a two-step procedure.

In the first step, we divide all pixels into two categories, i.e., the foreground target pixels and
background pixels, by a simple fixed threshold depending on the average brightness value of all pixels.
This step is based on the fact that the brightness values of those pixels that represent the target are
usually larger than the background noise points’ brightness. Hence, it is reasonable to regard the pixels
whose brightness values below the average brightness value as the background pixels and set their
brightness values to 0 for eliminating their effects.

Although the first step initially removes some distinct background noise points whose brightness
is below the average brightness value, some brighter pseudotarget points may remain in the image.
Although increasing the threshold value may eliminate more noise points, the suitable threshold value
is hard to choose. If the threshold value is too high, those pixels that represent the real target image
will also be eliminated. On the other hand, setting the threshold value too low will leave too many
background noise points, which will reduce the imaging quality. Therefore, unlike the threshold method
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in the second step, we exploit the target’s shape information to help finding the real target position.
Since human target can be modeled as a cylinder with radius r, which is frequently employed in the
literature [17–19], the target-affected area in the RTI image is an approximate circle with almost the
same brightness in a 2-D plane. It means that there are a group of high brightness pixels clustered
around the target position. On the contrary, the shapes and sizes of spots caused by pseudotargets and
noise points are usually random. Moreover, some zero-value pixels may appear in these pseudotarget
spots because the brightness values of pseudotarget pixels are not uniform, and some low bright pixels
are reset to zero by the first-step threshold operation.

Based on the above analysis, we propose to use the circular neighborhood model to obtain the
foreground target. Since the target spot is made of a group of high brightness pixels, the pixel inside
this spot will obtain a non-zero brightness value when using the product of all brightness values of
pixels in its circular neighborhood to represent its new brightness value. Contrarily, the pixel in the
pseudotarget spot will obtain a zero-value brightness if using the same multiplying operation, since there
are usually some zero-value pixels in the pseudotarget spot after the first-step threshold operation. Thus,
we can remove the most pseudotarget’s pixels and preserve the real target’s pixels via sliding the circular
neighborhood model. The circular neighborhood model can be described as:

x(i, j) =
∏

x(m,n), ‖x(m,n) − x(i, j)‖2 < r (5)

where x(i, j) and x(m,n) represent the brightness values of the pixel points at (i, j) and (m, n),
respectively. r is a user-defined parameter indicating the radius of the circular neighborhood, as shown
in Fig. 4.

∏
represents the multiple multiplication operation.

Figure 4. The illustration of the circular neighborhood model.

5. EXPERIMENTAL RESULTS

5.1. Physical Description of the Experiment

To verify the performance of the proposed ERTI method, we perform extensive experiments based
on a prototype DFL system in an uncluttered outdoor environment (Scene 1) and a cluttered indoor
environment (Scene 2), as shown in Fig. 5. The wireless nodes use the Zigbee standard on 2.4 GHz
frequency band for communications, and the transceiver of each node is a system-on-chip (SoC) CC2530
device with an omnidirectional antenna. Each node is about 1 m off the ground on a tripod in both
environments. Although it is not necessary to place the nodes in a uniform spacing, in this paper
the wireless nodes are evenly placed at the monitored region’s perimeter for simplicity. Each node is
assigned an ID number and programmed with a known order of transmission. When a node transmits,
each node that receives the transmission examines the sender identification number and reserves the
RSS from the transmitting node. The receiving nodes check to see if it is their turn to transmit, and if
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(a) (b)

Figure 5. Environment sences. (a) Uncluttered outdoor environment. (b) Cluttered indoor
environment.

not, they wait for the next node to transmit. If one node does not transmit, or the packet is corrupted,
a timeout causes each receiver to move to the next node in the schedule so that cycle is not halted.
To obtain the baseline RSS, measurements are taken for 60 s while the single human target is outside
the deployment area. In both scenes, a base-station node listens to all broadcasts from the perimeter
nodes and logs the RSS information to a mobile computer with 3.5 GHz processor and 8 GB memory
for real-time processing.

To evaluate the performance of the ERTI method, we compare it with the traditional RTI algorithm
under different weight models. The default parameters for RTI are as follows: the number of pixels is
2500, and regularization parameter is 4.5. The width of the ellipse for EM and IAEM models is 0.3 m.
All the statistical results are the average of 100 repeated experiments with independent measurement
data for high confidence.

5.2. Performance Evaluation and Comparison

5.2.1. Localization Performance in the Uncluttered Outdoor Environment (Scene 1)

First, we carried out the RTI experiments in the uncluttered outdoor experimental environment where
twenty wireless nodes were placed 2.0 m apart at the perimeter of a 10 m × 10 m square area being free
from obstructions. A photograph of the experimental setup is shown in Fig. 5(a). In each experimental
environment, ten people with different heights and body shapes acted as our targets, and each target
was tested at randomly selecting positions under this scene.

To help the readers to intuitively compare the imaging performance under the different models,
Fig. 6 provides an imaging example when the target is located at (3 m, 7.5 m). From Fig. 6(c), we can
observe that even if the FTD technique is not used to enhance the localization performance, the target
image is basically clear in the GEM-based RTI result. The background noises in Fig. 6(a) are not very
bad under the uncluttered outdoor environment, but there is a bright spot on the upper-left corner that
is easily regarded as a pseudotarget image. In addition, although there is not an obvious pseudotarget
image, the IAEM-based imaging result has a very large target region in Fig. 6(b), which may result in
large localization error. However, since few barriers exist in the uncluttered outdoor environment, the
imaging results of EM and IAEM models are similar to the GEM-based RTI result after using the FTD
technique. These results show that the proposed FTD algorithm can effectively improve the imaging
quality and achieve better localization performance.

The detailed statistical results of the localization performance are summarized in Table 1. When
the FTD technique is not used, compared with that of the EM and IAEM models, the mean RTI
localization error of the proposed GEM model ia reduced by 0.48 m and 0.27 m, respectively. Meanwhile,
the proposed approach has significantly better performance than the other two models in terms of
median and standard deviation (STD). These statistical results demonstrate that the GEM model can
be more accurate to describe the relationship between the target location and RSS attenuations caused
by targets, and enhance the localization stability. In the meantime, we can find that the localization
accuracies of three models are all improved, when the FTD technique is used. Especially, the mean
localization errors of the EM and IAEM models decrease about 0.47 m and 0.30 m, respectively. It
means that the FTD technique can also be applied to the other models. On the contrary, since the
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(a) EM (without FTD) (b) IAEM (without FTD) (c) GEM (without FTD)

   
(d) EM (with FTD) (e) IAEM (with FTD) (f) GEM (with FTD)

Figure 6. Imaging examples of three models in the uncluttered outdoor environment.

Table 1. Comparisons of localization errors in the uncluttered outdoor environment.

Model Mean (m) STD (m) Median (m)
RTI RTI+FTD RTI RTI+FTD RTI RTI+FTD

EM 0.77 0.30 0.71 0.16 0.51 0.22
IAEM 0.56 0.26 0.49 0.13 0.39 0.19
GEM 0.29 0.21 0.15 0.10 0.23 0.18

localization error of the GEM model is already small before using the FTD technique, the improvement
is not very obvious.

5.2.2. Localization Performance in the Cluttered Indoor Environment (Scene 2)

To evaluate the performance of the proposed method in rich multipath scenarios, the experiments were
also conducted in a cluttered indoor environment inside a laboratory where twenty wireless nodes were
placed 1.0 m apart at the perimeter of a 5 m × 5m square area. A photograph of the experimental
setup is shown in Fig. 5(b), and there are numerous obstructions such as tables and other equipment.
All other settings are similar to those in scene 1.

Similarly, in the indoor environment we firstly provide an intuitional RTI example when the target
is located at (1.5 m, 3.5 m), as shown in Fig. 7. In the cluttered indoor environment, multipath effects
result in higher variations in RSS measurements. Therefore, the background noises in RTI pictures
obviously increase, and some brightness values from pseudotargets may be larger than the real target’s
brightness. Compared with the results in Table 1, although the positioning errors of all models in
Table 2 show a upward trend with different levels before using the FTD technique, we can see that
the localization performance of the GEM model is better than the EM and IAEM methods, with mean
error reduced by 0.38 m and 0.20 m, respectively. These results can be attributed to the fact that the
GEM model can accurately relate the shadowing experienced by a signal to attenuation at specific in
space. Meanwhile, we can observe that the background noises and pseudotargets are almost removed
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(a) EM (without FTD)  (b) IAEM (without FTD) (c) GEM (without FTD)

   
(d) EM (with FTD)  (e) IAEM (with FTD) (f) GEM (with FTD)

Figure 7. Imaging examples of three models in the cluttered indoor environment.

Table 2. Comparisons of localization errors in the cluttered indoor environment.

Model Mean (m) STD (m) Median (m)
RTI RTI+FTD RTI RTI+FTD RTI RTI+FTD

EM 0.88 0.49 0.69 0.29 0.78 0.40
IAEM 0.70 0.36 0.61 0.23 0.59 0.32
GEM 0.50 0.27 0.51 0.19 0.38 0.26

in Figs. 7(d), (e), (f) after using the FTD technique. Thus, the mean values of the localization errors
under three models are all less than 0.50 m, and STDs are reduced to less than 0.30 m. These results
demonstrate that the FTD technique can not only enhance the localization accuracy, but also improve
the localization stability in cluttered environments.

6. CONCLUSION

In order to enhance RTI localization performance, we have proposed a novel gradual-changing weight
elliptical model to describe the relationship between link measurement and target location. Compared
with existing elliptical models, the GEM can provide more accurate weight information at every possible
location within each ellipse area. Meanwhile, a foreground target detection algorithm based on the
circular neighborhood model is proposed to further reduce the impact of background noises and pseudo-
targets and enhance the localization accuracy. The effectiveness of the proposed scheme has been
validated by extensive experiments in both indoor and outdoor environments.
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