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A Method for Fast Establishing Tropospheric Refractivity Profile
Model Based on Radial Basis Function Neural Network

Tao Ma1, 2, Heng Liu1, 3, *, and Yu Zhang1, 3

Abstract—A method based on the radial basis function neural network (RBFNN) is developed to fast
establish the tropospheric refractivity profile model. Parameters of the RBFNN include SPREAD, and
the number of training samples is optimized. The actual measured data of meteorological station at
Qingdao city in China are used as test data to evaluate the performance of RBFNN. The simulation
results show that the root mean squared error (RMSE) has a minimum of 0.81 when SPREAD is 8.1.
The simulated values agree well with the test data which is observed by using the sounding balloon
method. Finally, the tropospheric refractivity profile model of a selected area is established by using
two different simulation methods. This paper attempts to propose a method to fast establish the
tropospheric refractivity profile model which provides an available method to correct the atmospheric
refraction error in radar applications.

1. INTRODUCTION

Radar is widely used in the field of meteorological forecast, resource detection, environmental
monitoring, and scientific research on celestial bodies, atmospheric physics, and ionospheric structures.
It has been known that the radio wave refractive error caused by the inhomogeneity of atmospheric
parameters, such as temperature, pressure and humidity, becomes a principal factor of influencing the
high precision detection of radar. It is a significant approach to improve the detecting precision by using
refractive error correction method. Hence, it is necessary to establish the atmospheric refractivity profile
model in detecting area. The atmospheric parameters are obtained by the sounding balloon method
which takes a lot of detecting time. Therefore, it is difficult to establish atmospheric refractivity profile
model for anywhere quickly.

Simplified models based on a mass of historical detecting data have been studied extensively, for
example, linear model, exponential model, double exponential model, Hopfield model, and subsection
model [1–3]. A retrieval algorithm using ground-based global positioning system (GPS) is developed
to establish the atmospheric refractivity profile model [4–6]. This method has high accuracy, but
high searching volume and high time-consuming. An artificial neural network (ANN) is developed to
estimate refractivity in the tropospheric region [7]. In ANN, sigmoid transfer function is used as the
activation function between the hidden and output layers. The simulation results show that the relative
humidity has more effect on the refractivity than other tropospheric parameters. The proposed ANN
has a perfect capacity in estimating the tropospheric refractivity. Adding genetic algorithms (GAs)
to the ANN, a hybrid model is introduced to solve the inversion problem of atmospheric refractivity
estimation [8]. A very similar propagation factor curve with the reference one can be achieved by
using the hybrid method. Recently, a radial basis function neural network (RBFNN) is used in many
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research fields because of its excellent features, such as universal approximation, compact topology,
and faster learning speed. Moreover, the RBFNN is basically an ANN with radial basis function as
activation function, which has excellent nonlinear approximation capabilities [9–11]. Therefore, it is
an important tool to solve problems which involve time series prediction, pattern recognition, and
complex mappings. A study on time series prediction of a practical power system is developed by
using RBFNN with a nonlinear time-varying evolution particle swarm optimization algorithm [12]. It
is proved that the improved RBFNN has good forecasting accuracy, super convergence rate and short
computation time in time series prediction for different electricity demands. The training algorithm
and practical features of RBFNN are improved [13], and the RBFNN is used to control chart pattern
recognition which can identify the classes by 99.63% accuracy. A RBFNN with K-Means clustering is
also developed to establish the rainfall prediction model [14], estimate the sound source angle [15], and
solve the problem of Direction of Arrival (DOA) [16]. To achieve accuracy traffic flow prediction, the
artificial bee colony (ABC) algorithm is adopted to optimize weight and threshold value of RBFNN [17].
An improved RBFNN with gravitation search algorithm is proposed to predict network traffic which
has perfect prediction accuracy [18]. In addition, the RBFNN is also used to increase the visibility
of image [19] and classify the clinical medical signals for helping doctor identify the diseases [20, 21].
A prediction method based on RBFNN carries out not only the optimization of the microstrip line
geometrical dimensions, but also characterization processes [22]. The RBFNN method is very accurate
and extremely faster than the classical ones. It is also used to retrieve atmospheric extinction coefficients
in the lidar measurements [23]. The results confirm that the model established by RBFNN is better
than the Fernald method in the aspect of speed and robustness.

In this paper, a method based on RBFNN is proposed to fast establish the tropospheric refractivity
profile. Principle of the RBFNN is introduced briefly. Then the tradeoff between the training time and
RMSE with increase of the training sample number is studied. The effect of SPREAD on RMSE is
investigated, and an appropriate SPREAD is chosen for the following tropospheric refractivity profile
model establishment. Afterwards, two different simulation methods using RBFNN are proposed to
establish the tropospheric refractivity profile modal.

The rest of the paper is organized as follows. Section 2 describes the RBFNN model, including
its principle and algorithm flow. The performances of the RBFNN and parameters optimization are
discussed in Section 3. In Section 4, we establish and contrast the tropospheric refractivity profiles
using two different simulation methods. At last, the conclusion is given.

2. RADIAL BASIS FUNCTION NEURAL NETWORK

Compared with the longer calculation and easily getting into local minimum of the back propagation
(BP) neural network, the RBFNN can improve convergence speed and fitting performance significantly.
The schematic diagram of the RBFNN is shown in Figure 1.

Figure 1. The schematic diagram of the RBFNN.
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The RBFNN consists of three layers: input layer, hidden layer, and output layer. X =
(x1, x2, ..., xN ) is the input data set. N is the dimension of the input data set which is also the number
of input layers. Y = (y1, y2, ..., yM ) is the M-dimensional output data set. H = (h1, h2, ..., hK) is the
neuron activation function of hidden layer, and K is the number of hidden neurons. In general, the
neuron activation function of RBFNN is nonnegative nonlinear Gauss function:

hK = exp

(
−‖X − CK‖2

2σ2

)
(1)

where CK(cK1, cK2, ..., cKN ) and σ are the center and width of Gauss function, respectively. The input
data are directly fed to the hidden layers from input layers without any changes. Each output of the
output layer is calculated using the weighted summation of the hidden neurons’ output:

ym = wmHT , m = 1, 2, ...,M (2)

where wm = [w1m, w2m, ..., wKm] denotes the weights of hidden neurons. The RBFNN is established by
training CK(cK1, cK2, ..., cKN ), σ, and wm.

For simulating the atmospheric refractivity by using the RBFNN, Longitude (LONGITUDE ),
latitude (LATITUDE ) and altitude (ATITUDE ) of the observation stations are used as the input
data which are expressed as matrix X = (LONGITUDE , LATITUDE, ATITUDE ). The corresponding
tropospheric refractivity (TROPOSPHERIC REFRACTIVITY ) is the output which is expressed as
Y = (TROPOSPHERIC REFRACTIVITY, abbreviated as ytr). Hence, the output of the RBFNN can
be expressed as

ytr =

K∑
i=1

wi1hi (3)

The center and Euclidean distance of the RBF affect the mapping ability of hidden layer neurons,
which has a significant influence on the prediction data. In order to improve the accuracy and reduce
the complexity of neural network significantly, the method of k-means clustering is used to choose the
center appropriately [15].

The implementation flow diagram (Figure 2) of the proposed RBFNN for establishing atmospheric
refractivity profile model is as follows:

(1) Generating and normalizing the training data set (input Xtraining and output Ytraining) according
to the observation data of the meteorological stations.

(2) Setting initial values of the training data number (Ntr) and SPREAD, establishing and training
the RBFNN, optimizing the parameters (Ntr and SPREAD) by minimizing RMSE.

(3) Reestablishing the RBFNN and constructing the Atmospheric Refractivity profile model for the
correction of TAR errors in the radar applications.

Here, the computer programs of the k-means clustering and RBFNN are performed on MATLAB
(version 9.0.0.341360 [R2016a], Massachusetts, USA) environment. The training and simulation in this
paper are done on a Lenovo computer with Intel core i7 and 16GB RAM.

3. PERFORMANCE ANALYSIS AND PARAMETERS OPTIMIZATION

The data of meteorological stations at several Chinese cities, such as Zhengzhou, Qingdao, Guangzhou,
Jiuquan, Shenyang, and Wulumuqi, are used in this paper. As we know, the refractive index of air (n)
is ∼ 1.0003, which is represented as radio refractivity (or atmospheric refractivity, N) in radio band.
Their relationship can be expressed in terms of Smith-Weintraub equation as follows [24, 25].

N = (n− 1)× 106 = 77.6
Pd

T
+ 64.8

Pw

T
+ 3.776 × 106

Pw

T 2
(4)

where Pd and Pw are respectively dry and wet atmospheric pressures in hPa, and T is the absolute
temperature in K. According to Equation (4), we can calculate N with different altitudes at the
stations as mentioned before. Some data used in this paper are listed in Table 1.
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Figure 2. The implementation flow diagram of the proposed method for establishing tropospheric
refractivity profile model based on RBFNN.

The RBFNN is established and trained using the training data which are measured at the stations
of Zhengzhou, Guangzhou, Jiuquan, Shenyang, and Wulumuqi. Then the measured data at Qingdao
station are used as testing data to verify the performance of the RBFNN. RMSE is always used to
evaluate the standard deviation between the actual value and predicted value.

RMSE =

√√√√√√
Ntest∑
1

(ytr − ŷtr)
2

Ntest
(5)
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Table 1. Partial data used in this paper (in January 1, 1987).

Station name Longitude Latitude Altitude (km) Atmospheric refractivity

Zhengzhou 113.39◦N 34.46◦E
0 299.398

5 173.271

20 20.498

Qingdao 120.19◦N 36.04◦E
0 308.239

5 170.186

20 20.138

Guangzhou 113.13◦N 23.00◦E
0 325.125

5 174.717

20 20.595

Jiuquan 98.15◦N 39.50◦E
0 298.685

5 189.702

20 21.032

Shenyang 123.24◦N 41.47◦E
0 315.810

5 170.120

20 19.010

Wulumuqi 90.00◦N 43.76◦E
0 317.273

5 185.781

20 20.776

Figure 3. RMSE and training time (ttr) of the RBFNN with increase of the number of training data
(Ntr).

where ytr is the predicted value, ytr the actual measured value, and Ntest the number of testing data.
RMSE and training time (ttr) of the RBFNN are investigated as the number of training data (Ntr)

increases. The simulation results are shown in Figure 3. There is a great improvement of RMSE when
the number of training data increases to 4000. Then RMSE changes slowly. However, ttr exponentially
increases when the number of training data is greater than 8000. Therefore, the tradeoff between RMSE
and ttr must be considered.

In order to evaluate the performance of the RBFNN, actual measured tropospheric refractivity of
Qingdao station (36.04◦N, 120.19◦E) with different altitudes from 0 to 20 km is used as testing data.
SPREAD is a key parameter of the RBFNN. It is the spread of RBF which is also known as distribution
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(a) (b)

Figure 4. The optimization of SPREAD, (a) RMSE with different SPREAD and (b) tropospheric
refractivity of Qingdao station with different altitude and SPREAD.

density [26]. It determines the number of hidden neurons, and then affects the smoothness of predicted
output. The larger the SPREAD is, the smoother the function approximation is. Too large a SPREAD
means that a lot of neurons are required to fit a fast-changing function. Too small a SPREAD means
that many neurons are required to fit a smooth function, and the network might not be generalized
well. Call RBF with different SPREADs to find the best value for a given problem. To optimize
SPREAD, RMSE with different SPREAD is calculated and shown in Figure 4(a). From Figure 4(a),
there is a minimum RMSE of 0.81 when SPREAD is around 8.1. Moreover, the simulated tropospheric
refractivities with SPREAD of 7.1, 8.1, and 9.3 together with actual measured value are shown in
Figure 4(b). The blue solid line (SPREAD = 8.1) is in the best agreement with the actual measured
value. Hence, the SPREAD of 8.1 is chosen in the following simulations.

4. TROPOSPHERIC REFRACTIVITY PROFILE MODEL

China covers a vast geographic area. Its latitude and longitude range from 3.85◦N to 53.55◦N and from
73.55◦E to 135.08◦E, respectively. To establish the tropospheric refractivity profile model of China, the
grid division method is always used to reduce the computation quantity of the algorithm. The modeling

(a) (b)

Figure 5. The modeling without updating training data (Method A), (a) the modeling area from
32.77◦N to 42.77◦N and from 103.26◦E to 123.26◦E (not to scale), and (b) the tropospheric refractivity
profile model in the gray area at an altitude of 0 km, 5 km and 20 km.
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Figure 6. The schematic diagram of the method with updating training data (Method B).

(a) (b)

(c) (d)

Figure 7. The atmospheric refractivity profile models in the gray area with method A and B, (a)
altitude = 0 km with method A, (b) altitude = 0 km with method B, (c) altitude = 20 km with method
A, (d) altitude = 20 km with method B.
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region is divided into several grids. The tropospheric refractivity in each grid can be simulated based
on the measured values of several nearby stations.

To verify this approach, the gray area (32.77◦N–42.77◦N, 103.26◦E–123.26◦E), which is shown in
Figure 5(a), is chosen to establish the tropospheric refractivity profile model. The steps of latitude and
longitude are 0.5 degrees and 1 degree, respectively. In Figure 5(a), the red star is the center of the 6
stations calculated by the K-means clustering. In this section, two methods are used to establish the
tropospheric refractivity profile model in the gray area: one is the RBFNN without updating training
data (denoted by Method A), and the other is the RBFNN with updating training data (denoted by
Method B).

The tropospheric refractivity profile model is established using Method A, as shown in Figure 5(b).
The tropospheric refractivity at an altitude of 0 km, 5 km, and 20 km ranges from 182 to 325.5, from
123.6 to 177.2, and from 17.2 to 40.5, respectively.

Meanwhile, another method with updating training data is also proposed to establish the
tropospheric refractivity profile model. In this method, the grey area is divided into several layers,
i.e., L1, L2, ..., L5, as shown in Figure 6(b), from the center labeled as the red star. For example, the
simulated results of layer L1 are added to the training data. Then the training data are updated before
the establishment of the layer L2, and so on in a similar fashion. In other words, the tropospheric
refractivity profile model is established according to the order of layers as shown by the red arrows in
Figure 6.

The tropospheric refractivity profile models established using two different methods are shown in
Figure 7. Comparing Figures 7(a), (b) and 7(c), (d), the relative deviation of atmospheric refractivity
between two methods at an altitude of 20 km is less than that at an altitude of 0 km. The reason for
the results is related to the different modeling processes of the two different methods.

To make it easier to understand, 5 points at different layers in the grey area are chosen for
comparison. Their tropospheric refractivities at altitudes of 0 km and 20 km are shown in Figure 8(a).
At the beginning of modeling, the same tropospheric refractivity is achieved using the two methods. In
this stage, the training data have not been updated yet. With the process of establishing the model
which is from P1 to P5 as shown in Figure 8(a), the deviation of results between two methods increases.
To evaluate the deviation during the simulation, the RMSE between two methods is calculated, as
shown in Figure 8(b). From P1 to P5, the RMSE increases from 0.85 to 2.88.

(a) (b)

Figure 8. Comparison of the method A and B, (a) the refractivity in different points of grey area at
an altitude of 0 km and 20 km, (b) RMSE of the refractivity between two methods.
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5. CONCLUSION

A feasible method is proposed to fast establish the tropospheric refractivity profile model, which is based
on the RBFNN with unsupervised learning. The simulation results demonstrate that the RBFNN is
a fast and accuracy method for establishing tropospheric refractivity profile model. The methods
with and without updating training data are proposed and compared during the modeling process.
Their deviation increases from the inner layers to the outer layers. The profile model established by
method with updating training data is smoother than that by the method without updating training
data. The relationship between tropospheric refractivity and input parameters (longitude, latitude
and altitude) can be achieved. The proposed method with updating training data is a promising
approach for establishing tropospheric refractivity profile model. It provides a fast and convenient way
for atmospheric refraction error correction.
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