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Localization for Mixed Near-Field and Far-Field Sources
by Interlaced Nested Array
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Abstract—In this paper, a localization algorithm for mixed near-field and far-field sources by an
interlaced nested array is proposed. The fourth-order cumulants (FOCs) of the received data are used
to construct a FOC matrix, by which the angles of all signals can be estimated. Then, an effective
method is driven to separate the directions of arrival (DOAs) of near-field and far-field sources without
extreme value search. The ranges of the near-field sources can be estimated by one-dimensional (1D)
search. Compared with existing nested array-based algorithms, the proposed algorithm can distinguish
more sources and has higher estimation accuracy. Some simulation results are shown to certify the
superiority of proposed algorithm.

1. INTRODUCTION

Localization of space signals is a key technology in radar, mobile communication, etc. Far-field
signal wave is seen as a plane, so we localize the far-field source only by estimating its direction of
arrival (DOA). There are many classic DOA estimation algorithms for far-field sources such as MUSIC
algorithms [1, 2], ESPRIT [3], and propagate method (PM) [4].

For a near-field signal, the hypothesis of plane wave does not hold, and it propagates as
spherical wave. The estimations of DOA and range are needed to locate the near-field signals. Two-
dimensional (2D) MUSIC algorithm [5] gets estimations of the DOA and range by 2D searching, but the
computational complexity of this algorithm is too high. In order to avoid 2D search, many methods [6–
8] first estimate DOA separately. Then, by using the estimated DOA, the range can be estimated
by several times of one-dimensional (1D) search. A generalized ESPRIT is proposed for the DOA
estimation of near-field source via symmetric array in [6]. In [7], Jiang et al. estimate the DOAs of all
far-field and near-field signals by separating the angle information from the steering vector. However,
for methods [6, 7], the angles search procedure involves repetitive computations of determinant, which is
also a high complexity process. In [8], He et al. use partial elements of a covariance matrix to construct
a new cross-covariance matrix which is only related to the angle information. However, in order to
separate the angle information, both the algorithms [7, 8] can cause aperture loss, which reduces the
accuracy of locating and cuts down the number of identifiable signals to some extent.

In order to remedy the aperture loss, some FOC-based algorithms [9–12] have been proposed to
increase the virtual sensors. In [10, 11], Zheng et al. exploit second order statistic (SOS) to estimate
DOAs of far-field sources, and a FOC matrix is exploited to estimate the DOAs of near-field sources
after removing the information of far-field sources. In [12], a FOC-based PM algorithm is proposed for
the localization of near-field sources. In fact, besides FOC, using sparse array is also an effective way
to reduce aperture loss. Recently, many efficient sparse array architectures such as co-prime array [13]
and nested array [14, 15] have been proposed, and many localization algorithms [16–18] have been
proposed based on these sparse arrays. In [16], a localization algorithm for near-field sources based
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on the symmetric co-prime array is proposed. The symmetric nested array and symmetric interlaced
nested array are proposed for the localization of mixed near-field and far-field sources in [17] and [18],
respectively.

Besides the algorithms mentioned above, many other algorithms including oblique projection
method [19] and spatial differencing method [20] are also proposed for the localization of near-field and
far-field sources and show advantages in reducing computational complexity or improving the precision
of localization. In [21], an algorithm based on rank reduction is presented for the localization of near-
field and far-field non-circular sources. For this algorithm, a non-circular property of source is utilized
to improve the performance of the parameter estimation.

In this paper, a localization algorithm for mixed near-field and far-field sources by an improved
interlaced nested array is proposed. The FOCs of the received data from an improved interlaced nested
array are used to construct a FOC matrix. The angles of all signals can be estimated by dealing
with the FOC matrix. Then, a fast method is driven to separate the DOAs of near-field and far-field
sources. Compared with the nested array-based algorithms [17, 18], the proposed algorithm shows three
advantages: (1) the proposed algorithm can distinguish more signals than [17, 18]; (2) the proposed
algorithm shows more estimation accuracy than [17, 18]; (3) the proposed angle separation method has
lower complexity than [17, 18].

Notation: [•]T , [•]∗, [•]H , and E[•] stand for transpose, conjugate, conjugate transpose, and
statistical expectation, respectively. c[i : j] denotes the vector consists of the ith component to the jth
component of vector c. J represents a matrix with 1 on the back diagonal and 0 on the other positions.

2. RECEIVED MODEL

Consider an interlaced nested array consisting of two nested arrays [15] shown in Fig. 1. The po-
sitions of the sensors are {−[M(2N + 2) + N − 1], −[(M − 1)(2N + 2) + N ], · · · , −[(2N + 2) +
N ], −N, −N + 1, · · · , 1, 0, 1, · · · , N − 1, N, (2N + 2) + N, · · · , (M − 1)(2N + 2) + N, M(2N +
2) + N − 1}d, where d is the unit element spacing with (d = λ

4 ). Suppose that K sig-
nals impinge on the array. Denote the received data vector x ∈ C(2M+2N+1)×1 as x(t) =
[x−(M+N)(t), x−(M+N−1)(t), · · · , x−(N+1)(t), x−N (t), x−(N−1)(t), · · · , x−1(t), x0(t), x1(t), · · · , xN−1(t),
xN (t), xN+1(t), · · · , xM+N−1(t), xM+N (t)]T ∈ C2M+2N+1 and

xi(t) =
K∑

k=1

sk(t)ej(μkli+ϕkl2i ) + ni(t) (1)

where μk = −2π d
λ sin θk, ϕk = π d2

λrk
cos2 θk, θk is the DOA of the kth signal, li the distance between

the ith sensor to the reference sensor, and rk the distance between the kth signal to the array. When

Nested array 1 Nested array 2

The kth signal

d(2N+2)d(2N+1)d d (2N+2)d (2N+1)d

-(M+N) -(M-1+N) -(1+N) -N -2 -1 0 1 2 N N+1 M-1+N M+N

kθ

Figure 1. Proposed interlaced nested array.
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sk(t) is far-field signal, rk = +∞, thus ϕk = 0. When sk(t) is near-field signal, we suppose that
0.62(D3/λ)1/2 < rk < 2D2/λ.

Let θ = [θ1, θ2, · · · , θK ] and r = [r1, r2, · · · , rK ], then x(t) can be expressed as

x(t) = A(θ, r)s(t) + n(t) (2)

where A(θ, r) = [a(θ1, r1), a(θ2, r2), · · · , a(θK , rK)] is manifold matrix, and a(θk, rk) can be expressed
as

a(θk, rk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ej[−μk[M(2N+2)+N−1]+ϕk[M(2N+2)+N−1]2]

...
ej[−μk[(2N+2)+N ]+ϕk[(2N+2)+N ]2]

ej[−μkN+ϕkN2]

...
1
...

ej[μkN+ϕkN2]

ej[μk[(2N+2)+N ]+ϕk [(2N+2)+N ]2]

...
ej[μk[M(2N+2)+N−1]+ϕk [M(2N+2)+N−1]2]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

3. DOA ESTIMATION OF ALL SIGNALS

We first construct a FOC vector c1 ∈ C(2N+1)(M+1)×1 with

c1(l) = cum
(
xN+t(t), x∗

N+1−l(t), x∗
−(N+t)(t), x−(N+1−l)(t)

)
(4)

where l = k + t(2N + 1), 1 ≤ k ≤ 2N + 1, 0 ≤ t ≤ M .
Then, we denote a FOC vector c2 ∈ C(M−1)×1 with

c2(l) = cum
(
xN+M (t), x∗

N+M−l(t), x∗
−(N+M)(t), x−(N+M−l)(t)

)
(5)

where l = 1, 2, · · · ,M − 1.
Denote two vectors e2N+2 = [0, 0, · · · , 1]T ∈ C(2N+2)×1 and 1M−1 = [1, 1, · · · , 1]T ∈ C(M−1)×1,

which can be used to construct three FOC vectors c3, c4 and c5 as

c3 = c2 ⊗ e2N+2 +
(

1M−1 ⊗
[

I2N+1

0

])
c1[1 : (M − 1)(2N + 1)] (6)

c4 =
[

c3

c1[(M − 1)(2N + 1) + 1 : (M + 1)(2N + 1)]

]
(7)

c5 = c4[2 : (2N + 2)(M + 1) − 2] (8)

Utilizing c5, we can construct a vector c ∈ C [2(2N+2)(M+1)−5]×1 as

c =
[

Jc∗5
c4

]
(9)

Using the vector c, we can construct a FOC matrix R ∈ C [(2N+2)(M+1)−2]×[(2N+2)(M+1)−2] by

R[:, i] = c[(2N + 2)(M + 1) − 1 − i : 2(2N + 2)(M + 1) − 4 − i] (10)

where R[:, i] is the ith column of the matrix R.
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Because the FOC of Gauss noise is equal to 0, after denoting qx = cum{sk, s∗k, sk, s∗k}, we can get
that

R = BCsBH (11)

where Cs = diag{q1, q2, · · · , qK} and B(θ, r) = [b(θ1, r1), b(θ2, r2), · · · , b(θK , rK)] with

b(θk, rk) =

⎛
⎜⎜⎜⎜⎝

1
ej2μk

...
ej2μk[(M+1)(2N+2)−2]

⎞
⎟⎟⎟⎟⎠ (12)

Performing eigenvalue decomposition (EVD) of R, we can estimate the DOAs of all far-field and far-field
signals by MUSIC [1].

4. CLASSIFICATION OF SOURCE

Construct an SOS covariance matrix

Rx = E
[
x(t)xH(t)

]
= A(θ, r)RsAH(θ, r) + n(t) (13)

Performing EVD of Rx, we can get the noise subspace Un as [1], then denote v(θ, r) =
aH(θ, r)UnUH

n a(θ, r).
It is easy to know that if θk is the DOA of a far-field signal, we have |v(θk,+∞)| = 0 and

|v(θk, r)| �= 0 for any r > 0.
On the other hand, if θk is the DOA of a near-field signal, we have v(θk,+∞) �= 0 and v(θk, rk) = 0.

We can also find that |v(θk, r)| increases with r changing from rk to max{r}.
According to these, we can distinguish the near-field signals and far-field signals by{

v(θk,+∞) < v(θk,max(r)), θk is the near-field angle
v(θk,+∞) > v(θk,max(r)), θk is the far-field angle

(14)

where max{r} = 2D2/λ.
Remark: In [17, 18], the authors use the estimated θ̂k to search the minimum value of

aH(θ̂k, r)UnUH
n a(θ̂k, r). So, it needs to take K times global searching to distinguish the near-field

signals and far-field signals. For the proposed algorithm, we only need compute 2K values. So the
computational complexity will be reduced.

5. ESTIMATION OF RANGE FOR NEAR-FIELD SIGNALS

Using noise subspace Un, we can get the function

fk
MUSIC(r) =

1

aH
(
θ̂k, r

)
UnUH

n a
(
θ̂k, r

) (15)

Searching the maximum of fk
MUSIC(r), we can get the ranges for near-field signals as [16, 17].

6. SIMULATION

In this section, we present some simulations to test the effectiveness of proposed localization algorithm
based on interlaced nested array. Because the proposed array can be seen as the improved construction
nested arrays [17, 18], we compare the proposed algorithm with the methods in [17] and [18]. We use
13-element nested array with N = 2, M = 4 for the three methods. For all simulation experiments, the
searching range of angle is from −90◦ to 90◦ with the grid of 0.1◦. In order to ensure the fairness of
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comparison, we use the same method to search range. The root-mean-square errors (RMSEs) of DOA
estimation and range estimation are given as

RMSE =

√√√√ 1
KJ

J∑
j=1

K∑
k=1

(
θ̂kj − θk

)2
(16)

and

RMSE =

√√√√ 1
KJ

J∑
j=1

K∑
k=1

(r̂kj − rk)
2 (17)

where J = 200, and θ̂kj and r̂kj are the estimations of θk and rk in the jth Monte Carlo trial, respectively.
The comparisons of RMSE for three algorithms are given in the case that the pairing is accurate.

6.1. Experiment 1

Firstly, we compare the space spectra of three methods for all sources. Suppose that SNR is 5 dB and
that the number of snapshots is 500. Consider two near-field signals s1, s2 with θ1 = 20◦, r1 = 40λ,
θ2 = 30◦, r2 = 45λ and a far-field source s3 with θ3 = 40◦. Fig. 2 shows the space spectra of 3 methods
for three signals with 10◦ interval. Then, we change the DOAs of three sources into θ1 = 25◦, θ2 = 30◦,
and θ3 = 35◦. Fig. 3 shows the space spectra of 3 methods for three signals with 5◦ interval. From the
two figures, we can see clearly that the algorithm based on the proposed interlaced nested array shows
higher angular resolution.

Figure 2. Space spectra of three methods for three sources with 10◦ interval.

6.2. Experiment 2

In this experiment, we consider two near-field signals s1, s2 with θ1 = 20◦, r1 = 40λ, θ2 = 30◦, r2 = 45λ
and a far-field source s3 with θ3 = 40◦. Firstly, the number of snapshots is fixed at 500, and SNR
changes from −5 dB to 10 dB. Fig. 4 and Fig. 5 show the RMSEs of near-field angles and far-field angle
versus SNR, respectively. Fig. 6 shows the RMSEs of ranges of near-field signals versus SNR. Then, we
fix SNR at 5 dB, and the number of snapshots changes from 500 to 1000. Fig. 7 and Fig. 8 show the
RMSEs of near-field angles and far-field angle versus snapshots, respectively. Fig. 9 shows the RMSEs
of ranges of near-field signals versus snapshots. From Fig. 4 to Fig. 9, we can find that the proposed
method shows higher accuracy than the other two methods in the estimation of DOA and range.



112 Liu et al.

Figure 3. Space spectra of three methods for three sources with 5◦ interval.

Figure 4. RMSEs of near-field angles versus SNR.

Figure 5. RMSEs of far-field angles versus SNR.
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Figure 6. RMSEs of ranges of near-field signals versus SNR.

Figure 7. RMSEs of near-field angles versus snapshots.

Figure 8. RMSEs of far-field angles versus snapshots.
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Figure 9. RMSEs of ranges of near-field signals versus snapshots.

7. CONCLUSION

In this paper, a localization algorithm for mixed near-field and far-field sources by using an interlaced
nested array is proposed. Both the FOC and SOS of the received data from the array are used to
estimate the DOAs of all signals and the range of near-field sources. Meanwhile, the near-field and
far-field sources can be separated by a low-complexity process. Some simulation results prove that the
proposed method shows higher angular resolution and estimation accuracy of DOA and range than
some existing nested array-based algorithms.
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