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Comparative Study on Sparse and Recovery Algorithms for Antenna
Measurement by Compressed Sensing
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Abstract—Compressed sensing (CS) is utilized in antenna measurements. The antenna data are
compressed using the CS method, and the performances of different sparse and recovery algorithms of
CS are used to solve antenna measurements. Experiments are conducted on various types of antennas.
The results show that efficiency can be greatly improved by reducing the number of measurement points.
The best reconstruction performance is exhibited by the Discrete Wavelet Transform (DWT) algorithm
combined with the Compressive Sampling Matching Pursuit (COSAMP) algorithm.

1. INTRODUCTION

The traditional sampling theorem is inefficient in many applications because of the large amount of
redundant information generated. As a new sensing method, CS has attracted wide attention during
recent years in the fields of signal processing and applied mathematics. CS can compress the signals
collected on a sensor. The signals can have a sparse or compressible representation in the original or
transform domains. This capability is a revolutionary breakthrough that solves the current bottleneck
in information acquisition and processing technology. CS has been applied in a large number of fields,
such as single-pixel cameras [1], CS-MRI [2], CS Radar [3], wireless sensor networks [4], and SAR
imaging [5, 6].

Traditional antenna measurements become more challenging as technology develops. In order
to obtain test results quickly and efficiently, the CS method for the far-field region of an antenna
measurement system is applied. Migliore introduced the compressed sensing/sparse recovery theory and
its usefulness in practical electromagnetic problems [7]. Cornelius et al. exploited the use of relevant
information concentrated in a few spherical wave coefficients by reducing the measurement effort and
applying them to the theory of spherical near-field to far-field transformation [8]. Another approach
reduced the number of measurement points by exploiting the sparsity of the spherical wave spectrum
of antennas [9]. The QAIC approach can be used for sparse test results, allowing for efficient and easy
antenna measurements [10]. The use of these methods in electromagnetic measurements is relatively
new, suggesting the usefulness of the methods in antenna measurements.

To address the shortcomings of traditional sampling theory and signal processing methods, this
study explores the recovery performance of antenna far-field signals by using different sparsity bases
and reconstruction algorithms. Multiple experiments are conducted on various types of antennas. The
results show that the far-field signal can be recovered better under the Discrete Wavelet Transform
(DWT) and Compressive Sampling Matching Pursuit (COSAMP) reconstruction algorithms, which
improve the measurement efficiency and possess greater advantages and more development potential
than traditional antenna measurements.
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2. COMPRESSED SENSING

The core problems of CS are the sparse transformations and uncorrelated measurements of signals and
reconstruction algorithms. The sparseness of a signal can be understood as the number of non-zero
elements or absolute value being small. Natural signals are usually not sparse in the real world but can
be considered approximately sparse in a certain transform domain. For example, after a natural image
is expanded with a two-dimensional wavelet base, most of the expansion coefficients are small, which is
the principle that the image can be compressed.

According to the theory of CS [11], the sparsity of the original signal is the premise of the compressed
sensing application and determines the number of compressed samples and reconstruction effects. For
a signal X of length N , if the signal is sparse or compressible, it can be expressed by Equation (1)

X =
N∑

i=1

θiΨi = ΨΘ (1)

θ is the coefficient, and Θ is a transform coefficient vector. If the base vector satisfies the orthogonal
theorem, then the calculation of the transform coefficient is very easy:

Θ = ΨTX (2)

The sparse representation of the signal mainly includes a sparse dictionary and a sparse
decomposition algorithm. It is important to select an appropriate sparse base for signal processing
in order to reduce not only the sampling rate and time but also the data storage and transmission cost.

For a compressible signal, a measurement matrix Φ that is uncorrelated can be constructed to
linearly project to the sparse signal. The observation vector is

Y = ΦΘ = ΦΨTX = ACSX (3)

ACS is a random projection matrix that satisfies the Restricted Isometry Property (RIP). For any K
sparse signal X, δk ∈ (0, 1) satisfies:

1 − δk ≤ ‖AX‖2
2

‖X‖2
2

≤ 1 + δk (4)

The K coefficients can be accurately reconstructed from the M perceptual measurements. In
general, the measurement matrix is divided into two categories. The first category consists of random
measurement matrices, such as random Gaussian, random Bernoulli, and sparse random matrices. This
category has a better recovery effect on the original signal but has strict hardware requirements. The
other category consists of deterministic measurement matrices, such as Hadamard, Toeplitz circulant
and rotation matrices. Deterministic matrix construction is efficient and easy to implement in hardware.

A signal reconstruction algorithm refers to the process of accurately reconstructing a high-
dimensional original signal by the use of low-dimensional data. If the original signal X is sparse,
the problem of solving the underdetermined equation Y = ACSX is transformed into the minimum
norm problem:

min
∥∥ΨTX

∥∥
0

s.t ACSX = ΦΨTX = Y (5)

This problem is both a non-convex optimization problem and an NP-hard problem that can be
replaced by the L1 norm to transform the problem into a convex optimization problem [12]:

min
∥∥ΨTX

∥∥
1

s.t ACSX = ΦΨTX = Y (6)

The solution to a convex optimization problem has the advantages of stability and uniqueness,
as well as being solvable by various optimization methods, such as the interior point, Newton and
gradient methods, which are of great significance to signal reconstruction. This paper mainly explores
the effects of Compressive Sampling Matching Pursuit (COSAMP) [13], Iterative Reweighted Least
Square (IRLS) [14], Greedy Base Pursuit (GBP) [15], Orthogonal Matching Pursuit (OMP) [16],
Subspace Pursuit (SP) [17], and Iterative Hard Thresholding (IHT) [18] reconstruction algorithms on
the reconstruction far-field data of antennas.
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3. EXPERIMENTAL PROCEDURE AND RESULTS

In general, the far-field region of an antenna is sparse or highly compressed in a sparse transform domain
Φ, which is usually the DWT, Discrete Cosine Transform (DCT), and Fast Fourier Transformation
(FFT). In this study, various types of antennas are verified to explore the effects of different sparse
bases and recovery algorithms on the measurement results.

3.1. Standard Gain Pyramid Horn

The sparse performances of pyramid horn antenna far-field data in different transform domains are
shown in Fig. 1. The far-field region had the highest sparsity in the DWT domain and the lowest
compression ratio in the FFT domain. However, the specific selection of the transform domain is
determined by the characteristics of the signal itself. For example, FFT is usually selected in the time
domain. The angiography usually selects the equivalent transform because of its sparsity, and DCT is
generally used for the compression of the image.

(a) (b) (c)

Figure 1. The comparison of far-field of pyramid horn antenna in different transform domains, (a)
DWT, (b) FFT, (c) DCT.

The results of the reconstruction using the Gaussian random measurement matrix and OMP
reconstruction algorithm with a sparsity ratio of 40% in the far-field region of the pyramidal antenna
in different sparse transform domains are shown in Fig. 2. Three kinds of sparse domains are able to
recover the original signal. DWT has the best recovery effect, and the E-plane pattern reconstructed
signal completely coincides with the original signal, which has better reconstruction accuracy. FFT has
the next best effect, and a sharp change error of less than 0.5 is present in the H-plane at −70◦ but does
not affect the recovery of the pattern. DCT has the worst sparse domain with large errors at multiple
angles. The pattern recovery contains a disturbance, but the antenna far-field is basically recovered.

The traditional antenna measurement method is about 360 seconds, which requires 1800
measurement points (in a 360◦ range) for the experimental pyramid antenna. Table 1 shows the
recovery error, time consumption, signal to noise ratio (SNR), and signal distortion rate (SDR) of
the three methods when the sampling rate M/N is 0.2, 0.3, and 0.4 in different sparse bases. The signal
distortion rate (SDR) is:

SDR = 10 log 10

⎛
⎜⎜⎜⎜⎜⎝

N−1∑
N=0

‖yOriginal‖2

N−1∑
N=0

‖yOriginal − yRecovery‖2

⎞
⎟⎟⎟⎟⎟⎠

(7)
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(a) (b)

(c) 

Figure 2. Reconstruction effect of the pyramid antenna far-field in different sparse domains, (a) DWT,
(b) FFT, (c) DCT.

Table 1 shows that as the sampling rate increases, the reconstruction error significantly decreases,
and the antenna far-field region can be accurately reconstructed at a low sampling rate. The
measurement time is proportional to the sparse ratio, and the DWT sparse domain has the highest
operating efficiency. When the compression ratio is 0.4, the original signal can be recovered better.
The measurement time is 155 seconds, which is a 57% improvement compared to the traditional
measurement.

From the above results, we can know that the antenna far-field can be reconstructed almost perfectly
with the OMP recovery algorithm. However, for specific sparse domains and measurement matrices,
different recovery algorithms may exhibit different efficiencies and accuracies. Therefore, it is especially
important to explore the recovery algorithm for antenna far-field reconstruction. The antenna far-field
region is sparseness by DWT, and the Gaussian random matrix is selected as the CS measurement
matrix. The recovery performances under different recovery algorithms at a sparse ratio of 0.4 are
depicted in Fig. 3.

Fig. 3 shows that OMP, COSAMP, and IRLS have better reconstruction effects, and the original
signal has been reconstructed without error. The COSAMP performance is optimal, and the
reconstruction is stable and accurate. The SP recovery effect is slightly deviated; the accuracy is
low; and the general trend of the far-field map can be recovered, but the original signal cannot be
recovered. The recovery effects of GBP and IHT are extremely poor, and the original signal cannot be
recovered. The GBP recovery signal value has a large error. IHT can recover the far-field pattern but
cannot restore the amplitude very well. The two recovery algorithms should not be used as antenna
far-field recovery algorithms.
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Table 1. Comparison of performance of far-field in different sparse bases.

Sparse Ratio (%) Recovery Error (dB) Recovery Times (s) SNR (dB) SDR

FFT
20 0.34 80 9.37 4.68
30 0.21 123 13.56 6.78
40 0.08 202 21.94 10.97

DCT
20 0.46 82 6.74 3.37
30 0.33 119 9.63 4.81
40 0.11 186 18.17 9.59

DWT
20 0.31 75 10.17 5.09
30 0.18 102 14.89 7.45
40 0.009 155 40.92 20.46

Figure 3. Reconstruction of the antenna far-field in different recovery algorithms.

3.2. Array Antenna

The sparse performance for an array antenna is similar to that of the pyramid horn antenna, as shown
in Fig. 4. It is advantageous for far-field data using wavelet sparse. A comparison of the sparseness of
the three sparse bases shows that the DCT exhibits a sparse performance worse than those of the other
algorithms for antenna far-field measurement.

The results of the reconstructed signal with a sparsity ratio of 40% in the far-field region of the
array antenna in different sparse transform domains are shown in Fig. 5. DWT has the best recovery
effect, by which the E-plane and H-plane patterns are reconstructed perfectly. There is a sharp change
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Figure 4. The comparison of far-field of an array antenna in different transform.

(a) (b)

(c) 

Figure 5. Reconstruction effect of the array antenna far-field in different sparse domains, (a) DWT,
(b) FFT, (c) DCT.

error of 1.58 in the E-plane at 85◦. Some deviations from the H-plane recovery may be the more side
beam for FFT. It has a worse performance for reconstruction and is unable to recover the original signal
for DCT. There are also large errors at different angles.

The traditional far-field pattern that is measured requires 5400 points (360◦ range), and the entire
measurement time is 540 seconds, which is longer. Table 2 shows that when the sparse ratio is 0.4,
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Figure 6. Reconstruction of an array antenna far-field in different recovery algorithms.

DWT has better recovery performance. The optimal measurement time is 212 seconds, which is a 61%
improvement compared with the traditional measurement time.

The antenna far-field recovery performances of different recovery algorithms are shown in Fig. 6.
It is clear that COSAMP has the best reconstruction performance of all the algorithms we used. OMP,
IRLS, and SP are not as good as COSAMP for reconstruction. However, the approximate outline of the
antenna far-field region could be restored. GBP and IHT have the worst recovery effects and cannot be
used as antenna far-field recovery algorithms.

Table 2. Comparison of performance of far-field in different sparse bases.

Sparse Ratio (%) Recovery Error (dB) Recovery Times (s) SNR (dB) SDR

FFT
20 0.35 135 9.12 4.56
30 0.23 201 12.77 6.38
40 0.006 243 44.43 22.21

DCT
20 0.51 138 5.85 2.92
30 0.38 192 8.41 4.21
40 0.13 246 17.70 8.86

DWT
20 0.42 112 7.54 3.77
30 0.15 171 16.47 8.24
40 0.004 212 48.01 23.8



156 Zhang et al.

(a) (b)

(c)

Figure 7. The average error of multiple sparsity bases and recovery algorithms with various antennas
measurement in different sparse ratios, (a) DWT, (b) FFT, (c) DCT.

Table 3. Comparison of reconstruction effects of different recovery algorithms.

ALGORITHMS Index Index update Update iteration Stability Accuracy

COSAMP
u = 〈r−1, aj〉, 1 ≤ j ≤ N

J = {2Kl arg estu}
Λt = Λt−1 ∪ J0

At = At−1 ∪ aj

t > k or rt = 0 yes superior

IRLS θ = ΩT y p = 1, ε = 1 θ = QΩT inv
(
ΩQΩT

)
wi =

(
θ2

i + ε
)p/2−1

no well

GBP I = ∅, θ = O ∈ Rm
i = arg maxj |〈ωj , n〉|

I = {i}
dH = 〈ωI , n〉

yH =
(

dH
〈yH ,n〉

)
y

no bad

OMP λt = arg max
j=1,2,···d

|〈rt−1, Φ〉| Λt = Λt−1 ∪ λt t = k yes well

SP
u = 〈rt−1, aj〉 , 1 ≤ j ≤ N

J = {Kl arg estu}
Λt = Λt−1 ∪ J0

At = At−1 ∪ aj

yr = 0 or yr = ŷr yes low

IHT k =
[
log2

‖ys‖2
‖e‖2

] Γ∗ = sup p {ys}
Γn = sup p

{
y[n]

} Bn+1 = Γ∗ ∪ Γn+1 no bad
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4. RECOVERY PERFORMANCE OF CS FOR ANTENNA MEASUREMENTS

In order to demonstrate that the experiments are not only effective for special antennas, various types
(more than a dozen) of antennas are also verified (more than 30 times) to explore the effects of different
sparsity bases and recovery algorithms on antenna measurement. Fig. 7 shows the average errors of
multiple sparse bases and different recovery algorithms with multiple antenna measurements at different
sparse ratios.

Figure 7 shows that as the sparse ratio increases, the reconstruction error gradually decreases, and
the reconstruction effects of the three sparse domains are roughly similar. When the sparseness is low,
the SP recovery algorithm is better, but there is a large reconstruction error, and the signal cannot be
recovered well. The recovery performance of the GBP is the worst in the DCT sparse domain when the
sparse ratio is 0.1, and the maximum error is 0.92. When the sparse ratio is more than 0.4, the recovery
errors of the COSAMP and OMP algorithms tend to be stable. The original signal can be recovered
well with an error of less than 0.1. The reconstruction errors of COSAMP and OMP in DWT are 0.006
and 0.007, respectively. The recovery of the original signal is better. The mechanisms and recovery
performances of various recovery algorithms are shown in Table 3.

5. CONCLUSION

This study focuses on the development of antenna measurement and compressed sensing. Experiments
are conducted on various antennas. The far-field region of each antenna is reconstructed by different
sparse domains and recovery algorithms, whose performances are compared and analyzed. The
combination of the DWT and COSAMP reconstruction algorithms is able to recover the signal better in
the far-field region, as well as improve the efficiency and greatly reduce the time of antenna measurement.
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