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Stability Improvement of Analog Adaptive Self-Interference
Cancellation System with Phase Compensation
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Abstract—The self-interference problem of linear frequency modulated continuous wave (LFMCW)
radar is a known issue that limits the radar’s detection range. Analog adaptive interference cancellation
(AIC) technique is effective to mitigate the self-interference problem. However, we find that the phase
difference between the error signal and reference signal paths may significantly deteriorate the stability
of the AIC system. Therefore, in this paper, we analyze the effect of phase difference on system stability
through the mathematical modeling and simulation. We find that the system is stable when the phase
difference is between −90 and 90 degrees, and diverges when it is between 90 and 270 degrees. Therefore,
to avoid system instability, we propose to add a phase shifter in the reference signal path to compensate
the phase difference. The experiment results show that compared with the traditional delay-based
compensation method, our phase compensation based method can increase interference cancellation
ratio (ICR) by 15 dB for a single-antenna system and 12 dB for a dual-antenna system.

1. INTRODUCTION

Linear frequency modulated continuous wave (LFMCW) radar is widely used in practice for applications
like attitude and range measurements [1]. Since LFMCW radar has to transmit and receive signals at the
same time, there is always some leakage of the transmit signal power into the receiver, through antennas
or radio frequency (RF) chains. If the self-interference signal power is much higher than echoes signals,
the effective measurement range of the LFMCW radar will be limited [2]. Therefore, sufficient isolation
between the receiving and transmitting antennas is needed to enable a large measurement range.

At present, there are mainly two types of methods, i.e., passive and active methods, to mitigate the
self-interference problem [3]. Passive methods try to avoid the self-interference problem, e.g., by using
separate transmit and receive antennas, or by using a duplexer for a single antenna system. Passive
methods are effective, but they provide limited isolation, specifically due to limited antenna spacing
and duplexer isolation. Instead, active methods, particularly, adaptive interference cancellation (AIC),
resort to cancel the interference signal at the receiver. AIC is applicable to both single-antenna and
dual-antenna LFMCW radars. In this paper, we focus on the dual-antenna case.

AIC techniques have been applied in LFMCW radars, typically achieving 20–30 dB of self-
interference cancellation according to [4–12]. In 2006, Lin et al. proposed a digital AIC system [4].
The system’s stability due to the phase difference between feed-through signal and reference signal was
compensated by delay lines. However, we find that there may still be a fixed phase error although the
time delay is matched. In 2013, Choi and Shirani-Mehr simulated a multi-channel cancellation system.
Phase shifters were utilized for Hilbert transformation [5]. The implementation results show that the
phase imbalance of phase shifters limits the cancellation performance of this system.
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The principle of AIC is to generate a cancellation signal that has opposite phase and equal amplitude
of the self-interference signal by a vector modulator, and then add the cancellation signal with the self-
interference signal to suppress the self-interference [12]. The AIC technique typically employs the Least
Mean Square (LMS) algorithm to estimate the amplitude and phase of the cancellation signal, which
is realized by a correlator with the reference signal and error signal as inputs. Therefore, reference
signal and error signal are required to undergo the same time delay and phase shift [13]. The existing
researches, e.g., [4, 12, 14–17], try to match time delay using equal-length transmission lines. However, in
actual circuits, especially in analog circuits, some components do not conform to the ideal transmission
line model and also introduce fixed phase-shifts. When the phase difference between the circuit paths
of the reference signal and error signal is in a certain range, the AIC system will diverge. Therefore, to
ensure the stability of the system, we propose to use a phase shifter to compensate the phase difference.

The contributions of this paper are as the follows:

i) We first establish a mathematical model for the AIC system and then analyze the stability condition
of the system w.r.t the phase difference of the reference signal and error signal paths.

ii) We propose a system stability improvement method that adds a phase shifter in the reference
signal path to compensate the phase difference with respect to the error signal path before input
into the correlator. Then, we conduct simulations and experiments to verify the effectiveness of
this approach.

The rest of the paper is organized as follows. Section 2 establishes the mathematical model of the
AIC system and analyzes the influence of the phase difference on the system. Section 3 presents the
experiment results. Conclusion is drawn in Section 4.

2. SYSTEM MODEL

In this section, we establish the mathematical model of an AIC system and then analyze the effect of
the phase difference on the system. We will see that the phase difference affects the system stability.
When the phase difference is between −90 and 90 degrees, the AIC system is stable and will diverge
otherwise. Therefore, it is only necessary to keep the phase shift within the convergence region. We
propose to use a phase shifter to compensate the phase difference so as to control the stability of the
AIC system. However, it is interesting to find that when the system converges, the value of the phase
difference does not affect the interference cancellation ratio (ICR) in steady state.

2.1. AIC System Model

The basic structure of the AIC system is shown in Fig. 1. The Weight Control Circuit is an
implementation of the LMS algorithm with analog circuits. Since correlation calculation cannot be done
in microwave bands, we first down-convert the microwave-band signals into an intermediate frequency
(IF) band, e.g., 280 MHz.

There are several causes of self-interference which may include power leakage between transmitter
and receiver antennas and reflections due to nearby objects. However, we usually use antennas that have
good directivity. On the one hand, this improves the antenna isolation. On the other hand, this suggests
that the signal leakage due to direct coupling is the major source of self-interference. In addition, the
coupling channel between the antennas undergoes small channel dispersion, therefore can be treated as
a narrow band channel. This assumption is validated by our experimental results that will be presented
later.

The reference signal, i.e., the LFM signal can be written as (normalized to have unit power)

SR(t) = e−j(2πfct+ϕ1) (1)

where fc = f0 + B · ti/TM is the carrier frequency of the chirped continuous wave; ti = t− �t/TM� · TM

is the time of the ith sweep period of the LFMCW; �.� represents rounding down; B is the sweep
bandwidth; TM is the sweep period; and ϕ1 is the phase.

The interference signal, i.e., the signal coupled to the receiver, is

SI(t) = h0e
−j(2πfct+ϕ1) (2)
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Figure 1. Block diagram of interference AIC system.

where h0 = |h0| e−jθ is the complex coupling channel gain, and θ is the phase difference between the
reference signal and interference signal.

The error signal, i.e., the output of the combiner, is obtained as

E(t) = SI(t) − W (t)SR(t) (3)
where W (t) is the weight generated by the weight control circuit which implements the LMS algorithm.

Since the reference signal and error signal pass through different paths to the weight control circuit,
they may experience different amplitude and phase changes. Particularly, the error signal path usually
consists of a low noise amplifier to increase the error signal power, which is the main factor that produces
the phase difference as we have observed from our experiments. Thus the reference signal and error
signal input to weight control circuit can be expressed as

x(t) = hRSR(t) (4)
e(t) = hEE(t) (5)

where hR = |hR| e−jϕR , hE = |hE | e−jϕE are complex channel gains of the reference signal and error
signal paths.

The weight control circuit proposed in this paper is based on LMS algorithm, which uses the
reference signal and error signal to calculate the weight control signal. In 1989, Karni and Zeng proposed
the steepest descent method for continuous signals to calculate the weight control signal [18], as shown
in Eq. (6)

d

dt
W (t) = ρe(t)x∗(t) (6)

where ρ > 0 is the adaptive gain that controls the convergence speed of the LMS filter.

2.2. Convergence Analysis

Substituting Eqs. (4) and (5) into Eq. (6), we can get
d

dt
W (t) = uejΔϕ(h0 − W (t)) (7)

where u = ρ |hR| |hE |, Δϕ = ϕR − ϕE .
Assuming that W (0) = 1, the weight signal can be obtained from Eq. (7)

W (t) = (1 − h0)e−uejΔϕt + h0 (8)
Substituting Eq. (8) into Eq. (3), we obtain the error signal as

E(t) =
√

|h0|2 − 2 |h0| cos θ + 1 · e−ut cos Δϕe
−j(2πfct+ϕ1+ut sinΔϕ+arctan

|h0| sin θ
|h0| cos θ−1

) (9)
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The amplitude of the error signal is

|E(t)| =
√

|h0|2 − 2 |h0| cos θ + 1 · e−ut cos Δϕ (10)

As we can see when time increases, lim
t→∞ |E(t)| → 0, if cos Δϕ ≥ 0. That is, the AIC system is

convergent. However, when cos Δϕ < 0, lim
t→∞ |E(t)| → ∞, the AIC system is divergent.

From the theoretical deduction, we know that the stability of the AIC system is related to the
phase difference. When −90◦ ≤ Δϕ ≤ 90◦, the system is stable. However, when 90◦ < Δϕ < 270◦, the
AIC system is divergent. Therefore, in the implementations of the AIC system, the phase difference
should be kept within the convergence range. In this paper, a phase shifter is added in the reference
signal path to realize the phase compensation.

According to Eq. (9), we conduct the simulation of error signal power over time with different phase
differences. Since the isolation between the transceiver antennas used in our experiments is 46 dB, we
obtain |h0|2 = 2.26 × 10−4. At the same time assume θ = π/3, u = 1.

The simulation results are shown in Fig. 2. As we can see when phase difference is less than 90
degrees, the AIC system is stable, and the error signal power converges to 0 dBm. Meanwhile, the 90
degrees phase difference is the stable boundary of AIC system, and when it is over 90 degrees the system
will be divergent. The above results are consistent with the analysis of the relationship between the
phase difference and system stability.

Figure 2. Error signal power over time with different phase differences.

2.3. ICR under Convergence Condition

In this subsection, we provide an analysis of performance of the analog AIC system in the steady state
under convergence condition.

The reference signal with noise can be written as

SRN (t) = e−j(2πfct+ϕ1) + σn(t) (11)
where σn(t) is the white noise in the reference signal.

According to Eq. (11), the interference signal with noise is obtained as

SIN (t) = h0e
−j(2πfct+ϕ1) + σm(t) (12)

where σm(t) is the white noise in the interference signal. Since the thermal noises are all generated by
receivers, it is rational to assume that the white noises have the same power, which can be written as

|σn(t)|2 = kn = |σm(t)|2 = km (13)
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The error signal obtained by Eqs. (11) and (12) is

EN (t) = SIN(t) − W (t)SRN (t) (14)

According [19], we calculate the weight signal by solving the following equation

d

dt
W (t) = −ρRW (t) + ρP (15)

where

R = E[SRN (t) · S∗
RN (t)] (16)

P = E[SIN (t) · S∗
RN (t)] (17)

At steady state, we have
d

dt
W (t) = 0 (18)

Then we can obtain weight signal at steady state as

W (t) = R−1P =
E(SIN (t) · S∗

RN (t))
E(SRN (t) · S∗

RN (t))

=
h0

1 + kn
(19)

Bring Eq. (19) into Eq. (14), then the error signal can be written as

EN (t) =
(

h0 − h0

1 + kn

)
e−j(2πfct+ϕ1) + σm(t) − h0

1 + kn
σn(t) (20)

Since the white noise is uncorrelated with other signals, the power of the error signal is the sum of
its independent parts [20].

|EN (t)|2 =
∣∣∣∣h0 − h0

1 + kn

∣∣∣∣
2

+σ2
m −

∣∣∣∣ h0

1 + kn

∣∣∣∣
2

· σ2
n

= |h0|2 kn

1 + kn
+ km (21)

Then we obtain the ICR model with the noise signal as

ICR = 10 log10
|SIN(t)|2
|EN (t)|2

= 10 log10
|h0|2

|h0|2 kn

1 + kn
+ km

(22)

According to Eq. (22), since |h0|2 is fixed, the ICR of the AIC system at steady-state depends on
noises power. The lower the noise signal power is, the higher the cancellation performance of the AIC
system is. However, in actual AIC system the time delay difference, dispersion, and other uncontrollable
factors limit the ICR.

To reduce the influence of noise on the cancellation performance, we use passive components, i.e.,
a coupler to obtain the reference signal, thus kn can be regarded as 0. Then we obtain ICR model as

ICR = 10 log10
|h0|2
km

(23)

Therefore, the optimum ICR is the SNR of interference signal. We conduct simulation to verify
the analysis, and the simulation results are shown in Fig. 3. Under ideal condition, the ICR is equal to
the SNR of interference signal.
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Figure 3. Simulation of the relation between ICR and SNR.

Meanwhile, there is a response time of the LMS algorithm in AIC system, which can be found
in [12].

tloop =
Δϕ · TM

360◦ · B · τ (24)

where τ is the time delay. When this response time is large, and the ICR decreases. Practical LFMCW
radars usually work in different sweep periods. For a fixed delay and bandwidth, the response time is
proportional to the phase difference. Therefore, if the phase difference can be decreased, the cancellation
performance will improve.

3. EXPERIMENTAL RESULTS

In this section, we will first analyze the causes of phase difference between the reference signal and
error signal path. Then, we provide experimental results to evaluate the ICR performance improvement
for a single-antenna system and a dual-antenna system. For the single-antenna system, we utilize an
attenuator to replace the duplexer in order to have the same isolation as the dual-antenna case.

3.1. LNA Induced Phase Difference

In an actual AIC system, not all components conform to the transmission line model which states that
the phase shift is only determined by the propagation delay [21]. Here, we show an example of the S21

characteristics of an LNA with model number ZA60-83LNS+. The test result is shown in Fig. 4. At
the center frequency 4.5 GHz, the phase shift when signal passes through LNA is 148.4 degrees, and the
time delay is 243.5 ps. According to transmission line assumption, we can calculate the phase shift by
θ = 2πft. Theoretical phase shift due to time delay should be 325.6 degrees. Therefore, even though the
delays of the reference signal and error signal paths can be calculated to be the same, there is possibly
still a phase difference.

3.2. Verification of AIC System Stability Improvement by Phase Compensation

Next, we verify that the phase compensation method is effective in improving the AIC system stability.
In order to evaluate the effect of the phase shifter in the AIC system, we use a variable attenuator

to emulate the transmitting and receiving antenna isolation. The experimental parameters are shown
in Table 1.
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Figure 4. Phase and delay characteristics of LNA.

Table 1. Test parameters.

Center frequency 4.5 GHz
Bandwidth 150 MHz

Signal power 23 dBm
Isolation 46 dB

Sweep Period 100 µs

The results of the experiment compared with theoretical simulation are shown in Fig. 5. Since there
is a measurement error of around 30 ps when matching the time delays, the phase difference caused by
the measurement error and the LNA is about 89◦. Therefore, we shifted the theoretical results by the
same degrees.

We can see from Fig. 5 that, when the phase shift is between 0∼179 degrees, the AIC system is
stable, however, divergent in 179∼359 degrees. In single-antenna system the maximum ICR is achieved
when the phase shift is around 50 degrees, which provides an improvement of 15 dB with respect to
0 degree (i.e., delay matching).

In the dual-antenna system, the ICR reaches 32 dB, and the ICR is improved by about 12 dB. The
ICR in dual-antenna system is about 10 dB lower than the single-antenna system because the accuracy
of weight signal is affected by the signal reflection in environment and the interference signal dispersion
in spatial coupling channel.

In addition, we find that in the single-antenna system when a phase shift is in the range of 50∼100
degrees, the ICR can maintain above 40 dB. For the dual-antenna system, when the phase difference is
in the range of 60∼90 degrees, the ICR can maintain above 30 dB. Therefore, the step size of the phase
shifter is required to be less than 30 degrees.

The above results show that adding a phase shifter can control the system stability and also improve
the performance of the AIC system.

3.3. Single-Antenna System

Based on the study of the effectiveness of using the phase shifter, we further test the AIC system in a
single-antenna system setup. According to Section 2.3, the sweep period influences the ICR. Therefore,
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Figure 5. The effect of phase shifter to the ICR.

we also examine the effect of the sweep period in our experiments. The phase shifter is fixed at 62.9
degrees, and the other experiment parameters are the same as Section 3.3.

The experiment results are shown in Fig. 6. Four examples of the interference spectrum before
and after cancellation are given in Fig. 7. As we can see, the ICR is around 40∼42 dB, when the phase
compensation is on, and in the range of 26∼29 dB when it is off. The phase shifter has improved the
ICR by about 15 dB. However, it can be seen that the ICRs in different sweep periods are nearly the
same since phase difference is not the only parameter that affects ICR.

 

Figure 6. ICR vs sweep period for single-antenna system.

3.4. Dual-Antenna System

In order to estimate the cancellation performance of the AIC system in actual working condition,
experiments were conducted using separate transmitting and receiving antennas. Meanwhile, to avoid
the indoor reflecting signal entering into the receiving antenna, experiments were carried out in open
space field. The dual-antenna system is shown in Fig. 8.

Experiment results are shown in Fig. 9. Four examples of the interference spectrum before and after
cancellation are given in Fig. 10. The phase shifter is fixed at 76.4◦. The other experiment parameters
are the same as the single-antenna system. It can be seen that when the phase shifter is on, the ICR is
in the range of 30∼32 dB, which is lower than the single-antenna experiments. When the phase shifter
is off, the ICR is in the range of 16.5∼20 dB. In dual-antenna system, the phase shifter has improved
the ICR by about 12 dB. Again, the sweep period does not affect the ICR.



Progress In Electromagnetics Research C, Vol. 95, 2019 235

  
 (a) Phase Shifter ON

  
 

 (b) Phase Shifter OFF

Figure 7. Spectrum of the error signal before and after cancellation.

Figure 8. Dual-antenna experiment system.
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Figure 9. ICR vs sweep period for dual-antenna system.

  
(a) Phase Shifter ON

  
(b) Phase Shifter OFF

Figure 10. Spectrum of the error signal before and after cancellation.

4. CONCLUSIONS

In this paper, we have analyzed the effect of the phase difference of the error signal and reference signal
paths on the behavior of analog AIC system. We have found that when the phase difference is between
90 and 270 degrees, the AIC system will diverge. Therefore, we propose to add a phase shifter in the
reference signal path to compensate the phase difference. The proposed technique is then implemented
to test its effectiveness. Experiment results show that phase compensation can improve the AIC system
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stability as our theory has suggested. In addition, it is interesting to find that phase compensation can
also improve the ICR in actual systems. The maximum ICR improvement that we have observed is
around 15 dB. Using the proposed phase compensation method, our analog AIC system offers an ICR of
42 dB in a single-antenna system, which is significantly better than the ones reported in the literature.
When experimenting with a dual-antenna system, the ICR for a signal as large as 150 MHz can also be
as high as 32 dB. These results verify the effectiveness of the proposed phase compensation method.
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