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On the Mutual Inductance between Non-Coaxial Coplanar
Circular Loops

Marcello Salis1 and Marco Muzi2, *

Abstract—A simple and efficient explicit solution is derived for the mutual inductance of two non-
coaxial coplanar circular loops, which is valid in the quasi-static as well as non-quasi-static frequency
ranges. The solution is obtained by rigorously evaluating the Sommerfeld Integral describing the
inductance, starting from expanding the integrand into a power series of the loop radius. As a result,
a sum of simpler integrals is obtained, and term-by-term analytical integration is straightforwardly
performed. The inductance is finally expressed as a series of spherical Hankel functions, with algebraic
coefficients depending on the electrical size of the loops. Conducted numerical tests lead to conclude
that, accuracy being equal, the proposed expression offers advantages in terms of time cost over
conventional numerical integration techniques.

1. INTRODUCTION

Evaluation of the inductive coupling between current-carrying loops of wire is required in many fields of
scientific interest, including wireless power transfer, magnetic resonance imaging, radio direction finding,
electromagnetic sounding for exploration of terrestrial areas, electromagnetic induction heating [1–34].
The widespread interest in solving this problem responds to the need for strengthening or nullifying
the magnetic coupling between any pair of coils that constitute the considered coil system, depending
on the application. For instance, enhancement of magnetic coupling between a transmitting coil and a
receiving coil is required in wireless power transfer systems, every time that the transmission efficiency
of the inductive link must be optimized [1–3, 30]. On the other hand, reduction of magnetic coupling
effects is desired in applications like magnetic resonance imaging (MRI), where multiple receiving coils
are located in close proximity to each other to assure compact coverage of an area and obtain high
signal-to-noise ratio images [4, 5]. It is easily understood how, in such a situation, inductive crosstalk
among neighboring receivers must be minimized [4, 5].

In the last decades, different analytical expressions have been proposed that describe the mutual
inductance between two circular loops [7, 26, 35, 36]. Yet, these solutions either consists of integral
expressions that require intensive and time-demanding numerical evaluation [4, 5, 26], or are valid in the
quasi-static frequency range only [7, 35, 36] and cannot be used when the effects of the displacement
currents are not negligible. This may be the case, for instance, of applications where the operating
frequency exceeds a few tens of MHz, like magnetic resonance imaging [1, 2] and shortwave inductive
diathermy for therapeutic heating of tissues [30, 32–34, 37]. Here, the overall size of the whole two-coil
system may not be sufficiently small for electromagnetic retardation to have negligible impact on the
field distribution, and the quasi-static field assumption fails.

The purpose of the present paper is to determine a simple and efficient series-form expression
for the mutual inductance of two identical coplanar loops, which allows to accurately calculate the
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inductance and, at the same time, to overcome the limitations implied by the previously published
solutions to the same problem. In particular, the expression must be valid in both the quasi-static and
non-quasi-static frequency regions, as long as the assumption of uniform current in the source loop is
reasonable. This is true approximately up to the frequency at which the circumference of the loop is
equal to one third of the free-space wavelength [38]. The proposed expression is obtained by turning
the Sommerfeld-type integral describing the mutual inductance into a sum of simpler integrals, and
this results from expanding the integrand into a power series of the loop radius. Then, term-by-term
analytical integration is performed, and the mutual inductance is finally described by a power series of
the electrical size of the loops, with the dependence on the distance between the loops expressed by
spherical Hankel functions. The derived expression is valid as far as the thin-wire hypothesis, underlying
the present theoretical development, holds. This implies that the wire radius must be much smaller than
the loop radius. Numerical simulations are performed to show the advantages of the derived formula,
in terms of accuracy and time cost, over the standard numerical techniques conventionally used to
calculate self and mutual inductances of coils.

2. THEORY

The problem under study is sketched in Fig. 1. Two thin-wire air-cored co-planar circular loops have
radius a, and are separated by the distance ρ. The time-harmonic integral representation for the total
flux linkage per unit current between the coils is well known and given by [18, 26]

M = πμ0a
2

∫ ∞

0

1
u0

[J1(λa)]2 J0(λρ)λdλ, (1)

where Jn(·) is the nth-order Bessel function, and

u0=
√

λ2 − k2
0, k2

0=ω2μ0ε0, (2)

being ε0 and μ0 the free-space dielectric permittivity and magnetic permeability, respectively. The scope
of this work is to derive an explicit analytical expression for M . To do this, we first use the Maclaurin
series expansion of the quantity [J1(λa)]2, that is [39]
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and rewrite Eq. (1) as
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Figure 1. Sketch of two co-planar circular loops.
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which makes it possible to turn Eq. (4) into

M = −πμ0a
2
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where the semi-infinite integral on the right-hand side is recognized to be the well-known tabulated
Sommerfeld Integral [40–43] ∫ ∞

0

1
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J0(λρ)λdλ=
e−jk0ρ

ρ
= − jk0h

(2)
0 (k0ρ) , (8)

being h
(2)
0 (·) the zeroth-order spherical Hankel function of the second kind. Thus, after substituting

Eq. (8) into Eq. (7), so as to obtain
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and performing the differentiations, it yields

M = jπμ0a
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with
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2n(n − 1)!(n + 1)!

, (11)

and
cm,n= (−1)m+n (2m − 1)!!

(m)!(n − m)!
. (12)

Expression (10) is valid under the assumption that the current in the source loop is uniformly distributed,
which underlies the derivation of Eq. (1) [18]. Since a nearly uniform current in a loop antenna can
be obtained as long as k0a<0.3 [38], it turns out that Eq. (10), seen as a power series of k0a, gives
the magnetic field radiated by the primary loop in the radial direction as the superposition of spherical
waves, with decreasing amplitude as the order n of the wave function increases.

3. NUMERICAL RESULTS

To test the proposed approach, expression (10) is first used to calculate the amplitude-frequency
spectrum of the mutual inductance between two loops, 2 cm in radius, separated by the radial distance
ρ=6cm. Different values for the index N at which Eq. (10) is truncated are considered, and the results
of the computation, shown in Fig. 2, are compared with the data arising from numerical integration of
the complete integral representation in Eq. (1). Numerical integration is performed by using a Gauss-
Kronrod G7-K15 scheme, resulting from the combination of a 7-point Gauss rule with a 15-point Kronrod
rule. The plotted curves point out how the outcomes from Eq. (10) with N=5 are in excellent agreement
with G7-K15 data all over the considered frequency range. Moreover, a variation of frequency does not
affect convergence of Eq. (10). It should be also noted that, as frequency is decreased, the trend of |M |
becomes nearly horizontal and approaches its quasi-static limit, where the fields exhibit a predominantly
static behavior. Here, the inductance may be computed by assuming that the displacement currents are
negligible (quasi-static field approximation). As an example, for a=2 cm and ρ=6 cm the inductance
extraction software Fast-Henry [44], based on the magnetoquasistatic condition, provides M∼=0.989 nH,
a value that is in agreement with the low-frequency limit in Fig. 2. On the other hand, the outcomes
from the quasi-static approximation do not depend on frequency and, starting from about 50 MHz,
they cannot reproduce the effective trend of |M | any longer. This aspect is further clarified by Fig. 3,
which depicts ρ-profiles of the amplitude of M , calculated by using the proposed approach, Fast-Henry
computational package, and Gauss-Kronrod integration of Eq. (1). The operating frequency is 100 MHz,
while the radius of the loops is taken to be a=5cm. As is seen, the curves arising from retaining only
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Figure 2. Mutual inductance between two loops
with radius a=2 cm, computed against frequency.
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Figure 3. Mutual inductance between two loops
with radius a=5 cm, computed against the radial
distance ρ.
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Figure 4. Mutual inductance between two loops separated by the distance ρ=15 cm, computed against
the loop radius a.

5 terms in Eq. (10) and the data from numerical integration are still overlapping, regardless of the
value of the radial distance ρ. Instead, Fast-Henry program overestimates the mutual inductance, and
this happens because at the frequency of 100 MHz the two-loop system has entered the non-quasi-
static frequency region. In fact, if D is the diagonal of the rectangular bounding box that encloses
the two loops, its minimum value is Dmin=

√
(ρmin + 2a)2 + (2a)2=

√
(15 + 10)2 + 102 ∼= 27 cm, while

k0=2π/3∼=2.094 m−1. As a consequence, k0Dmin
∼=0.57>0.1, which means that, for all the considered

values of ρ, the overall size of the whole two-loop system is not sufficiently small for electromagnetic
retardation to have negligible impact on the field distribution. On the other hand, it suffices to decrease
frequency by one order of magnitude (that is down to 10 MHz) to have k0Dmin

∼=0.057<0.1 and, hence,
to make the quasi-static field assumption valid again. This point is illustrated by Fig. 4, which depicts
profiles of the amplitude of M against the loop radius a, calculated at the operating frequency 10 MHz
by using the proposed method and Fast-Henry program. The radial distance between the loops is taken
to be ρ=15 cm. As can be observed, Fast-Henry data now agree perfectly with the curve originating
from Eq. (10) with N=5. This is expected, since the largest diagonal of the rectangular bounding box
that encloses the two loops is Dmax=

√
(ρ + 2amax)2 + (2amax)2=

√
(15 + 12)2 + 122 ∼= 29.55 cm, while
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k0=2π/30∼=0.2094 m−1. As a consequence, k0Dmax
∼=0.062<0.1, and the quasi-static field assumption

holds for all the considered values of the loop radius a.
Accuracy being equal, use of Eq. (10) instead of Gauss-Kronrod scheme permits to achieve

significant time savings. This is confirmed by Table 1, which shows the average CPU time taken
by the two methods to compute the ρ-profiles of M depicted in Fig. 3. Table 1 also illustrates the
speed-up offered by the new method with respect to Fast-Henry tool, that is the ratio of the time
taken by the computational package to that required by Eq. (10). As seen, use of the proposed series
expression with N=10 instead of Fast-Henry program allows both to improve the accuracy of the result
of the computation and to significantly reduce the time cost.

Table 1. CPU time comparisons for the computation of M .

Approach average CPU time [s] Speed-Up
Fast-Henry 1.69 -

Numerical Integration 1.36 × 102 1.24 × 10−2

(10) with N = 5 6.79 × 10−4 2.49 × 103

(10) with N = 7 9.25 × 10−4 1.83 × 103

(10) with N = 10 3.37 × 10−3 5.01 × 102

4. CONCLUSIONS

The scope of this work has been to present a simple and efficient explicit formula for the mutual
inductance between two coplanar single-turn coils, which is valid in the quasi-static as well as non-
quasi-static frequency ranges. The formula has been obtained by expanding the integrand of the integral
representation for the inductance into a power series of the loop radius. This has made it possible to
convert the original integral representation into a sum of simpler integrals, and then to perform term-
by-term analytical integration. As a result, the inductance is expressed by a series of spherical Hankel
functions, with algebraic coefficients depending on the electrical size of the loops. Numerical simulations
have been carried out to show the advantages of the proposed formula in terms of accuracy and time
cost.

REFERENCES

1. Trivino-Cabrera, A., J. Aguado, and J. M. Gonzalez, “Analytical characterisation of magnetic field
generated by ICPT wireless charger,” Electronics Letters, Vol. 53, 871–873, 2017.

2. Fu, M., H. Yin, and C. Ma, “Megahertz multiple-receiver wireless power transfer systems with
power flow management and maximum efficiency point tracking,” IEEE Trans. Microwave Theory
Techniques, Vol. 65, 4285–4293, 2017.

3. Niitsu, K., Y. Sugimori, Y. Kohama, K. Osada, N. Irie, H. Ishikuro, and T. Kuroda, “Analysis
and techniques for mitigating interference from power/signal lines and to SRAM circuits in CMOS
inductive-coupling link for low-power 3-d system integration,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Vol. 19, 1902–1907, 2011.

4. Angelidis, P., K. Vassiliadis, and G. D. Sergiadis, “Lowest mutual coupling between closely spaced
loop antennas,” IEEE Transactions on Antennas and Propagation, Vol. 39, 949–953, 1991.

5. Kwiat, D., S. Saoub, and S. Einav, “Calculation of the mutual induction between coplanar circular
surface coils in magnetic resonance imaging,” IEEE Transactions on Biomedical Engineering,
Vol. 39, 433–436, 1992.

6. Conway, J. T., “Analytical and semi-analytical solutions for the force between circular loops in
parallel planes,” IEEE Transactions on Magnetics, Vol. 49, 4817–4823, 2013.



88 Salis and Muzi

7. Conway, J. T., “Inductance calculations for noncoaxial coils using Bessel functions,” IEEE
Transactions on Magnetics, Vol. 43, 1023–1034, 2007.

8. Zhdanov, M. S., Geophysical Electromagnetic Theory and Methods, Elsevier, Amsterdam, 2009.
9. Parise, M., V. Tamburrelli, and G. Antonini, “Mutual impedance of thin-wire circular loops in

near-surface applications,” IEEE Transactions on Electromagnetic Compatibility, Vol. 61, 558–563,
2019.

10. Paul, C. R., Inductance: Loop and Partial , John Wiley & Sons, Hoboken, NJ, USA, 2010.
11. Parise, M., “Fast computation of the forward solution in controlled-source electromagnetic sounding

problems,” Progress In Electromagnetics Research, Vol. 111, 119–139, 2011.
12. Parise, M., “Exact electromagnetic field excited by a vertical magnetic dipole on the surface of a

lossy half-space,” Progress In Electromagnetics Research B , Vol. 23, 69–82, 2010.
13. Farquharson, C. G., D. W. Oldenburg, and P. S. Routh, “Simultaneous 1D inversion of loop-loop

electromagnetic data for magnetic susceptibility and electrical conductivity,” Geophysics, Vol. 68,
No. 6, 1857–1869, 2003.

14. Parise, M., “Efficient computation of the surface fields of a horizontal magnetic dipole located
at the air-ground interface,” International Journal of Numerical Modelling: Electronic Networks,
Devices and Fields, Vol. 29, 653–664, 2016.

15. Wait, J. R., “Mutual electromagnetic coupling of loops over a homogeneous ground,” Geophysics,
Vol. 20, No. 3, 630–637, 1955.

16. Beard, L. P. and J. E. Nyquist, “Simultaneous inversion of airborne electromagnetic data for
resistivity and magnetic permeability,” Geophysics, Vol. 63, No. 5, 1556–1564, 1998.

17. Parise, M., “Quasi-static vertical magnetic field of a large horizontal circular loop located at the
earth’s surface,” Progress In Electromagnetics Research Letters, Vol. 62, 29–34, 2016.

18. Ward, S. H. and G. W. Hohmann, “Electromagnetic theory for geophysical applications,”
Electromagnetic Methods in Applied Geophysics, Theory — Volume 1 , 131–308, edited by
M. N. Nabighian, SEG, Tulsa, Oklahoma, 1988.

19. Parise, M., “Transverse magnetic field of infinite line source placed on ground surface,” Electronics
Letters, Vol. 51, No. 19, 1478–1480, 2015.

20. Spies, B. R. and F. C. Frischknecht, “Electromagnetic sounding,” Electromagnetic Methods in
Applied Geophysics, Volume 2 , 285–426, edited by M. N. Nabighian, SEG, Tulsa, Oklahoma, 1988.

21. Tiwari, K. C., D. Singh, and M. K. Arora, “Development of a model for detection and estimation
of depth of shallow buried non-metallic landmine at microwave x-band frequency,” Progress In
Electromagnetics Research, Vol. 79, 225–250, 2008.

22. Telford, W. M., L. P. Geldart, and R. E. Sheriff, Applied Geophysics, Cambridge University Press,
New York, 1990.

23. Parise, M., “An exact series representation for the EM field from a circular loop antenna on a lossy
half-space,” IEEE Antennas and Wireless Prop. Letters, Vol. 13, 23–26, 2014.

24. Werner, D. H., “An exact integration procedure for vector potentials of thin circular loop antennas,”
IEEE Transactions on Antennas and Propagation, Vol. 44, 157–165, 1996.

25. Parise, M., “Full-wave analytical explicit expressions for the surface fields of an electrically large
horizontal circular loop antenna placed on a layered ground,” IET Microwaves, Antennas &
Propagation, Vol. 11, 929–934, 2017.

26. Zierhofer, C. M. and E. S. Hochmair, “Geometric approach for coupling enhancement of
magnetically coupled coils,” IEEE Transactions on Biomedical Engineering , Vol. 43, 708–714, 1996.

27. Parise, M., “On the surface fields of a small circular loop antenna placed on plane stratified earth,”
International Journal of Antennas and Propagation, Vol. 2015, 1–8, 2015.

28. Singh, N. P. and T. Mogi, “Electromagnetic response of a large circular loop source on a layered
earth: A new computation method,” Pure and Applied Geophysics, Vol. 162, 181–200, 2005.

29. Wait, J. R., “Fields of a horizontal loop antenna over a layered half-space,” Journal of
Electromagnetic Waves and Applications, Vol. 9, No. 10, 1301–1311, 1995.



Progress In Electromagnetics Research Letters, Vol. 86, 2019 89

30. Parise, M. and G. Antonini, “On the inductive coupling between two parallel thin-wire circular
loop antennas,” IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 6, 1865–1872,
2018.

31. Singh, N. P. and T. Mogi, “Effective skin depth of EM fields due to large circular loop and electric
dipole sources,” Earth Planets Space, Vol. 55, 301–313, 2003.

32. Parise, M., “A study on energetic efficiency of coil antennas used for RF diathermy,” IEEE Antennas
and Wireless Propagation Letters, Vol. 10, 385–388, 2011.

33. Parise, M., “On the use of cloverleaf coils to induce therapeutic heating in tissues,” Journal of
Electromagnetic Waves and Applications, Vol. 25, Nos. 11–12, 1667–1677, 2011.

34. Parise, M. and S. Cristina, “High-order electromagnetic modeling of shortwave inductive diathermy
effects,” Progress In Electromagnetics Research, Vol. 92, 235–253, 2009.

35. Rosa, E. B. and L. Cohen, “Formulae and tables for the calculation of mutual and self-inductance,”
Bull. Bureau Standards, Vol. 5, 1–132, 1908.

36. Snow, C., Formulas for Computing Capacitance and Inductance, (Circular of the Bureau of
Standards No. 544), U. S. Govt. Printing Office, Washington DC, 1954.

37. Parise, M., “A highly accurate analytical solution for the surface fields of a short vertical wire
antenna lying on a multilayer ground,” Waves in Random and Complex Media, Vol. 28, 49–59,
2018.

38. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Edition, John Wiley & Sons, New York,
2016.

39. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New
York, 2007.

40. Parise, M., “Exact EM field excited by a short horizontal wire antenna lying on a conducting soil,”
AEU — International Journal of Electronics and Communications, Vol. 70, No. 5, 676–680, 2016.

41. Parise, M., “Second-order formulation for the quasi-static field from a vertical electric dipole on a
lossy half-space,” Progress In Electromagnetics Research, Vol. 136, 509–521, 2013.

42. Parise, M., “Improved Babylonian square root algorithm-based analytical expressions for the
surface-to-surface solution to the Sommerfeld half-space problem,” IEEE Transactions on Antennas
and Propagation, Vol. 63, 5832–5837, 2015.

43. Parise, M., “An exact series representation for the EM field from a vertical electric dipole on an
imperfectly conducting half-space,” Journal of Electromagnetic Waves and Applications, Vol. 28,
No. 8, 932–942, 2014.

44. Kamon, M., M. J. Tsuk, and J. K. White, “FASTHENRY: A multipole accelerated 3-D inductance
extraction program,” IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 9,
1750–1758, 1994.


