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Improvement of Phase Noise Performance in Tracking Array of UAV
Signal Based on Mixed Phased/Retrodirective Array

Alaa Salman*, Shokri Almekdad, and Mohamad Alhariri

Abstract—An improved mixed phased/retrodirective array is presented. The phase conjugation
technique will be achieved in base band instead of intermediate frequency (IF) band. Canceling the need
to the intermediate frequency stage in the receiver will reduce the complexity and cost of the system.
The ability to entire processing of the tracking array function to be applied using software defined
radio (SDR) system is added. The effect of the phase errors at each channel is compensated, and the
noise performance of the tracking array is improved. Also an expanded analytical study of the noise
performance of the array to include the impact of the phase errors on the array performance is presented.
The proposed equivalent one-channel model of the N-channel array model provides a clear and efficient
way to characterize the noise performance of array receiver systems with any amplitude tapering and
also considering the phase errors. The improvement provided by the mixed phased/retrodirective array
compared to the traditional phased array is evaluated. The effect of array size on the tracking array
performance in the presence of phase error is discussed. A monopulse tracking array is taken as an
example.

1. INTRODUCTION

Phased array is recently used in the tracking system of an unmanned aerial vehicle (UAV) signal to
obtain a high gain datalink between the UAV and ground station [1], where phased array has the
ability to achieve high speed tracking and avoid the problems of mechanical movement of the antenna
in traditional systems [2, 3]. However, phased array is sensitive to phase errors caused by increased
sources of noise in the phased array [4–6]. These phase errors will affect the coherency required to
achieve the array factor. On the other hand, achieving tracking array based on a phased array requires
high calibration of the array, where the algorithms used in the tracking array (direction finding and
tracking algorithms) are sensitive to the receiver noise and phase errors among array elements [7, 8],
and these algorithms also increase the computational cost of the system [7, 9]. Phase error’s effect
on the pattern can include loss in gain, increased sidelobe levels, and increased beam pointing errors
(BPE) [10]. Many of these phase error sources are random and cannot be compensated for using pre-
calibration or adaptive signal processing techniques [10, 11]. A lot of studies have been done on phase
errors to characterize the performance of an array due to these errors and to aid array designers in
setting acceptable tolerance limits for these types of errors [6, 10, 11]. Receiver noise is another concern
that affects array performance [12, 13]. Ref. [12] presented an analytical study for the improvement of
noise performance in phased array receivers compared to that of each individual array channel, where
the multi-channel system of the array was converted to its equivalent one-channel system and then used
the defined effective gain, noise, and signal to noise ratio (SNR) to evaluate the noise performance of
the array, but that study did not consider the phase errors caused by different array elements.
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We presented, in a previous work [14], a structure of a tracking array that was a mixed
phased/retrodirective array. This array had the ability to auto-track the UAV signal without the need
of the complex processing algorithms used in a smart antenna, where the phase conjugation technique
and complex vector multiplication are used together to generate the geometric phase of each channel.
Due to using the phase conjugation technique in this tracking array, the effect of phase errors is reduced
to the case of a single antenna system. The phase conjugation technique was achieved using the digital
heterodyne mixing technique in IF band. That approach has disadvantage of the need to use a digital
local oscillator of double IF frequency [15–17], so a high speed digital signal processor is needed, and on
the other hand, relatively high speed analog to digital converters are needed, which increase the cost of
the system.

In this paper, we present an improved mixed phased/retrodirective array, where the need for
intermediate frequency stage is eliminated by achieving the phase conjugation technique in software,
and thus the entire processing of the tracking array function can be applied using software defined
radio (SDR) system. This improvement makes this tracking array applicable to any smart antenna
system based on SDR without any modification in its basic function [18, 19]. Then to evaluate the noise
performance of this proposed tracking array, we will expand the analytical study presented in [12] to
include the impact of the phase errors on the array performance, where we will redefine the equivalent
model parameters to be used in comparing the noise performance of the proposed array, with the noise
performance of the traditional phased array, after taking the phase errors resulting from different sources
of noise into consideration.

To expand the analytical study on the noise performance of the phased array, phase errors will be
considered. At first we will define the model of the received signal on each array channel with phase
error, then we will redefine parameters of the equivalent one-channel system based on this signal model.

We will evaluate the noise performance of the traditional phased array and discuss the limitations
of using it in building the tracking system based on this expanded analytical study, where a monopulse
tracking array based on a traditional phased array is taken as an example. Then we will evaluate
the noise performance of the proposed array, based on this expanded analytical study and compare it
with the noise performance of the traditional phased array, to show the improvement provided by the
proposed array.

This paper is organized as follows. In Section 2, we recalculate effective parameters of the
equivalent model after considering phase errors, and then analytical study to the noise performance
of the traditional phased array is done. Section 3 presents the improved tracking array. In Section 4,
we make analytical study on the noise performance of the proposed tracking array. In Section 5, the
simulation and discussion are presented. Section 6 presents the conclusion.

2. EFFECTIVE ONE-CHANNEL MODEL WITH PHASE ERROR

We will expand the analytical study on the noise performance of the phased array done in [12] to include
the impact of the phase errors on the array performance. At first we will write the model of the signal
at the output of each array channel with phase errors, then we will recalculate the effective parameters
of the equivalent model according to this signal model.

2.1. Signal Model with Phase Error

Almost all array elements (local oscillators, quadrature modulators/demodulators) and element
dislocation contribute, directly or indirectly, to increasing the phase errors [11]. For the purpose of
analysis, we will express the total phase errors as one random variable that will appear in the signal
as random phase shift. So the phase of the received signal at the output of each channel in the array
will be shifted by the geometric phase of this channel and the phase error, where the geometric phase
of each channel is related to the geometry of array elements and the direction of arrival of the received
signal [3–5]. Figure 1 shows a single channel in a phased array receiver.

Equation (1) shows the model of the received narrow band signal at the output of the antenna
(input of the low noise amplifier (LNA)).

SIk = Sejφgk (1)
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Figure 1. Single channel in a phased array receiver.

where k is the channel number k = 1, 2, . . . , N with N being the size of the array, φgk the geometric
phase of the kth channel, and S the original signal.

Then the signal at the output of the kth channel in Figure 1 (before multiplying by the complex
weight) will have additional random phase shift due to the phase errors caused by the channel
components, and it can be expressed as:

Schk = Sej(φgk+εk) (2)

where εk is the total phase error caused by the channel components in the block “Chk” in Figure 1.
Then the output signal after being multiplied by the complex weight (the input of the array

combiner shown in Figure 2) will be:
Sok = w∗

kSchk (3)

where w∗
k = e−jφk is the complex weight of the corresponding channel.

(a)

(b)

Figure 2. (a) N -channel phased array. (b) One-channel equivalent system [12].
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Using Eq. (2) in Eq. (3), the signal at the output of the kth channel will be:

Sok = Sej(φgk+εk)−φk (4)

In order to direct the array response towards the source of the signal, the phase of the complex weight
of each channel must be adjusted to be equal to the geometric phase of this channel w∗

k = e−jφgk . Then,
the output signal will be:

Sok = Sejεk (5)

2.2. Equivalent Model

In this section, we will convert the N -channel array system to its equivalent one-channel system.
Figure 2(a) shows the general configuration of a phased-array receiver with size N .

We will calculate parameters of the equivalent model (Figure 2(b)) according to the signal model
with phase error presented in Section 2.1, but in this section we will represent symbols sIk and sI as
the power of the signal for simplicity. The received signal power at the output of the antenna of each
channel in Figure 2(a) is

sIk =
∣∣∣√WIAee

jφgk

∣∣∣2 = WIAe = sI (6)

where Ae is the effective area of each antenna, WI the incident power density, and sI the power of the
signal at the output of the antenna of each channel considering that all channels are identical.

The signal power at the output of the array (the output of the combiner) will be

so =

∣∣∣∣∣
N∑

k=1

(√
WIAeGke

j(φgk+εk−φk)ak

)∣∣∣∣∣
2

(7)

where Gk is the gain of the “k”th channel, φk the phase of the complex weight, and ak the combining
coefficient which in general reflects the weighted amplitude tapering in the beamforming network [12].
In this equation, we take the general case before adjusting the array to be directed toward the received
signal.

The thermal noise power at the antenna terminal [12, 13] is given by:

nI = kBTaB (8)

where Ta is the antenna noise temperature, B the operating bandwidth, and kB the Boltzmann constant.
Then the noise power at the output of each channel will be:

nRk = n1GkFk

= kBTaBGkFk
(9)

where Fk is the noise figure of the “k”th channel.
Assuming that the noise components from different array channels are mutually uncorrelated to

each other, we will use the calculated noise power at the array output in [12] as:

no =
∑N

k=1

(
kBTaBGkFk |ak|2

)
(10)

Now we will calculate effective parameters of the equivalent model of Figure 2(b), where the effective
single antenna of the equivalent one-channel system is supposed to represent the entire antenna array in
the original N -channel array system, so we can consider that Ae·eff = NAe [12]. Therefore, the effective
received signal power and noise power at the antenna terminal are given by:

sI·eff = W1Ae·eff = NW1Ae

= NsI (11)
nI ·eff = kBTaB (12)
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The one-channel equivalent model should give the same output of the signal and noise power as the
original N-channel array system, under the same input conditions. So considering Eqs. (7) and (11) we
can find the effective gain as:

Geff =
so

sI ·eff
=

1
N

∣∣∣∣∣
N∑

k=1

(√
Gke

j(φgk+εk−φk)ak

)∣∣∣∣∣
2

(13)

Then the effective noise figure is found from Eqs. (10), (12), and (13) to be:

Feff =
no

Geff nI ·eff
=

N

N∑
k=1

(
GkFk |ak|2

)
∣∣∣∣∣

N∑
k=1

(√
Gke

j(φgk+εk−φk)ak

)∣∣∣∣∣
2 (14)

We can see that the recalculated effective gain and effective noise figure in Eqs. (13) and (14) provide
a clear and efficient way to characterize the noise performance of array receiver systems with any
amplitude tapering and also in the presence of the phase errors of the array elements.

To take a special case for this study, we will assume that channels of the array are identical, and the
amplitude ak = 1. So when adjusting the array to be directed toward the received signal, the effective
gain and noise figure will be as follows:

Geff =
G

N

∣∣∣∣∣
N∑

k=1

ejεk

∣∣∣∣∣
2

(15)

Feff = F · N2 1∣∣∣∣∣
N∑

k=1

ejεk

∣∣∣∣∣
2 (16)

Then the effective SNR can be defined as:

SNRo·eff =
sI ·eff
nI ·eff

1
Feff

(17)

Using Eqs. (11), (12), and (16) in Eq. (17) the effective SNR will be:

SNR0 ,eff = SNRO

∣∣∣∣∣
N∑

k=1

ejεk

∣∣∣∣∣
2

N
(18)

where SNRO is the SNR at the output of each individual channel.
It is clear from Eqs. (15), (16), and (18) that the phase error will affect the effective parameters

in the equivalent model of the traditional phased array system, where it will decrease the effective gain
and increase effective noise figure, and as a result, the signal to noise ratio will be decreased, so the
sensitivity of the receiver will be affected. In the next section, we will characterize the loss in the signal
to noise ratio due to the phase error in the traditional phased array.

2.3. SNR Loss

Equation (18) defines the SNR at the output of the phased array receiver as a function of the phase
error which is a random variable. So it is better to make a statistical study to evaluate the effect of the
phase error on the SNR. We can define the SNR loss due to the phase error compared to the ideal case
when there is no phase error as:

LSNR =
SNR0 ,eff

SNRid
=

SNRo

∣∣∣∣∣∣∣
N∑

k=1

ejεk

∣∣∣∣∣∣∣

2

N
SNRoN

=

∣∣∣∣∣
N∑

k=1

ejεk

∣∣∣∣∣
2

N2
(19)
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where SNRid is the ideal signal to noise ratio and given by Eq. (18) when there is no phase error.
From Eq. (19), we can see that the SNR loss is a random variable, so we will find its expectation.

To simplify the analysis, we take the assumption that the phase error is a random variable with uniform
distribution of the form:

εk � U [−δmax, δmax] (20)

where 0◦ ≤ δmax ≤ 180◦ is the upper bound on the amplitude of phase deviation.
Then the expectation of the SNR loss is expressed as:

E [LSNR] =

E

∣∣∣∣∣
N∑

k=1

ejεk

∣∣∣∣∣
2

N2
(21)

By calculating the term E|
N∑

k=1

ejεk |2 for the uniform distribution of the random phase error variable and

using it in Eq. (21), the SNR loss will be expressed as follows:

E [LSNR] =
sin2 (δmax)

δ2
max

+
1
N

(
1 − sin2 (δmax)

δ2
max

)
(22)

3. IMPROVED MIXED PHASED/RETRODIRECTIVE TRACKING ARRAY

This tracking array is based on the proposed tracking array presented in [14] which is based on the
mixing between the phased array and retrodirective array to find the geometric phase of each array
channel automatically, where the phase conjugation technique is achieved in IF band.

In this improved tracking array, the phase conjugation technique will be achieved in base band
instead of IF band, so canceling the need for the intermediate frequency stage in the receiver, which
means that we do not need to use a double IF frequency digital local oscillator anymore, thus reducing
the complexity and cost of the system. Figure 3 shows the block diagram of the improved tracking
array.

From the block diagram, we can see that the process of generating the phase conjugated version of
the received signal on the array channels is simplified to a big degree by achieving the phase conjugation
technique in baseband instead of IF band, so the function of the tracking array can be achieved in
baseband after generating the IQ signals.

Canceling the need to use the digital heterodyne mixing technique in IF band to achieve the phase
conjugation technique gives the ability to use either a simple FPGA module, where there is no need to
high speed processor, or applying the entire tracking function on an SDR system. We will discuss these
two choices separately.

First choice: Due to canceling the processing in the IF band, there is no need to use a high speed
processor, where the process of generating the phase conjugated version of the received signal is simply
achieved by multiplying the Q component of each signal by factor (−1). We can represent this process
mathematically by writing the received signals in a complex form.

The complex form of the received signal on the reference channel is:

IQref = Iref + jQref (23)

where Iref and Qref are the quadrature and in phase components at the output of the quadrature
demodulator of the reference channel.

The complex form of the received signal on the kth channel is:

IQk = Ik + jQk (24)

where Ik and Qk are the quadrature and in phase components at the output of the quadrature
demodulator of the kth channel.

Then phase conjugated version of the received signal on each channel is obtained from Eq. (24) as:

IQ∗
k = Ik + j(−1)Qk

= Ik − jQk
(25)
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Figure 3. Block diagram of the improved tracking array.

The goal of generating the phase conjugated version of the received signal on each channel is to find
the geometric phase of this channel so finding the required complex weight to direct the array response
towards the signal source based on the complex vectors multiplication. Figure 4 shows the representation
of these complex vectors.

We can see that phase φk of the complex vector of the received signal on each channel is shifted
from phase φref of the received signal on the reference channel by geometric phase φgk of this channel.
Then by multiplying the complex vector of the phase conjugated version of the received signal on each
channel with the complex vector of the received signal on the reference channel, we will get a complex
vector with phase equal to the conjugation of the geometric phase of the corresponding channel which
is the required complex weight of this channel.

Then the complex vector of the required complex weight of each channel will be given by multiplying
Eq. (23) with Eq. (25) as:

w∗
k = IQref × IQ∗

k

= (IrefIk + QrefQk) + j (IkQref − IrefQk)
(26)

So we can see that the process of generating the complex weight of each channel is simplified to the
product and sum operations on the “I” and “Q” components of received signals.

Second choice: If the output of the IQ generator in Figure 3 is sent to a computer device, then the
whole tracking process can be achieved using software. A software radio environment like GNU Radio
software, which is used in building the SDR systems [20], can be used to achieve the whole process of
tracking. Using IQ components of the received signals, we can represent the received signal on each
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Figure 4. Representation of the complex vectors.

channel in its complex form and then collect them in one matrix as:

V =
[
ejφref ej(φref +φg1) ej(φref +φg2) . . . ej(φref +φgN−1)

]
(27)

Then the phase conjugated version of the received signal at each channel can be simply generated by
conjugating the matrix in Eq. (27) using GNU radio functions:

V ∗ =
[
e−jφref e−j(φref+φg1) e−j(φref+φg2) . . . e−j(φref+φgN−1)

]
(28)

Then the required complex weights to direct the array response towards the received signal will be:

C = ejφref × V ∗

= ejφref

[
e−jφref e−j(φref+φg1) e−j(φref+φg2) . . . e−j(φref +φgN−1)

]

=
[
ej0 e−jφg1 e−jφg2 . . . e−jφgN−1

]

= W H

(29)

where W H is the Hermitian of the required complex weight matrix, which is used to direct the array
response towards the received signal.

Using Eqs. (27) and (29), we can get the array response:

B = W HV

= Nejφref
(30)

This is equal to the peak of the array factor, so having a permanent high gain reception beam.

3.1. Reduce the Effect of Phase Error

To find the effect of the phase error on the proposed tracking array performance, we will find the array
response based on the signal model with phase error presented in Section 2.1.

By considering the signal model with phase error in Eq. (2), the matrix of the received signals in
Eq. (27) will be modified to be:

V =
[
ej(φref +ε0) ej(φref +φg1+ε1) ej(φref+φg2+ε2) . . . ej(φref +φgN−1

+εN−1)
]

(31)

Then the phase conjugated version of the received signal at each channel will become:

V ∗ =
[
e−j(φref +ε0) e−j(φref +φg1+ε1) e−j(φref +φg2+ε2) . . . e−j(φref+φgN−1

+εN−1)
]

(32)
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So complex weights of the array channels will become:

C = ej(φref +ε0) ∗ V ∗

= e−j(φref +ε0)
[
e−j(φref +ε0) e−j(φref +φg1+ε1) e−j(φref+φg2+ε2) . . . e−j(φref+φgN−1

+εN−1)
]

=
[
ej0 ej(−φg1−ε1+ε0) ej(−φg2−ε2+ε0) . . . ej(−φgN−1

−εN−1+ε0)
]

= W H

(33)

We can see that the phase error of each channel is included in its corresponding complex weight, so the
phase error of each channel will be compensated in the array response. Using Eqs. (31) and (33), we
can get the array response as:

B = W HV

= Nejφref ejε0
(34)

So the effect of the phase errors is reduced to the case of a single antenna system, where the phase error
simply rotates the phase of the received signal while the signal amplitude is not affected.

3.2. Noise Performance of the Improved Tracking Array

To analyze the noise performance of the mixed phased/retrodirective tracking array, we will calculate
effective parameters of the equivalent model of Figure 2(b) based on the resulting complex weight in
Eq. (33).

Using Eqs. (2) and (33) in Eq. (3), the model of the signal at the output of each channel in
Figure 2(a) will be expressed as follows:

Sok = w∗
kSk = Sejε0 (35)

Taking the assumption that channels of the array are identical, the signal power at the output of the
array (the output of the combiner) will be

so =

∣∣∣∣∣
N∑

k=1

(√
WIAeGejε0

)∣∣∣∣∣
2

(36)

Using Eqs. (11) and (36), we will get the effective gain:

Geff =
so

s1 ·eff
=

1
N

∣∣∣∣∣
N∑

k=1

(√
Gejε0

)∣∣∣∣∣
2

= NG

(37)

Then the effective noise figure can be found from Eqs. (10), (12), and (37) to be represented as:

Feff =
no

Geff s1 ·eff
=

N
N∑

k=1

(GF )

∣∣∣∣∣
N∑

k=1

(√
Gejε0

)∣∣∣∣∣
2 = F (38)

Using Eqs. (11), (12), and (38) in Eq. (17), the effective SNR will be:
SNRo·eff = N ∗ SNRO (39)

Using Eq. (39) in Eq. (19), we can find its SNR loss as:

LSNR =
SNR0 ,eff

SNR
= 1 (40)

From Eqs. (37), (38), and (39), we can see that the mixed phased/retrodirective tracking array cancels
the effect of the phase noise on its performance, compared with Eqs. (15), (16), and (18) where the
performance of the traditional phased array is a function of the phase error.

Table 1 shows the comparison of the equivalent parameters of the traditional phased array and the
mixed phased/retrodirective array.
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Table 1. Comparison of the equivalent parameters.

Used Array Feff Geff LSNR

Mixed array F N · G 1

Phased array
F · N2 1∣∣∣∣

N∑
k=1

ejεk

∣∣∣∣
2 G

N

∣∣∣∣∣
N∑

k=1

ejεk

∣∣∣∣∣
2 ∣∣∣∣

N∑
k=1

ejεk

∣∣∣∣
2

N2

4. SIMULATION AND RESULTS

In this section, the noise performance improvement of the proposed mixed array and its ability to
eliminate the impact of the phase error is evaluated compared with the conventional phased array,
where the effect of phase error on the effective parameters of the equivalent one-channel model due to
increasing the number of array elements is tested.

Using the traditional phased array in achieving tracking array is then discussed, and the monopulse
tracking array is taken as an example.

Using Eqs. (15) and (37) and supposing that the array response is directed towards a received
signal at the angular position 45◦, the effect of the array size on the effective gain in the presence of
the phase error is tested, where the phase error is supposed to have a uniform distribution. Figure 5
shows the effect of phase error on the gain increments as a function of the array size, where the gain
increment is defined as

Ginc = 10 log
(

Geff

G

)
(41)

Figure 5. The effect of phase error on the gain increments.

Because the mixed array eliminates the effect of the phase error, its gain increment has one curve
in Figure 5 for all values of the phase error deviation, where its gain increases proportionately to the
number of elements, while for the traditional phased array, the phase error reduces the gain, for the
same number of elements. On the other hand, phase error will limit the effect of increasing the array
size.
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Figure 6. Signal-to-noise ratio loss.

Antenna arrays are usually used in reception to enhance the signal from the desired direction against
the noise and thus improve the signal to noise ratio at the output of the array receiver. However, this
performance will be affected due to phase error. Figure 6 shows the loss of signal-to-noise ratio on the
output of the array due to phase error for different values of array size.

Note that there is no loss in the SNR on the output of the mixed array, and therefore this SNR will
be proportional to the SNR on the output of the single channel in the array by the number of elements
of the array, while for the traditional phased array, the phase error will result in a decrease in the
signal-to-noise ratio for the same number of elements. On the other hand, the increase in the number
of elements will increase the impact of the phase error on the loss of signal-to-noise ratio. Hence, the
use of large arrays requires high calibration of the array elements to reduce the phase error.

The decrease in the signal-to-noise ratio in conventional phased array adds additional concern when
it is used in the construction of a tracking array, since the maximum range of tracking is related to the
signal to noise ratio by the following [21].

R2
max =

PT GT GRλ2

(4π)2 (SNR) LskB

1
TsB

(42)

where GT is the transmitter gain, GR the receiver gain, and λ the wavelength of the received signal.
Thus, increasing the maximum range due to the decrease in signal-to-noise ratio may lead to loss

of the datalink between the UAV and the ground station and thus failure in tracking.
A tracking array using the monopulse algorithm for tracking based on the traditional phased

array [2] is taken as an example. Figure 7 shows the comparison of the response of the mixed tracking
array with the tracking array based on the monopulse algorithm for different values of the phase error
deviation and for a different values of array size, when tracking the moving UAV during its movement
within the field of view [−45◦ + 45◦].

We can see that the performance of the mixed array is stable against the phase error, and therefore,
increasing the number of elements will improve the signal to noise ratio and thus improve the sensitivity
of the receiver. For the monopulse tracking array based on the traditional phased array, the phase error
will lead to a deviation of the array performance, and on the other hand, the increase in the number
of elements in the presence of the phase error will lead to the deviation of the array performance due
to the loss in the signal-to-noise ratio. Form Eq. (16), it is clear that the effective noise figure will be
increased due to the phase error as well as the array size, so a high noise level will be at the output,
which will affect the tracking accuracy of the monopulse algorithm [2].
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Figure 7. Array response of mixed tracking array and monopulse array.

5. CONCLUSION

Canceling the need for the intermediate frequency stage in the receiver will reduce the complexity and
cost of the system, and also give the ability to the entire processing of the tracking array function to be
applied using software defined radio (SDR) system. Thus this improvement makes the tracking array
applicable to any smart antenna system based on SDR without any modification in its basic function.

Due to using the phase conjugation technique, the effect of phase errors at each channel will be
compensated, so improving noise performance of the array.

The recalculated effective parameters of the equivalent model provide a clear and efficient way
to characterize the noise performance of array receiver systems with any amplitude tapering and also
considering the phase errors of the array elements, so it can be used to compare the performance of
the array with that of an individual array channel and to compare the performance of different array
systems.
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