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A Low Bias Current Integral Type Optimal Control Scheme
for a Hybrid Magnetic Bearing

Subhankar Pusti1, Tapan Santra2, *, and Debabrata Roy1

Abstract—This paper presents an application of integral type optimal control scheme for rotor
positioning of a hybrid magnetic bearing (HMB) in one degree of freedom (1-DOF) using low bias
current. It is observed that higher biasing current enhances the linearity and disturbance rejection
capability but at a cost of higher copper loss in the actuator. So, selection of biasing in an HMB system
is very crucial. In the proposed scheme the dc biasing current can be varied by adjusting the axial
offset to the rotor magnet. Analysis has been conducted to achieve the optimal biasing current for
better performance of the HMB. A prototype of the HMB system has been fabricated and tested which
represents quite satisfactory axial vibration characteristics under low biasing current.

1. INTRODUCTION

Magnetic bearing is beneficial due to its contact free operation, zero lubrication, no wear, etc. [1].
Among the different configurations of magnetic bearing, single axis controlled hybrid bearing [2] is in
the limelight recently due to its low cost and efficient performances. It integrates the benefits of active
and passive [3] bearings. The peripheral devices are reduced, and the linear stiffness characteristic of
the passive magnets make it efficient and cost effective. Permanent magnets abolish the requirement
of control in radial direction. Axial control has been comprehended by regulating the current to the
electromagnet, rightly mounted on the stator and coupling magnetically with the machine flywheel
arrangement. Different control schemes: Sliding Mode Control (SMC) [4], Proportional-Integral-
Derivative (PID) control [5], and H∞ control [6] have been discussed where performances of the bearing
are satisfactory but subjected to huge loss due to high biasing current. It is observed that due to the
high axial stiffness of passive magnets these control schemes will not be profitable as they require high
control force, leading towards saturation of the actuator.

The present work focuses on the optimal control system design of the HMB in a vertical shaft
configuration. In this paper, an integral type optimal controller is proposed with variable biasing
mode for the HMB system in 1-DOF. The controller gain parameters are selected to optimize the
control force with efficient tracking of the reference input. The biasing current is varied to observe its
impact on system response and power loss in the electromagnet coil. The controller has been designed
and simulated using MATLAB to investigate the tracking performance and disturbance rejection. A
prototype has been fabricated and tested in the laboratory with optimal biasing current to study the
vibration characteristics, which is observed to be satisfactory in nature.
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Figure 1. (a) Schematic of the Hybrid Magnetic Bearing (HMB). (b) The Laboratory prototype of the
HMB. (c) Components of different forces and moments acting on the rotor in a HMB about three axes.

2. CONSTRUCTION AND WORKING PRINCIPLE OF HMB

A magnetic bearing is designed to levitate the rotor and maintain the rotor position against disturbances.
Figure 1(a) shows the schematic of the proposed vertical shaft hybrid magnetic bearing. There are two
passive magnetic bearings at the upper and lower portions of the machine shaft. These passive bearings
consist of two concentric cylindrical type axially polarized NdFeB permanent magnets [7, 8]. The outer
magnet is called stator magnet and the inner magnet called rotor magnet. The radial component
of repulsive force between stator and rotor magnets inherently stabilizes the rotor in radial direction
whereas axial component destabilizes the rotor in axial direction. So, to obtain axial stability, coil
current is regulated in an electromagnet-flywheel arrangement as shown in Figure 1. The attractive
force between the electromagnet and flywheel makes the rotor axially stable. The electromagnet has
a hollow cylindrical core to accommodate the rotor shaft. A gap sensor is used to sense the axial
displacement and give the feedback signal to the controller to control the coil current as per the control
algorithm. Figure 1(b) shows the fabricated model of the HMB system in the laboratory.

3. MODELLING OF THE HMB

The modelling of the HMB has been represented by the authors in [4] for Six-Degree-of Freedom (6-
DOF). In the present work, modelling in axial direction (1-DOF) is only considered because the HMB
is passively stable in radial direction. Different forces and moments with their components about the
three Cartesian axes (X, Y and Z) on the rotor are represented by Figure 1(c). The rotor magnet
experiences a repulsive force due to stator magnet as shown in Figure 2. The components of these
repulsive forces are fxp1, fyp1, and fzp1 at upper passive bearing and fxp2, fyp2, and fzp2 at lower
passive bearing. An attractive force fe acts between flywheel and electromagnet in axial direction. It is
observed that the HMB is passively stable in radial direction by the permanent magnets but unstable
in axial direction. Therefore, the axial position control is achieved by regulating the current through
the coil of the electromagnet-flywheel arrangement. Furthermore, the radial and axial dynamics are
decoupled in nature. So the dynamics in axial direction are of interest in this paper. The mechanical
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Figure 2. Variable biasing scheme for the HMB system.

and electrical dynamics in axial direction are given by Eqs. (1) and (2), respectively.
mz̈ = (fzp1 + fzp2) − fe − mg + Fd (1a)

z̈ =
2kpa

m
(z + d0) − ke

m

(
i + i0
z + e0

)2

− g +
Fd

m
(1b)

Lei̇ + Rei = Vs (2a)

i̇ = −Re

Le
i +

1
Le

Vs (2b)

where z is the axial displacement, i the coil current, i0 is the biasing current, e0 the gap between
electromagnet and flywheel, d0 the axial offset of rotor at steady operating condition, Fd the disturbance,
Vs the coil voltage, m the mass of the rotor, kpa the axial stiffness of the passive magnets, ke the
electromagnet stiffness, g the gravitational acceleration, and Re and Le are the resistance and inductance
of the electromagnet coil respectively. The axial dynamics given in Eqs. (1a)–(2b) are highly nonlinear
in nature. To perform the linearization about the steady operating point, the state variables are defined
as x1 = �z, x2 = �ż, and x3 = �i, where � represents the changes in the corresponding variables (z, ż
and i) about the steady operating point. The control force is the voltage supplied to the electromagnet
coil (U = Vs). After linearization, the linear axial model of the HMB is given by Eqs. (3) and (4),
respectively.
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4. LOW BIAS CURRENT CONTROL

Biasing current is required mainly to cancel out the static load on the rotor. Although it enhances the
system linearity, it increases the power loss in the HMB which may cause coil overheating, influencing
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the bearing efficiency. On the other hand, reducing the bias current minimizes the power loss, but it
increases the system nonlinearities and may lead to a control singularity ( unbounded control voltage
input). It is observed that the control current which typically depends on the dynamic load and external
disturbances usually is very low. The coil current is mainly composed of biasing current. In this work,
a variable biasing scheme is proposed to have a tradeoff between system response and power loss. The
objective of the variable biasing scheme is to minimize the i2R loss in the electromagnet coil after
satisfying the control action. Figure 2 shows the variation of axial force between stator and rotor
magnets with axial displacement. The positive stiffness signifies that for a positive (upward) axial
displacement (offset) of rotor magnet, an upward magnetic force is generated which can cancel out the
weight of the rotor. Bias current can be minimized by providing a suitable axial offset of the rotor as
described below. Let us consider an axial offset d0 of rotor (Figure 1(c)), which will counter-balance
the weight mg of the rotor and make bias current equal to zero in the electromagnet coil as given by
Equation (5).

kpad0 = mg (5)

Certainly, it decreases the total ohmic loss in the electromagnet, but it has a severe disadvantage
of attracting control singularity and enhancing the system nonlinearity. This can be explained in the
following ways: Let the rotor operate with a positive axial offset to cancel out the static load. When
an external disturbance tries to pull down the rotor, the electromagnet current decreases as per the
controller action and make the system stable. However, in this situation if the biasing current is zero at
steady operating point as per Eq. (5), the system will face control singularity with unbounded control
input, and the system will go out of stability. So to avoid this situation, a minimum operating current
(Ib = i0min) is provided in the electromagnet coil as shown in Figure 2 and given by Eq. (6).

kpadmin = mg + ke

(
i0min

e0

)2

(6)

whereas the maximum bound of the biasing current is limited by the thermal capacity of electromagnet
coil (Ithermal) and control current (Icontrol) such that Equations (7) and (8) are satisfied.

kpadmax = mg + ke

(
i0 max

e0

)2

(7)

I0max + Icontrol ≤ Ithermal (8)

4.1. Design of the Controller

After considering the parameter values, given in Table 1, the state space model in Eqs. (3)–(4) of the
HMB is represented by Eqs. (9) and (10), respectively.⎡
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Table 1. Parameters of the HMB.

Parameter Value Parameter value
ke 6.65 × 10−4 Nm2

A2 kpa 70 × 103 Nm2

A2

Re 10 ohm Le 0.5 H
i0 1.9 A d0 0.001 m
e0 0.005 m m 4.5 kg
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The applied voltage to the electromagnet is bounded by ±100 V. The integral control concept is
used in the design. The error vector represents the difference between the reference (x1d) and actual
position (x1) of the rotor system as given by Eq. (11). The corresponding augmented state vector is
given by Eq. (12).

e(t) = x1d(t) − x1(t) (11)

xSigma =
[
x1 x2 x3

∫
edt

]T

(12)

The application of the integral control methodology gives the control law in Eq. (13), where k1, k2, k3,
and k4 are the gain parameters to feedback the four state variables given by Eq. (12) respectively.

U = −Umax tanh
(

k1x1 + k2x2 + k3x3 + k4

∫
edt

)
(13)

By minimizing the quadratic functional (14), the feedback gains can be achieved by solving Riccati
equation.

J ([xΣ(.), U(.)]) =
1
2

∫ tf

0

(
xT

ΣQxΣ + UT GU
)
dt (14)

where Q ∈ R(4×4) is a positive-semidefinite constant-coefficient matrix, and G ∈ R(1×1) is the positive-
definite constant-coefficient matrix, which are given by Eq. (15).

Q =

⎡
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 999995

⎤
⎥⎦ , G = [0.01] (15)

Now solving the Riccati Equation (16), the feedback gain matrix K is obtained.

−K̇ = Q + AT
Σ + KAΣ − KBΣG−1BT

ΣK (16)

where the different augmented matrices are given by Eq. (17).
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The gain matrix is given by Eq. (18), and finally the bounded control law is given by Eqs. (19a)–(19b).

K = [K1 K2 K3 K4]
T =

[−4.98 × 105 −2.66 × 103 191 3.16 × 104
]T (18)

U = −sat+100
−100

(
−4.98 × 105x1 + 2.66 × 103x2 − 191x3 − 3.16 × 104

∫
edt

))
(19a)

= −sat+100
−100f(x1, x2, x3, e) (19b)

where f(x1, x2, x3, e) = (−4.98 × 105x1 + 2.66 × 103x2 − 191x3 − 3.16 × 104
∫

edt) and the sat function
is given by Eqs. (20a)–(20c)

sat+100
−100[f(x1, x2, x3, e)]= +100 when f(x1, x2, x3, e) > 100 (20a)

= −100 when f(x1, x2, x3, e) < −100 (20b)
= f(x1, x2, x3, e) otherwise (20c)

The system is simulated using the control law in Eq. (19). The response with a step input reference
is given by Figure 3(a), and corresponding control current is given in Figure 3(b). The square wave
tracking and corresponding control current are represented by Figure 3(c) and Figure 3(d), respectively.
It is observed that the tracking performances and disturbance rejection are excellent. A disturbance
at output (Figure 3(a)) may swift away within 1 second. The control current profiles are also under
desired limit and smooth.



208 Pusti, Santra, and Roy

(a) (b)
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Figure 3. (a) Tracking of a step input. (b) Control current for tracking the step input. (c) Tracking a
square input. (d) Control current for tracking the square input.

4.2. Effects of Biasing on Output Response

The effects of variable biasing have been investigated by changing the biasing current (Ib = i0) with
the same control parameters and disturbances as shown in Figure 4(a). The controller gain parameters
have been selected as k1 = −4.04× 105, k2 = −2.03× 103, k3 = 203.84, k4 = 3.16× 104, and the output
disturbance is considered as xd = 8 × 10−6 m. It is observed that a minimum biasing (Ib = 1.76 A,
d0 = 0.00091 m) is required; otherwise, the system may become unstable (control singularity may
occurs). As the biasing current increases, the linearity of the system is enhanced which makes the system
more stable, but the quality of transient response degrades. It is seen that the rise time and settling time
increase with biasing. So there is always a tradeoff between the stability and quality of output response
if the biasing of the HMB system is changed. Another important parameter is the magnitude of external
disturbance. The selection of minimum biasing partly depends on the value of the probable disturbance
that may come in the system. Figure 4(b) represents the change in minimum biasing requirement with
the magnitude of external disturbance. It is observed that the minimum biasing current (Ib) and axial
offset of the rotor magnet (d0) both increase with the magnitude of external disturbance. This also
increases the rise time (Tr) and settling time (Ts) of the output response. The control current (Ic)
decreases because of the improved linearity of the HMB system by higher biasing current. However, as
the biasing current increases, the overall coil current (I = Ib + Ic) usually increases though the control
current (Ic) is less. So it can be concluded that the increase in biasing enhances the system linearity,
stability, and disturbance rejection capability, but at the same time it degrades the system responses
by increasing the rise and settling times. On the other hand as the overall coil current is increased, the
power loss in the HMB is also enhanced. So the biasing of the HMB should be selected very carefully.

5. PRACTICAL RESPONSES OF THE FABRICATED PROTOTYPE OF HMB

The fabricated model of the vertical shaft HMB system is shown in Figure 1(b). A photoelectric distance
sensor (OADM 12U6460/S35A) is used to sense the axial displacement of the rotor. The output of the
position sensor is used as the feedback signal to the controller (PIC16F877A). The controller generates
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(a) (b)

Figure 4. (a) Tracking performances of HMB under varying biasing. (b) Varius control performances
under varying disturbances.

the control signal to the electromagnet driver circuit to control the current in the electromagnet coil.
A current sensor (LEM, LTS 25NP) is used to sense the coil current. The output of the current sensor
is also given to the controller as a feedback signal. A voltage sensor is also used to measure the control
voltage across the electromagnet coil. The outputs of all the sensors are displayed in a personal computer
(PC) or digital storage oscilloscope (DSO) via a data acquisition system (NI, USB6009). An optimal
integral type controller has been implemented. The feedback gain parameters of the controller have

(a) (b)

(c) (d)

Figure 5. (a) Axial vibration characteristic of the HMB in steady state. (b) Axial vibration at starting
of the motor. (c) Radial vibration of the HMB at steady state. (d) Radial Vs Axial vibration plot.
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been obtained by solving the Riccati equation using control system toolbox in MATrix LABoratory
(MATLAB), as discussed in Subsection 4.1. An interactive controller program has been developed in
PIC microcontroller. Using the designed controller, experiments have been carried out to stabilize the
rotor. The output, axial vibration is shown in Figure 5(a). It is observed that the axial vibration is
within 20 µm (peak to peak) band at steady state. A disturbance step function of 0.08 mm has been
introduced by adding a suitable voltage at feedback path (with gap sensor output). The system takes
approximately 0.6 sec to drive away the disturbance and come to the steady state. Figure 5(b) shows
the axial vibration of the rotor due to a turn-on disturbance of the motor. At low speed of the motor,
there is a huge number of harmonic torques present in the system, creating lots of disturbing forces.
The motor is started and continues to run at 500 rpm. It is observed that at the time of start, the
rotor undergoes a maximum axial vibration, about 0.15 mm peak. Gradually, this vibration dies out
within 1.5 seconds, after which the output vibration comes to a steady state with peak to peak vibration
of 18 µm. To observe the change in axial vibration with rotor speed, the rotor speed is increased to
2000 rpm. The steady state axial vibration increases to 25µm peak to peak. So with the increase in
rotor speed axial vibration slightly increases. Figure 5(c) represents the radial vibration which is under
limit, and Figure 5(d) shows axial vibration (z-axis) against radial vibration (x-axis) at 1000 rpm. The
radial vibration has a maximum peak of 25 µm which is sufficiently less than the air gap length of 3 mm.
The axial vibration has a maximum peak of 20 µm which is quite satisfactory and under prescribed
limit.

6. CONCLUSION

An integral type optimal controller has been designed to control a hybrid magnetic bearing (HMB) in one
degree of freedom (1-DOF). The linear model of the HMB system is simulated to examine the tracking
performance and disturbance attenuation capability of the controller. The simulated result shows the
robustness of the controller with outstanding tracking of the reference as well as good disturbance
ejection. The impact of the bias current on the performances of the HMB system has been observed
by varying the biasing and external disturbance. It is observed that the increase in biasing enhances
the system linearity, stability, and disturbance rejection capability, but at the same time it degrades
the system responses by increasing the rise and settling times. Though the control current is decreased,
as the biasing current increases, the overall coil current (control current + biasing current) as a whole
increases, which on the other hand increases the ohmic loss in the system. So the biasing of the HMB
should be selected very carefully. A prototype of the HMB system has been fabricated and tested with
the proposed controller for rotor positioning in axial direction. It presents acceptable axial vibration
characteristics with decent disturbance attenuation capacity. In future, zero bias current control of the
HMB system can be implemented.
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