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Efficient Sparse Algorithm for Solving Multi-Objects Scattering
Based on Compressive Sensing

Doudou Chai1, 2, * and Yiying Wang1, 2

Abstract—To improve computational efficiency of traditional method for solving separable multi-
objects scattering problems, each subdomain impedance matrix is sparsified by biorthogonal lifting
wavelet transform(BLWT) without allocating auxiliary memory, and a sparse underdetermined equation
is constructed by enjoying the prior knowledge from known excitation in wavelet domain, then
orthogonal matching pursuit (OMP) is employed to fast and accurately solve the sparse underdetermined
equation under compressive sensing (CS) framework. Numerical results of separable perfectly electric
conduct (PEC) multi-objects are presented to show the efficiency of the proposed method.

1. INTRODUCTION

Owing to the requirement of engineering, electromagnetic scattering analysis of multi-objects is always
an interesting topic in computational electromagnetics(CEM). As one of the most popular tools for
solving the aforementioned problems, the domain decomposition method (DDM) [1, 2] incorporated
into integral equation method [3] has been applied widely due to its high accuracy and stability. In [4],
a non-overlapping DDM is proposed to efficiently calculate the scattering from non-penetrable objects.
Afterwards, some troublesome problems from complex targets have been solved by employing integral
equation domain decomposition method(IE-DDM) [5, 6]. For multi-objects, DDM divides the original
problem into many separable subdomains to improve the computational efficiency [7, 8]. However,
IE-DDM must solve full dimension impedance matrix equations, which is a expensive operation.

Recently, Compressive Sensing (CS) has been successfully introduced to CEM for improving
computational efficiency, which is mainly reflected in the following two aspects: one is used to fast
solve monostatic scattering problems, and the other is used as an efficient solver for matrix equation.
In the former aspect, a new incident source model is constructed based on CS [9], which can fast
analyze scattering over a wide incident angle and avoid repeatedly solving the problems in all finer angle
increment. After that, some complex targets have been analyzed by optimizing key technology of the
model [10, 11]. In the latter aspect, CS has been used to calculate electromagnetic integral equations by
constructing undetermined equations model that can be fast solved by optimization algorithm [12, 13].
Based on CS, a stabilized undetermined model is proposed in discrete wavelet transformation (DWT)
and applied for analyzing scattering problems of bodies of revolution (BOR) [14]. However, auxiliary
memory must be allocated by wavelet matrix transform (WMT) in the method, and the efficiency of
WMT may also influence the total computational efficiency.

To overcome these drawbacks, for scattering problems of multiple objects, biorthogonal lifting
wavelet transform(BLWT) is employed to thin impedance matrices of separable subdomains generated
by DDM, then an undetermined matrix equation is constructed by extracting only a few rows from
the sparse impedance matrices under CS framework. Finally, the small size undetermined equations
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can be accurately solved by orthogonal matching pursuit (OMP) [15]. Different from existing methods,
the proposed technique introduces BLWT to form sparse transform matrices for separable subdomains
without sacrificing additional memory, which can fast construct accurate undetermined equations model
to further improve computing efficiency for solving Multi-Objects scattering based on CS.

2. FORMULATION

2.1. Decomposition Method for Multi-Objects Scattering Analysis by BLWT

Consider PEC multi-objects in free space illuminated by an incident field (Ei), the electric-field integral
equation (EFIE) can be expressed as

n× L(Js) = n× Ei (1)

where Js denotes the surface current density, and the integral operator L is given by

L(Js) = −jkη

∫∫
s

{
Js +

1
k2

∇(∇′ · Js)
}

GdS′ (2)

in which η denotes the free-space wave impedance, and k and G are the wave number and Green’s
function in free-space, respectively.

Applying moment of method (MoM) to Equation (1) will result in a matrix equation as

ZnN×nNInN×1 = VnN×1 (3)

where n denotes the number of separable objects, and each object is discretized into N fragments. I
and V are unknown current coefficients vector and known excitation vector, respectively, and Z is the
impedance matrix that can be shown as

ZnN×nN =

⎡
⎢⎢⎢⎢⎢⎢⎣

Z11
N×N Z12

N×N . . . Z1n
N×N

Z21
N×N . .
. . .
. . .
. . .

Zn1
N×N . . . . Znn

N×N

⎤
⎥⎥⎥⎥⎥⎥⎦

nN×nN

(4)

in which Zij
N×N (i, j = 1, 2, . . . , n) is the subdomain impedance matrix denoting the excitation from the

ith separable object which has an impact on jth separable object.
To speed up matrix-vector multiplication (MVM) of matrix equation, Equation (3) can be

transformed by WMT method as

WnN×nNZnN×nNWH
nN×nN

WnN×nNInN×1=WnN×nNVnN×1 (5)

where W and WH are wavelet matrices and WHW = WWH=U (U denotes identity matrix),
respectively. Consider that the characteristic subdomain impedance matrices of ZnN×nN are derived
from each separable objects, we defined WnN×nN as diagonal matrices

WnN×nN =

⎡
⎢⎢⎢⎢⎢⎣

WN×N

WN×N

. . .
. . .

. . .
WN×N

⎤
⎥⎥⎥⎥⎥⎦

nN×nN

(6)

By setting Z̃nN×nN=WnN×nNZnN×nNWH
nN×nN

and ĨnN×1=WnN×nNInN×1,ṼnN×1=WnN×nNVnN×1,
(5) can be reduced to

Z̃nN×nN ĨnN×1=ṼnN×1 (7)
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In Z̃nN×nN and ṼnN×1, the elements with small values are below thresholds σZ, and σV will be
set to zero respectively, in which the thresholds can be defined as

σZ = τ ||Z̃||1/nN = τ · max
m

∑
n

|Z̃(nN,nN)|/nN (8)

σV = τ ||Ṽ||1/nN = τ · max
m

∑
n

|Ṽ(nN, 1)|/nN (9)

where nN is the dimension of the matrices, and τ ∈ [0.01, 0.1] is a coefficient to control the sparsity of
the matrices and the solution accuracy of unknown ĨnN×1, so that Equation (7) is transformed into a
sparse matrix equation, in which ĨnN×1 can be solved by iterative solution algorithms, then InN×1 can
be obtained by inverse transform

InN×1 = W̃nN×nN ĨnN×1 (10)

However, the above method must construct transform matrices W and W̃ by allocating
additional memory. In this paper, for eliminating the pitfall, BLWT is introduced to implement the
left-hand forward transform (WnN×nNZnN×nN , WnN×nNInN×nN , WnN×nNVnN×nN ) and the right-
hand forward transform (ZnN×nNW̃nN×nN ) as in-space matrix transform [16], which can be directly
operated by the polyphase matrix P(z) and its dual matrix P̃(z), defined as

P(z) =
m∏

i=1

(
1 si(z)
0 1

)(
1 0

ti(z) 1

)(
F 0
0 1

F

)
(11)

P̃(z) =
m∏

i=1

(
1 0

−si(z−1) 1

)(
1 −ti(z−1)
0 1

)(
F 0
0 1

F

)
(12)

in which si(z) and ti(z) are Laurent polynomials, and F denotes a nonzero constant.

2.2. Compressive Sensing Theory

Consider a discrete signal [X]N×1, which can be transformed to a sparse signal [α]N×1 by
[α]N×1 = [Ψ]N×N [X]N×1 (13)

in which [Ψ]N×N is the sparse transformed matrix, and [X]N×1 is so-called K-spares signal if [α]N×1

contains K non-zero elements.
Based on CS [17], the sparse signal [α]N×1 can be compressed to [Y]M×1 by

[Y]M×1 = [Φ]M×N [α]N×1

= [Φ]M×N [Ψ]N×N [X]N×1(M << N) (14)
where [Φ]M×N denotes the measurement matrix, and [Y]M×1 is the measurements.

To reconstruct [X]N×1, the underdetermined Equation(14) can obtain unique solution by solving
optimization problems as follows:

min ||ΨX||1 s.t.ΦΨX = Y (15)

2.3. The Application of CS in Multi-Objects Scattering Analysis

To further improve the analysis efficiency of multi-objects scattering, the sparse matrix in Equation (7)
can be transformed into an underdetermined equation under the CS theory framework, in which
unknown signal can be obtained by OMP with fewer resources occupied. The detailed implementation
steps are as follows:

Firstly, Equation (7) can be rewritten as a matrix form⎡
⎢⎢⎢⎢⎢⎢⎣

Z̃11
N×N Z̃12

N×N . . . Z̃1n
N×N

Z̃21
N×N . .
. . .
. . .
. . .

Z̃n1
N×N . . . . Z̃nn

N×N

⎤
⎥⎥⎥⎥⎥⎥⎦

nN×nN

×

⎡
⎢⎢⎢⎢⎢⎢⎣

Ĩ1
N×1

Ĩ2
N×1
.
.
.

Ĩn
N×1

⎤
⎥⎥⎥⎥⎥⎥⎦

nN×1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ṽ1
N×1

Ṽ2
N×1
.
.
.

Ṽn
N×1

⎤
⎥⎥⎥⎥⎥⎥⎦

nN×1

(16)
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in which
Z̃1i

N×nN ĨnN×1=Ṽ1
N×1 (i =1,2, . . . , n) (17)

In CS frame, Equation (17) can be transformed as

Z̃1CS
M1×nN ĨnN×1=Ṽ1CS

M1×1 (M1<< N) (18)

where Z̃1CS
M1×nN and Ṽ1CS

M1×1 can be seen as the measurement matrix and known measurements of ĨnN×1,
respectively; Ṽ1CS

M1×1 is constructed by extractingM1 nonzero elements in known Ṽ1
N×1; and the row

index of nonzero elements can use a priori knowledge to construct Z̃1CS
M1×nN that is formed by extracting

the same M1 rows from Z̃1i
N×nN .

Similarly, for Equation (16), the above method can be operated n times for each linear equation,
respectively. Hence, the impedance matrix is transformed into an underdetermined equation as⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Z̃1CS
M1×nN

Z̃2CS
M2×nN

.

.

.

Z̃nCS
Mn×nN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

M×nN

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ĩ1
N×1

Ĩ2
N×1
.
.
.

Ĩn
N×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

nN×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ṽ1CS
M1×1

Ṽ2CS
M2×1
.
.
.

ṼnCS
Mn×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

M×1

(19)

where M = M1+M2+ . . . + Mn(M � nN).
To solve the underdetermined Equation (19), OMP method is used to reconstruct ĨnN×1, and the

unknown InN×1 can be solved by Equation (10).
For multi-objects scattering, compared with the traditional DWT method, the proposed method

does not require allocating additional memory, and the computational complexity for solving matrix
equation is reduced. It should be pointed out that we select db8 wavelet as the sparse transform matrix
W in this paper, so the proposed method is limited to solving 2n-dimension matrix for obtaining
well sparsity. For DWT method, the traditional iterative solver has a complexity of O(P (nN )2) to
Equation (7), where P is the number of iteration steps. In the proposed method, the complexity of
OMP is O(SM(nN)) [17], where S � P , M � nN , and the small scale measurement matrix will further
reduce the complexity of OMP.

3. RESULT AND DISCUSSION

The surface current distributions of various multi-objects are calculated by the proposed method,
traditional DWT-CS method, and DWT-MoM method, respectively. It should be pointed out that
we select db97 wavelet as the sparse transform matrix, and the GMRES iterative technology is applied
to solve the sparse matrix equations formed by traditional DWT-MoM. Meanwhile, to analyze the
accuracy of the new method, the relative root mean square error (R-RMSE) is defined as

R − RMSE =
||INew−method−IDWT−MOM ||2

||IDWT−MOM ||2 (20)

All examples are analyzed on the personal computer with Intel core i5-5200U@2.40 GHz, RAM
8.0 GB.

Firstly, consider that multiple objects consist of four infinite PEC square cylinders with sides of
2m around the coordinate origin, which are illuminated by a 300 MHz TM plane wave, as shown in
Fig. 1, and every side of each square cylinder is divided into 128 segments.

Sparse excitation vectors Ṽ2048×1 = [Ṽ1
512×1; Ṽ

2
512×1; Ṽ

3
512×1; Ṽ

4
512×1] are obtained by setting a

small threshold (σV =0.027) in each independent region, in which K = 302 nonzero elements are
extracted to form ṼCS

302×1. Fig. 2(a) shows the sparse structure of impedance matrix Z̃2048×2048

(σZ =0.18) in BLWT, in which rows of the same location as that in ṼCS
302×1 are extracted to construct

a small size matrix shown in Fig. 2(b). To verify the effectiveness of the proposed method (denoted by
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Figure 1. Four infinite PEC square cylinders (λ = 2m) is illuminated by TM plane wave.

(b)

(a)

Figure 2. Spares matrix for four infinite PEC square cylinders with sides of 2λ by BLWT. (a)
Impedance matrix. (b) The small matrix obtained after extracting M = 302 nonzero rows of Ṽ2048×1

from (a).

BLWT-CS), Fig. 3 compares the computed currents distributions from BLWT-CS, DWT-CS, and DWT-
MoM, and Table 1 shows the relevant calculation data. As we can seen from Table 1, the computing
time of BLWT-CS is further accelerated by 40% as compared with DWT-CS, while nonzero elements
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Table 1. Calculation data comparison for the four infinite PEC square cylinders.

Algorithm Matrix Size Nonzero Elements Computation time R-RMSE
DWT-MoM 2048 × 2048 194204 6.93 s /
DWT-CS 328 × 2048 117469 4.84 s 0.0309
BLWT-CS 302 × 2048 58331 2.88 s 0.0214

Figure 3. Currents distribution of four infinite PEC square cylinders with sides of 2λ at different
segments.

Figure 4. The PEC sphere (r = 0.2 m) and cone-sphere (r = 0.2 m, α = 20◦) was illuminated by plane
wave.

and R-RMSE dropped by about 50% and 30%, respectively.
As the second example, multiple objects consist of a PEC sphere with a radius of 0.2 m and a PEC

cone-sphere (radius = 0.2 m and the cone angle α = 20◦), which is illuminated by a 300 MHz vertically
polarized plane wave, the two objects are arranged along the axial symmetry and are 0.2 meters apart,
as shown in Fig. 4. The PEC sphere and cone-sphere can be seen as two BOR (Bodies of Revolution),
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(a)

(b)

Figure 5. Spares matrix for PEC sphere and cone-sphere by sub-regional BLWT. (a) Impedance
matrix. (b) The small matrix obtained after extracting M=188 nonzero rows of Ṽ512×1 from (a).

Table 2. Calculation data comparison for the PEC sphere and cone-sphere.

Algorithm Matrix Size Nonzero Elements Computation time R-RMSE
DWT-MoM 512 × 512 38605 282.75s /

DWT-CS 95 × 512 26442 172.38s 0.0415(ϕ = 0◦-plane)
0.017(ϕ = 90◦-plane)

BLWT -CS 188 × 512 10436 118.42s
0.028(ϕ = 0◦-plane)
0.011(ϕ = 90◦-plane)

and two generators are divided into 128 segments, respectively.
For the multiple BOR scattering, BOR-MoM [14] is employed to decompose the vector MoM

equations into two scalar linear integral equations in τ and ϕ directions, respectively, so the size of
sparse impedance matrix is 512×512 (σZ = 0.021) in sub-regional BLWT, as shown in Fig. 5(a), thus a
188 × 512 (σV = 0.003) small matrix is constructed based on the prior knowledge provided by incident
vector ṼCS

188×1, which is shown in Fig. 5(b). Fig. 6 shows the currents distributions of ϕ = 0◦-plane
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Figure 6. Currents distributions of PEC sphere and cone-sphere at different segments.

and ϕ = 90◦-plane for the multiple BOR by BLWT-CS, and the results obtained by DWT-MoM and
DWT-CS are also shown as reference. Table 2 shows the calculation information.

4. CONCLUSION

For scattering of separable multi-objects, BLWT is employed to accelerate the sparse transformation
of subdomain impedance matrices by in-space operations, and CS system is introduced to construct
and solve sparse underdetermined equation with the help of prior knowledge. The simulation results
show that the proposed method can reduce the computational time and nonzero elements of impedance
matrix with high computational accuracy.
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