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Spatial and Polarization Angle Estimation of Mixed-Targets

in MIMO Radar

Srinivasarao Chintagunta1, * and Palanisamy Ponnusamy2

Abstract—This paper proposes an approach for estimating the spatial and polarization angles of
mixed-targets in bistatic MIMO radar. Mixed-targets mean the combination of uncorrelated, partially
correlated, and groups of coherent targets. The approach resolves rank deficiency of received signal
covariance matrix and then exploits the ESPRIT-based method for estimating the angles of direction-
of-departure (DOD) and direction-of-arrival (DOA). This paper also presents an analytical review and
necessary conditions for resolving the rank deficiency under various scenarios of the MIMO radar.
Simulation results show the effectiveness of the proposed approach.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) radar has been receiving much attention for localization of the
targets over the conventional phased array radar [1]. For localization of the targets, direction estimation
is a key issue and has found many investigations in the literature [2–9]. Majority of these investigations
focus on the estimation of direction-of-departure (DOD) and direction-of-arrival (DOA) of uncorrelated
targets [2–7] and coherent targets [8, 9]. Two-dimensional (2D) DOD and 2D-DOA estimation have also
been investigated for the case of uncorrelated targets [10–12]. 2D means azimuth and elevation angles
of a target. The 2D DOD/DOA estimation is important specifically when the targets are resolvable in
azimuth angles but not resolvable in elevation angles, and vice-versa.

Moreover, in a stringent scenario where the targets are closely spaced and cannot be resolvable
with spatial angles, the polarization estimation may be required for localizing and distinguishing the
targets. Though the estimation of signal parameters via rotational invariance technique (ESPRIT) based
method in [12] estimates both spatial and polarization angles, estimation performance is shown only for
the spatial angles. However, this ESPRIT-based method fails under the coherent target scenario due to
the rank deficiency of received signal covariance matrix. In practice, the received signals are coherent
or partially correlated or may be a combination of coherent and partially correlated [13–15]. Therefore,
in this paper, we formulate a model for mixed targets which are the combination of uncorrelated,
partially correlated, and groups of coherent targets, and estimate both spatial and polarization angles.
The methodology of this paper resolves the rank deficiency of mixed targets using spatial smoothing
and then estimates the angles employing the ESPRIT-based method [12]. This paper also presents
an analytical discussion and necessary conditions of the smoothing for decorrelating the mixed targets
under different scenarios of the MIMO radar.

Notation: Vectors and matrices are represented by lowercase and uppercase bold characters,
respectively. (·)T denotes the transpose, and (·)H indicates the conjugate-transpose. Symbols ⊗, �,
and ⊕ denote the Kronecker product, Khatri-Rao product, and Hadamard product, respectively. In,
0m×n, and 0n denote n×n identity matrix, m×n zeros matrix, and n×n zeros matrix, respectively. In
particular, diag{·} and blkdiag{·} represent the diagonal matrix and block diagonal matrix, respectively.
[J]k,k selects the entry in the kth row and kth column of matrix J.
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2. SIGNAL MODEL

Consider a bistatic MIMO radar that comprises uniform linear arrays of M electromagnetic vector
sensors (EVSs) and N EVSs at the transmitter and receiver, respectively. Each EVS consists of three
orthogonally oriented electric-dipoles and three orthogonally oriented magnetic-loops. The inter-sensor
spacing of the transmit array is dt, and the receive array is dr. Suppose that there are K targets present
in the same range cell. Then, deploying the arrays along the y-axis, steering vectors of the transmit
array at and receive array ar towards the kth target direction can be expressed as

atk
= btk

(θtk
,φtk

) ⊗ ctk
(θtk

,φtk
, γtk

, ηtk
)

ark
= brk

(θrk
,φrk

) ⊗ crk
(θrk

,φrk
, γrk

, ηrk
)

(1)

where btk
= [1,αk, . . . ,αM−1

k ]T in which αk = e−j2πdt sin θtk
sin φtk

/λ with λ being the wavelength, and
brk

= [1,βk, . . . ,βN−1
k ]T in which βk = e−j2πdr sin θrk

sinφrk
/λ. ctk

/crk
denotes the spatial response vector

of the transmitting/ receiving EVS. The subscript tk/rk indicates that the concerning parameter or
vector belonging to the transmitter/receiver associated with the kth target. Thus, the spatial response
vector ci, i = tk, rk, of an EVS can be expressed as

ci = F(θi,φi)g(γi, ηi) =

⎡
⎢⎢⎢⎢⎢⎣

cos θi cosφi − sinφi

cos θi sinφi cosφi

− sin θi 0
− sinφi − cos θi cosφi

cosφi − cos θi sinφi

0 sin θi

⎤
⎥⎥⎥⎥⎥⎦

[
sin γie

jηi

cos γi

]
(2)

where φi ∈ [0, 2π), θi ∈ [0,π), γi ∈ [0,π/2), and ηi ∈ [−π,π) respectively denote the azimuth angle,
elevation angle, auxiliary polarization angle, and the polarization phase difference of the concerning
target (i.e., i = tk, rk).

Assume that the elements of the transmit-array transmit orthogonal coded vector signals V =
[v1,1, . . . ,v1,6, . . . ,vM ,1, . . . ,vM ,6]T , where vm,i denotes the P×1 coded vector signal by the ith element
of the mth EVS. The transmitted signals are reflected at K far-field targets. Then the received signal
at the lth snapshot can be expressed as

X(l) =
K∑

k=1

ark
sk(l)aT

tk
V + W(l) (3)

In practice, vectorization of the output of matched filters matched to the transmission signal is used
for processing the signal [5, 6]. The output of the matched filter bank is represented by Xout(l) =
X(l)VH/

√
P . Then the vectorization of Xout(l) can be expressed as [12]

y(l) = vec(Xout(l)) =
K∑

k=1

(atk
⊗ ark

)
√
Psk(l) + z(l) = As(l) + z(l) (4)

where A = [at1 ⊗ ar1, . . . ,atK
⊗ arK

], s(l) = [
√
Ps1(l), . . . ,

√
PsK(l)]T denotes the reflectivity vector at

output of the matched filters, and z(l) = 1√
P

vec(W(l)VH ) is the output noise vector.

3. PROPOSED APPROACH

3.1. Problem Formulation

In a practical scenario, as the model shown in Fig. 1, the nonzero reflectivities {sk(l)}K
k=1 are the

combination of uncorrelated, partially correlated, and groups of coherent. Without loss of generality,
assume that the first Ku targets (in fact, target reflectivities) are uncorrelated, next Kp targets partially
correlated, and the remaining are D clusters of Kc =

∑D
d=1Qd = K −Ku −Kp coherent targets, where

Qd denotes the number of coherent targets in dth cluster. Further, assume that the targets in one cluster
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Figure 1. Model map of the scenario considered in problem formulation.

are coherent and uncorrelated with the targets in other clusters as well as Ku uncorrelated targets and
Kp partially correlated targets. Under this scenario, the signal model in Eq. (4) can be written as

y(l) = Ausu(l) + Apsp(l) + Acsc(l) + z(l) = [Au, Ap, Ac]

[su(l)
sp(l)
sc(l)

]
+ z(l) (5)

where Au = [at1 ⊗ ar1, . . . ,atKu
⊗ arKu

] represents the steering matrix of all uncorrelated targets; Ap =
[atKu+1

⊗ arKu+1
, . . . ,atKu+Kp

⊗ arKu+Kp
] denotes the steering matrix of all partially correlated targets,

Ac = [Ac1 , . . . ,AcD
] in which Acd

= [atd,1
⊗ ard,1

, . . . ,atd,Qd
⊗ ard,Qd

], d = 1, . . . ,D, being the steering
matrix concerning with all coherent targets in the dth cluster; su(l) = [

√
Ps1(l), . . . ,

√
PsKu(l)]T denotes

the reflectivity vector of uncorrelated targets; sp(l) = [
√
PsKu+1(l), . . . ,

√
PsKu+Kp(l)]T represents the

reflectivity vector of all partially correlated targets; and sc(l) = [sT
Ku+Kp+1(l), . . . , s

T
Ku+Kp+D(l)]T in

which sKu+Kp+d(l) being the reflectivity vector of all coherent targets in dth cluster. Further, the
coherent reflectivity vector sKu+Kp+d(l) can be decomposed as sKu+Kp+d(l) =

√
PsKu+Kp+d(l)ρd, where

sKu+Kp+d(l) is the common reflectivity of the dth cluster, and ρd = [ρd,1, . . . , ρd,Qd
]T denotes the

complex coefficient vector of dth cluster. The coefficients in ρd represent the magnitude and phase
relationship of Qd coherent targets in the dth cluster.

Therefore, the covariance matrix of the signal y(l) in Eq. (5) is given by

Ry = E
[
y(l)y(l)H

]
= ARsAH + Rz (6)

where A = [Au, Ap, Ac], Rs = blkdiag{Ru,Rp,Rc} in which Ru = diag{σ2
1 , . . . ,σ

2
Ku

} is the covariance
matrix of su(l); Rp is the covariance matrix of sp(l); Rc = blkdiag{Rc1 , . . . ,RcD

} is the covariance
matrix of sc(l); Rcd

(d = 1, . . . ,D) denotes the covariance of sKu+Kp+d(l); and Rz is the noise covariance
matrix.

For mixed targets, the rank of Rs is less than the number of targets present, and thus rank(Ry) < K
under the noise-free condition. Consequently, the ESPRIT-based method in [12] fails to resolve the
targets as the angle estimates of DODs and DOAs are inaccurate.

3.2. Construction of a Full-Rank Covariance Matrix

The spatial smoothing of the MIMO radar divides the transmit array and receive array into Pt and
Pr numbers of uniformly overlapped subarrays, respectively. Each transmitting subarray comprises
Mt EVSs, and each receiving subarray has Nr EVSs. Considering the maximum overlapping of the
subarrays, we can obtain Pt = M − Mt + 1 and Pr = N − Nr + 1 numbers of subarrays. In fact,
the arrays are not segmented physically, but the equivalent covariance matrices of these subarrays are
obtained from the received signal covariance matrix in Eq. (6). Let the covariance matrix between
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the mth (m = 1, . . . ,Pt) transmitting subarray and the nth (n = 1, . . . ,Pr) receiving subarray be
denoted with R[m,n]

y ∈ C
36MtNr×36MtNr . Then the subarrays covariance matrices R[m,n]

y can be obtained
from Ry as R[m,n]

y = (J1 ⊗ J2)Ry(J1 ⊗ J2)T , where J1 = [06Mt×6(m−1) | I6Mt | 06Mt×6(Pt−m)] and
J2 = [06Nr×6(n−1) | I6Nr | 06Nr×6(Pr−n)]. Now, as the conventional forward-only spatial smoothing, the
smoothed covariance matrix Rfo

y can be expressed as

Rfo
y =

1
PtPr

Pt∑
m=1

Pr∑
n=1

R[m,n]
y = ÃRfo

s ÃH + Rfo
z (7)

where Ã = [ãt1 ⊗ ãr1, . . . , ãtK
⊗ ãrK

] in which ãtk
and ãrk

, ∀ k = 1, . . . ,K, represent the first 6Mt and
the first 6Nr rows of atk

and ark
, respectively; the matrix Rfo

s , given in Eq. (8), is the modified and
smoothed version of Rs in which the modification is performed by the joint transmitting and receiving
array spatial phase-shift factors; and Rfo

z is the smoothed noise covariance matrix. The matrix Rfo
s can

be expressed as

Rfo
s =

1
PtPr

Pt∑
m=1

Pr∑
n=1

Φm−1
t Φn−1

r RsΦ1−m
t Φ1−n

r (8)

where Φt = blkdiag{Φtu,Φtp,Φtc} in which Φtu = diag{α1, . . . ,αKu}, Φtp = diag{αKu+1, . . . ,αKu+Kp},
and Φtc = blkdiag{Φtc1 , . . . ,ΦtcD

} with Φtcd
= diag{αd,1, . . . ,αd,Qd

},∀ d = 1, . . . ,D; and Φr =
blkdiag{Φru,Φrp,Φrc} in which Φru = diag{β1, . . . ,βKu}, Φrp = diag{βKu+1, . . . ,βKu+Kp}, and
Φrc = blkdiag{Φrc1 , . . . ,ΦrcD

} with Φrcd
= diag{βd,1, . . . ,βd,Qd

},∀ d = 1, . . . ,D. The factors
αk (k = 1, . . . ,Ku), αKu+p (p = 1, . . . ,Kp) and αd,q (q = 1, . . . ,Qd) denote the spatial phase-shift
between the consecutive subarrays of the transmit array associated with the kth uncorrelated target,
the pth partially correlated target, and the qth coherent target in the dth cluster, respectively. Se-
quentially, βk, βKu+p, and βd,q are the spatial phase-shift factors of the consecutive subarrays of receive
array.

The matrix Rfo
s in Eq. (8) is now full-rank, i.e., rank(Rfo

s ) = K, subject to satisfying the following
conditions:

Condition 1: The coherent targets within the cluster should consist of either different azimuth
angles or different elevation angles associated with both the DODs and DOAs.

Condition 2: The total number of subarrays should be greater than the maximum of the targets
number in all clusters, i.e., PtPr ≥ Q, where Q = max(Q1, . . . ,QD).

3.3. Validation of the Full-Rank of Smoothed Covariance Matrix

For uncorrelated or partially correlated targets, the reflectivity covariance matrix has a full-rank, i.e.,
rank(Ru) = Ku and rank(Rp) = Kp. Thus, the rank deficiency of Rs has occurred due to the weaker
rank of Rc, i.e., rank(Rc) = D < Kc, where Kc =

∑D
d=1Qd with Qd ≥ 2,∀ d = 1, . . . ,D. Besides, the

smoothing does not reduce the rank of Ru and Rp. Therefore, the task is now to show that the rank of
Rfo

c is Kc.
Upon substituting Rs = blkdiag{Ru,Rp,Rc} in Eq. (8), the segment with only the term Rc can

be expressed as

Rfo
c =

1
PtPr

Pt∑
m=1

Pr∑
n=1

Φm−1
tc Φn−1

rc RcΦ1−m
tc Φ1−n

rc (9)

Further, from the definition of Rc = blkdiag{Rc1 , . . . ,RcD
}, Eq. (9) can be simplified as

Rfo
c = blkdiag

{
Rfo

c1 , . . . ,R
fo
cD

}
(10)

where

Rfo
cd

=
1

PtPr

Pt∑
m=1

Pr∑
n=1

Φm−1
tcd

Φn−1
rcd

Rcd
Φ1−m

tcd
Φ1−n

rcd
,∀ d = 1, . . . ,D. (11)



Progress In Electromagnetics Research M, Vol. 82, 2019 53

Equation (10) shows that rank(Rfo
c ) = Kc, if, and only if, the rank(Rfo

cd
) = Qd, ∀ d = 1, . . . ,D. Now,

upon substituting Rcd
= σ2

Ku+Kp+dρdρ
H
d in Eq. (11), Rfo

cd
can be expressed as

Rfo
cd

=
σ2

Ku+Kp+d

PtPr

Pt∑
m=1

Pr∑
n=1

Φm−1
tcd

Φn−1
rcd

ρdρ
H
d Φ1−m

tcd
Φ1−n

rcd
= ΛdB̃dΨdB̃H

d ΛH
d , ∀ d = 1, . . . ,D, (12)

where Λd � diag{ρd,1, . . . , ρd,Qd
} ∈ C

Qd×Qd , Ψd � diag{σ2
Ku+Kp+d

PtPr
, . . . ,

σ2
Ku+Kp+d

PtPr
} ∈ R

PtPr×PtPr , and
B̃d = (B̃td

� B̃rd
)T ∈ C

Qd×PtPr in which B̃td
= [b̃t(θtd,1

,φtd,1
), . . . , b̃t(θtd,Qd

,φtd,Qd
)] ∈ C

Pt×Qd

and B̃rd
= [b̃r(θrd,1

,φrd,1
), . . . , b̃r(θrd,Qd

,φrd,Qd
)] ∈ C

Pr×Qd . Besides, the vectors b̃t(θtd,k
,φtd,k

) and
b̃r(θrd,k

,φrd,k
) denote the first Pt rows of bt(θtd,k

,φtd,k
), and the first Pr rows of br(θrd,k

,φrd,k
),

respectively. Clearly, from the above definition, rank(Λd) = Qd and rank(Ψd) = PtPr provided that
ρd,k 	= 0, ∀ k = 1, . . . ,Qd and σ2

Ku+Kp+d 	= 0, ∀ d = 1, . . . ,D, respectively.

The matrices B̃td
and B̃rd

comprise the Vandermonde structures. Thus, if satisfying either
θtd,k

	= θtd,p
or φtd,k

	= φtd,p
, ∀ k 	= p, k, p ∈ (1, . . . ,Qd), then the rank(B̃td

) = min(Pt,Qd).
Likewise, if satisfying either θrd,k

	= θrd,p
or φrd,k

	= φrd,p
, ∀ k 	= p, k, p ∈ (1, . . . ,Qd), then the

rank(B̃rd
) = min(Pr,Qd). Besides, the DODs and DOAs are different because the system model

is bistatic MIMO radar, i.e., θtd,k
	= θrd,k

or φtd,k
	= φrd,k

, ∀ k = 1, . . . ,Qd. Thus, the matrix
B̃d consists of 2Qd generators of B̃td

and B̃rd
. This condition assures the rank of B̃d is full, i.e.,

rank(B̃d) = min(PtPr,Qd). This holds for Condition 1.
From the matrix form of Rfo

cd
in Eq. (12), the rank of Rfo

cd
is Qd when PtPr ≥ Qd. Consequently,

from Eq. (10), rank(Rfo
c ) = Kc can be obtained intuitively when we choose PtPr ≥ Q, where

Q = max(Q1, . . . ,QD) with any choice of Pt ≥ 1 and Pr ≥ 1. This holds for Condition 2.
In the above-said conditions, the first condition can be relaxed, but it restricts more on the minimum

subarrays required (i.e., second condition) to attain the full-rank. These are described as the following
notes:

Note 1: In the case of monostatic MIMO radar (i.e., DODs and DOAs are identical), the matrix B̃d

contains only Pt+Pr−1 different elements in each row. Thus, rank(B̃d) is limited by min(Pt+Pr−1,Qd),
and rank(Rfo

c ) = Kc is achieved only when Pt + Pr − 1 ≥ Q.
Note 2: If θtd,k

= θtd,p
and φtd,k

= φtd,p
with satisfying either θrd,k

	= θrd,p
or φrd,k

	= φrd,p
∀ k 	=

p, k, p = 1, . . . ,Qd and ∀ d = 1, . . . ,D, then the rank of B̃d = min(Pr,Qd) which is due to rank(B̃td
) = 1

and rank(B̃rd
) = min(Pr,Qd). Thus, the rank(Rfo

c ) = Kc is fulfilled only when Pr ≥ Q irrespective of
any Pt.

Note 3: If θrd,k
= θrd,p

and φrd,k
= φrd,p

with satisfying either θtd,k
	= θtd,p

or φtd,k
	=

φtd,p
∀ k 	= p, k, p = 1, . . . ,Qd and ∀ d = 1, . . . ,D, then the rank of B̃d = min(Pt,Qd) as the

rank(B̃td
) = min(Pt,Qd) and rank(B̃rd

) = 1. Thus, rank(Rfo
c ) = Kc is attained only when Pt ≥ Q

irrespective of any Pr.

3.4. Estimation of the Spatial and Polarization Angles

After obtaining the smoothed covariance matrix as described in Section: 3.2, angles are estimated using
the ESPRIT-based method [12]. The algorithmic steps of the overall approach are as follows:

(i) Compute the snapshot covariance matrix of y(l) in (5) using L snapshots as R̂y = 1
L

∑L
l=1 y(l)yH (l).

(ii) Compute the smoothed covariance matrix Rfo
y by Eq. (7).

(iii) Eigendecompose Rfo
y for obtaining the signal-subspace Es and the noise-subspace En.

(iv) Partition Es into Et = J3Es and Er = J4Es, where J3 = I6Mt⊗eT
q1

, q1 ∈ (1, . . . , 6Nr) in which eq1 is
the q1th column of I6Nr , and J4 = [06Nr×6q2Nr | I6Nr | 06Nr×(36MtNr−6(q2+1)Nr)], q2 ∈ (0, . . . , 6Mt−1).
Further, split Et into Et1 = J5Et and Et2 = J6Et, and Er into Er1 = J7Er and Er2 = J8Er,
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where J5 = [I6(Mt−1) | 06(Mt−1),6], J6 = [06(Mt−1),6 | I6(Mt−1)], J7 = [I6(Nr−1) | 06(Nr−1),6], and
J8 = [06(Nr−1),6 | I6(Nr−1)].

(v) Estimate {ctk
}K

k=1 as [ĉt1 , . . . , ĉtK
] = 1

Mt

∑Mt
i=1(ẼtiT

−1
cr Λ1−i

t ), where Λt and Tcr are the eigenvalues
and the right-eigenvectors of {(EH

t1E
H
t1)

−1EH
t1Et2}, respectively, and Ẽti represents (6i -5)th row to

(6i)th row of Et.
(vi) Compute the cross product between the first three and the conjugate of remaining three components

of ĉtk
for each k = 1, . . . ,K, which obtains (ûtk

, v̂tk
, ŵtk

) = (sin θ̂tk
cos φ̂tk

, sin θ̂tk
sin φ̂tk

, cos θ̂tk
).

Thus, θ̂tk
= sin−1(

√
û2

tk
+ v̂2

tk
) and φ̂tk

= tan−1( v̂tk
ûtk

), k = 1, . . . ,K.

(vii) From Eq. (2), ĝk �
[
ĝ1k

ĝ2k

]
= (FH(θ̂tk

, φ̂tk
)F(θ̂tk

, φ̂tk
))−1FH(θ̂tk

, φ̂tk
)ĉtk

. Thus, γ̂tk
= tan−1(| ĝ1k

ĝ2k
|)

and η̂tk
= ∠( ĝ1k

ĝ2k
), k = 1, . . . ,K.

(viii) For estimating θrk
, φrk

, γrk
and ηrk

, repeat the steps v, vi, and vii with Er, Er1 and Er2 instead
Et, Et1 and Et2.

(ix) Let Φ̂t and Φ̂r denote the parameters {θ̂t, φ̂t, γ̂t, η̂t} and {θ̂r, φ̂r, γ̂r, η̂r}, respectively. Thus, the kth
column of Ã can be denoted as ã(Φ̂tk

, Φ̂rk
) = ãtk

(Φ̂tk
)⊗ ãrk

(Φ̂rk
), k = 1, . . . ,K. From step vi and

step vii, the parameters within Φ̂t of a particular target are paired automatically. Likewise, the
parameters within Φ̂r of a particular target are also automatically paired. Then, based on the fact
that the columns of Ã are orthogonal to the columns of En, pairing between Φ̂t and Φ̂r of a particular
target can be obtained by finding f(Φ̂tk

, Φ̂rp) � ãH(Φ̂tk
, Φ̂rp)EnEH

n ã(Φ̂tk
, Φ̂rp), k, p = 1, . . . ,K, and

selecting the minimum value concerning Φ̂rp for each Φ̂tk
.

3.5. Complexity Analysis

Computational complexity of the proposed approach depends mainly on the computation of step i,
step ii, step iii, DODs estimation (step v–step vii), DOAs estimation, and the pairing between
DODs and DOAs (step ix). The complexity of step i, step ii, and step iii is O{(6M)2(6N)2L},
O{(6Mt)2(6Nr)2}, and O{(6Mt)3(6Nr)3}, respectively. The DODs estimation requires the complexity
of O{2K26(Mt −1)+3K3 +7MtK

2} for step v, O{6K} for step vi, and O{48K} for step vii. Likewise,
DOAs requires the complexity of O{2K26(Nr − 1) + 3K3 + 7NrK

2 + 54K}. Finally, pairing between
the DODs and DOAs requires O{(36MtNr(36MtNr −K) + (36MtNr −K))K2}.

4. CRAMER-RAO LOWER BOUND

As described the signal model in Section 2, according to [16], the Cramer-Rao bound (CRB) of all
parameters to be estimated can be obtained as

J =
σ2

z

2L

[
Re

(
EHΠ⊥

AE ⊕ R†
s
T
)]−1

(13)

where σ2
z is the noise variance, E = [{ ∂ak

∂θtk
}K

k=1, { ∂ak
∂φtk

}K
k=1, . . . , { ∂ak

∂ηrk
}K

k=1], Π⊥
A = I36MN −

A(AHA)−1AH , and R†
s = 18 ⊗ Rs in which 18 is 8 × 8 unit matrix. The root CRB of particular

parameter ψ ∈ (θt,φt, γt, ηt, θr,φr, γr, ηr) can be obtained as

CRB(ψ) =

√√√√ 1
K

K∑
k=p+1

[J]k,k (14)

where p = 0,K, 2K, 3K, 4K, 5K, 6K and 7K for ψ = θt,φt, γt, ηt, θr,φr, γr, and ηr, respectively.
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5. SIMULATION RESULTS

This section presents the Monte-Carlo simulations to examine the effectiveness of the proposed approach.
For all simulations, we consider M = N = 10 EVSs with spacing dt = dr = λ/2, Pt = Pr = 6 subarrays
for performing the smoothing, Hadamard codes of length P = 128 for transmission of the orthogonal
waveforms, q1 = 2 in J3 and q2 = 1 in J4 for partitioning Es, and the noise is complex Gaussian with
zero mean. All simulations are executed over Mc = 500 Monte-Carlo runs.

In the first simulation, shown in Fig. 2, we describe the advantage of both spatial and polarization
angle estimation by evaluating the resolution probability (RP). The RP for resolving a target concerning
with the DODs/DOAs is computed statistically from the successful trials, which accounts when the
absolute estimation error is below a threshold δ. The threshold δ for multiple parameters of DOD/DOA
estimation is defined by

δ= min
{√

(ΔΘk,p)T ΔΘk,p, k 	= p, k, p = 1, . . . ,K
}

(15)

where ΔΘk,p = (Θk − Θp)/(2
√
P ) in which Θk = [θk,φk, γk, ηk]T with P = 4 (i.e., the method

estimates four different parameters of DODs/DOAs). If a method estimates only the elevation angle,
then Θk = θk and P = 1. Thus, δ = min{ |θk−θp|

2 , for k 	= p, k, p = 1, . . . ,K}. For the
evaluation of Fig. 2, we consider L = 100 snapshots, signal to noise ratio (SNR) is 5 dB, and K = 3
coherent targets (i.e., Ku = 0,Kp = 0,Kc = 3). The reflectivities of the targets are chosen as
sc(l) = s1(l)ρ1, where s1(l) is generated by the complex Gaussian with zero-mean and unit-variance
and ρ1 = [1, 0.2 + 0.84j, 0.4 + 0.7j]T .
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Figure 2. Performance of the targets resolving probability versus the angular deviation. (a) RP based
on elevation angle vs Δθ. (b) RP based on all parameters vs Δθ and Δφ.

The methods proposed in [8] (denoted as JTRDS-SS) and in [9] (denoted as JTRDS-EVS) estimate
only the elevation angles of targets. Thus, for measuring and comparing the RP, threshold δ is
constructed based on a single parameter that is elevation angle, and the performance is depicted in
Fig. 2(a). In Fig. 2(a), RP is computed at each value of Δθ ranging from 0.05◦ to 2◦. The target postures
are taken as θt = (30◦−Δθ, 30◦, 30◦+Δθ), φt = (14◦, 54◦, 40◦), γt = (70◦, 50◦, 30◦), ηt = (35◦, 11◦, 27◦),
θr = (25◦ − Δθ, 25◦, 25◦ + Δθ), φr = (12◦, 24◦, 36◦), γr = (15◦, 35◦, 58◦), and ηr = (59◦, 21◦, 39◦). The
number of scalar sensors of the method JTRDS-SS is chosen as M = N = 35, which ensures that the
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dimension of Rfo
y is equal for all the methods under Pt = Pr = 6. The results in Fig. 2(a) signify that

the proposed approach exhibits outstanding performance.
In Fig. 2(b), the threshold δ is constructed based on all four parameters and depicts the RP

performance versus Δθ (case-1) and both Δθ and Δφ (case-2). For case-1, the target postures are
same as in Fig. 2(a). For case-2, θt = (30◦ − Δθ, 30◦, 30◦ + Δθ), θr = (25◦ − Δθ, 25◦, 25◦ + Δθ),
φt = (35◦ −Δφ, 35◦, 35◦ +Δφ), φr = (40◦−Δφ, 40◦, 40◦ +Δφ), and the remaining all parameter values
are same as in Fig. 2(a). From case-1, 100% RP is achieved at Δθ = 0.1◦ (even true at Δθ = 0◦), which
signifies that the proposed approach resolves the targets having the same elevation angles. Furthermore,
from case-2, the proposed approach resolves the targets even if they are closely located in both azimuth
and elevation angles, e.g., 99% RP is attained at Δθ,Δφ = 4◦. This attainment is due to the utilization
of polarization angle estimation. Thus, both spatial and polarization angle estimations are highly
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Figure 3. RMSE of the spatial and polarization angles of DOD and DOA. (a) RMSE of θt and φt. (b)
RMSE of γt and ηt. (c) RMSE of θr and φr. (d) RMSE of γr and ηr.
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essential for resolving the closely located targets.
Hereafter, in all the simulations, we consider L = 300 snapshots and K = 6 targets in whichKu = 1,

Kp = 2, and D = 1 cluster with Kc = 3. The concerning reflectivities s1(l), sp(l) = [s2(l), s3(l)]T ,
and sc(l) = s4(l)ρ1 are generated by the complex Gaussian with zero mean and unit variance. For
partially correlated targets, the correlation coefficient between s2(l) and s3(l) is set to 0.5. For
coherent targets, the correlation coefficient is set to one with ρ1 = [1, 0.2 + 0.84j, 0.4 + 0.7j]T . The
sequential angles are taken as θt = (10◦, 50◦, 45◦, 40◦, 25◦, 20◦), φt = (12◦, 24◦, 36◦, 30◦, 52◦, 48◦), γt =
(70◦, 50◦, 30◦, 20◦, 40◦, 60◦), ηt = (35◦, 11◦, 27◦, 51◦, 19◦, 43◦), θr = (8◦, 17◦, 22◦, 30◦, 42◦, 46◦), φr =
(14◦, 54◦, 40◦, 50◦, 23◦, 28◦), γr = (15◦, 35◦, 58◦, 75◦, 45◦, 25◦), and ηr = (59◦, 21◦, 39◦, 49◦, 69◦, 79◦).

In the second simulation, shown in Fig. 3, root-mean-squared-error (RMSE) is measured and
compared with the ESPRIT-based method [12] and the root CRB. The RMSE is defined by

RMSE =

√√√√ 1
McK

K∑
k=1

Mc∑
i=1

(
ψk − ψ̂k,i

)2
(16)

where ψ̂k,i denotes the estimate of ψk ∈ (θtk
,φtk

, γtk
, ηtk

, θrk
,φrk

, γrk
, ηrk

) in the ith Monte-Carlo run,
and Mc denotes the total number of Monte-Carlo runs. The results in Fig. 3 signify that the performance
of the proposed approach follows the root CRB whereas performance of the ESPRIT-based method [12]
is unsatisfactory, and constant floor occurs even at high SNR.

The next simulation illustrates the precision performance of the angle estimates using the scatter
plot shown in Fig. 4. In Fig. 4(a), the estimated angles are spread randomly over the entire region.
Thus, from Figs. 3 and 4(a), we signify that the ESPRIT-based method [12] fails to resolve the coherent
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Figure 4. Scatters of the spatial and polarization angle estimates of DODs and DOAs. (a) ESPRIT-
based method. (b) Proposed approach.
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or mixed targets. However, in the proposed method shown in Fig. 4(b), the estimated angles of a
particular target are close to the actual value.

The final simulation, shown in Fig. 5, illustrates the conceivable three-dimensional stem plots for
visualizing the pair-matching among all the eight parameters. For clearly identifying the location of
the projected stems on the horizontal plane, grid-lines are highlighted only for the actual values of the
concerning parameters. From the illuminated results in Fig. 5, one can notice that the spatial and
polarization angles of DODs and DOAs of all targets are paired precisely.
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6. CONCLUSION

This paper constructs a more relevant scenario to the practical one that comprises a combination of
uncorrelated, partially correlated, and the groups of coherent targets. In this scenario, we examine
the importance of estimating multiple parameters like azimuth, elevation, and polarization angles for
localization of the targets in bistatic MIMO radar. The proposed approach can locate any number
of targets with pair-matching among all the parameters. Consequently, the proposed approach is
practicable for the application where localization of the targets with multiple parameters estimations is
essential.
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