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Abstract—In order to energize the biomedical implantable electronic devices wirelessly for in vivo
health monitoring of patients in an isolated, outdoor and inaccessible environment, an alternate driving
energy source is highly desirable. In pertinent to this, a photovoltaic driven wireless energizing system
has been explored. The system is designed to convert solar energy to a high frequency energy source
so as to facilitate energy transfer through resonant inductive link to the automated bio-medical sensing
system allied with the receiver unit. The received power is observed to be 286 mW for the coil separation
gap of 5 cm and load value of 40 Ω at the resonant frequency of 772.3 kHz. The automated biomedical
smart sensor is competent to acquire the body parameter and transmit the consequent telemetry data
from the body to the data recording segment. The real-time body temperature parameter of different
living beings has been experimented, and to ensure the accuracy of the developed system, the observed
parameter has been matched with a calibrated system. The proposed scheme can be suitable for
monitoring wirelessly other in vivo health parameters such as blood pressure, bladder pressure, and
physiological signals of the patients.

1. INTRODUCTION

Biomedical electronic devices have been considered as an imperative segment to facilitate the health
observation, diagnosis, and therapeutic in modern medicines for patients [1–3]. Nonetheless, intelligent
biomedical implantable sensors are vital for decisively sick patients for spontaneous remote patient
monitoring with accurate & continuous health observation to boost the quality of care and patient
autonomy. By and large, those implantable sensors are electrified either through external wired
power supply to the implant internal circuits or by batteries kept inside the implantable devices [4–
7]. However, the usual energizing schemes have not been preferably adopted due to the associated
ubiquitous difficulties and cumbersome effect. There is a chance of snapping of wire connection,
repeated replacement of low life time batteries, corrosion in the implant, and limitation in tininess
due to battery size & weight [8]. This necessitates the pursuit of wireless energizing technique which
is cordless, reliable, safer, smarter, and environmental friendly [9, 10]. Although the inductive coupling
based wireless energization technique is acceptable for powering the sensors, but not widely adopted
because of its coil configuration, large dimension and low efficiency [11], providentially, the magnetic
resonant coupling based wireless technique goes to the forefront recently and also has been regarded
as a viable method for powering electronic devices [12–16]. However, to expand the usability of the
wirelessly energized implantable electronic devices for continuous patient monitoring in inaccessible and
outdoor areas derelict of grid power supply, renewable energy based energizing system can be a partial
and accepted solution [17]. Thus, an alternate viable approach in the form of a photovoltaic based
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resonant wireless energizing system has been proposed for biomedical implantable electronic sensor.
The proposed technique enables the transformation of solar energy to high frequency ac signal which is
highly required for wireless drive of the automated biomedical sensing system allied with the resonant
inductive link.

2. SYSTEM ARCHITECTURE AND OPERATING MECHANISM

The process involved in the photovoltaic driven resonant wireless power transfer system for implantable
electronic sensor is schematically illustrated in Fig. 1. The health observation system consists of two
sections. One is a photovoltaic driven resonance based wireless power transfer system, and the other
is an implantable smart sensing section. The photovoltaic driven resonant WPT system that is placed
outside of the body consists of a boost converter, a resonant converter, a high frequency transformer,
and a transmitter coil. The main purposes are to convert solar energy to a high frequency ac signal of
suitable level and to drive the transmitter coil at its rated value. The high frequency transformer is used
to provide impedance matching between the resonant converter and transmitter coil. The implantable
smart sensing section comprises a receiver coil allied temperature sensor which is to be implanted in the
animal body. The circular configuration of the transmitter coil and printed circular spiral configuration
of the receiver coils have been chosen in order to enhance the power transfer capability and to compensate
the volume of implant. Both the transmitter coil and receiver coil are magnetically coupled so as to
enable wireless power transfer to implantable temperature sensors through magnetic resonance coupling
mechanism. To provide the required power for the functioning of smart sensor entity, a power recovery
unit has been placed to which the received power is delivered from the receiving coil. The body
parameter of the animal will be sensed by wirelessly powered implantable sensor, and the recorded
parameter/data can be processed through the employed data gaining component and signal processing
unit and send back through the transmitting antenna from the body to the outside data recording
section, as schematically depicted in Fig. 2. An experimental design photograph is shown in Fig. 3.

Figure 1. Schematic diagram of the process involved in the photovoltaic driven resonant wireless power
transfer system for implantable electronic sensor.
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Figure 2. Health observation and outside data recording section to be kept outside the body.
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Figure 3. The experimental design photograph of solar energy driven resonant inductively coupled
wireless energization system for automated biomedical implantable temperature sensor.

In the proposed method, a photovoltaic (PV) module is used to generate the voltage by harvesting
the available abundant solar energy for charging the battery. To produce the power with constant
amplitude (as shown in Fig. 4), a boost converter is allied with the battery as the input source. The PV
generated voltage is further intensified by the boost converter with suitable switching frequency. The
boost converter with a filter inductor and capacitor provides different output voltages with the variation
of duty cycle. The output of the boost converter is coupled with a half bridge resonant converter. The
resonant converter is fed from the boost converter, and it produces a high frequency ac signal (as shown
in Fig. 5) which is highly enviable for driving of resonant inductive link. A high frequency transformer
is used to drive the resonant inductive link by properly matching the impedance. A balance ratio is
maintained to match the impedance of resonant circuit, and as a result, maximum power transfer occurs
at resonance.

The wireless energization of implantable device through resonant photovoltaic system lies on the
principle of photovoltaic energy conversion, switching mode power conversion, as well as electromagnetic
resonance. When the output of the resonant converter used in the designed photovoltaic exciting system
synchronizes with the resonant inductive link allied to the implantable device, the maximum power
transfer occurs wirelessly.
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Figure 4. The boost converter input and output voltage characteristics.

Figure 5. The resonant converter output voltage characteristics.

3. EQUIVALENT CIRCUIT MODEL

The equivalent circuit of the photovoltaic driven resonant inductively coupled system used for wireless
energization of implantable sensor is depicted in Fig. 6. The PV generated voltage (Vpv) is stepped up
by the boost converter with suitable switching frequency. The regulation of PV generated voltage by a
boost converter can be explained through the voltage-sec balance equation [18]

Vpv · DTs + Vres(1 − D)Ts = 0 (1)

where Vpv is the PV generated voltage, Vres the output regulated dc voltage, Ts the switching time, and
D the duty ratio (0 < D < 1).

In order to achieve a constant regulated output voltage which may vary with the variation of
duty cycle, it is necessary to minimize the ripple content with properly chosen filter inductor (Lf ) and
capacitor (Cf ). The voltage ripple (Δv) and current ripple (Δi) are given by

Δv =
Vres

RCf
DTs (2)
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Figure 6. The equivalent circuit of the photovoltaic driven resonant inductively coupled system used
for wireless energization of implantable sensor.

Δi =
Vpv

Lf
DTs (3)

The output of the boost converter is coupled with a half bridge resonant converter in which the switching
elements are connected with an anti-parallel diode. The voltage at the output of resonant converter
is [19]

v0 =
∞∑

n=1,3...

2Vres

nπ
sin(nωt). (4)

The fundamental output voltage of the resonant inverter

VP =
√

2Vres

π
(5)

The output ac voltage of the resonant inverter (v0) is fed to the transmitter coil of resonant inductive
link. By considering the implantable device as a resistive load (RL), the received output power can be
calculated as follows:

PL =
V 2

P ω2
0M

2RL

R2
P (RS + RL)2 + ω4

0M
4 + 2ω2

0M
2RP (RS + RL)

(6)

where RP & RS are the effective series resistances of the transmitting and receiver coil windings of the
resonant inductive link; M is the mutual inductance between the coils; ω0 is the operating resonant
frequency of the resonant inductive link.

The power transfer efficiency (PTE) of the wireless system is given by

η(%) =
PL

Pin
× 100 (7)

It is observed from the equation that the power delivered to the implantable device depends on the
fundamental component of the output voltage of resonant converter associated with the photovoltaic
system coil properties, operating frequency, mutual coupling, and separation gap between the coils.

4. RESULTS AND DISCUSSION

In order to realize the effect of operating frequency on the power level at the input and output of
resonant inductive link, the experimental measurement has been performed, and their characteristics
are illustrated in Fig. 7. The output received power reaches its peak value at the resonant frequency of
772.3 kHz for vertical spacing of 5 cm between the coils. Also, the frequency dependency of the power
transfer efficiency has been examined and is depicted in Fig. 8. Both the output power and power
transfer efficiency drop suddenly when the system operates away from the resonance point. This is
because the output of the resonant converter employed in the photovoltaic exciting system synchronizes
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Figure 7. The effect of operating frequency on the power level at the input and output of resonant
inductive link.

0

5

10

15

20

25

30

760 765 770 775 780 785

E
ff

ic
ie

n
cy

 (
%

)

Frequency (kHz)

Distance = 5 cm
Load = 40 Ω

Figure 8. The experimental frequency characteristic of power transfer efficiency.

with the resonant frequency of the inductive link. The strong magnetic coupling leads to maximum
power transfer between the coils.

In order to investigate the dependence of electric load on the power delivery ability of the resonant
inductive link, the experiment has been carried out with respect to various loads assuming the sensor
as a resistive load. The results of the receiver output power with electric load are depicted in Fig. 9.
The receiver output has been found to be maximum for a particular load resistance. This is because
the impedance of implantable sensor circuit unit is perfectly matched with the resonant inductive link
system at this load value. The received power is observed to be 286 mW for the coil separation gap of
5 cm and load value of 40 Ω at the resonant frequency of 772.3 kHz.
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Figure 9. The dependence of wirelessly received power on the electric load resistance allied with the
resonant inductive link.

Figure 10. The experimental frequency characteristic of power transfer efficiency for different
separation gap of the coils of wireless energizing system.

The PTE characteristic with respect to the coil separation gap of resonant inductive link used
for wireless energization is given in Fig. 10. It is seen that the efficiency declines with increase in
separation gap of the coils. Hence it can be affirmed that the depreciation in mutual coupling leads to
the deterioration in PTE.

The feasibility of the explored energization technique for biomedical sensing has been examined
using a wirelessly energized temperature sensor to record the animal body temperature in different
environmental conditions. Instead of implanting the sensor to the animal body, the experimental
investigation has been carried out in the bench top setup. The temperature sensor has been kept
outside of the animal body (tapped to the skin) during the course of experiments for recording the
body temperature parameter to exhibit the practical demonstration. The proposed system has the
potential to be miniaturized for real practical biomedical implant applications. The data acquisition
entity collects the real-time sensed temperature data and transmits wirelessly to the data receiver unit
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Figure 11. Measured temperature profile through the wirelessly energized sensor: (a) human body
temperature in normal condition, (b) human body temperature in fever condition, (c) the body
temperature of chicken, (d) temperature of air in hot sunlight.

kept apart. Utilizing the wireless technology, the automated sensing system facilitates monitoring of the
temperature, puts on show, and stores up the temperature profile on the screen of PC’s using windows
based GUI software. The measured temperature profile of human body in normal and fever conditions,
the body temperature of chicken, and temperature of air in hot sunlight are displayed in Figs. 11(a)–(d).
The obtained results are compared with calibrated thermometer and found to be in good agreement
with each other.

5. CONCLUSIONS

A photovoltaic driven resonant inductive coupling based wireless energy transfer system has been
developed for excitation of an implantable smart sensor to monitor the animal body temperature
parameter. In the proposed system, the harvested solar energy is converted to high frequency signal
using a resonant converter and fed to the resonant inductive link to facilitate the wireless energy transfer
to the attached implantable biomedical automated sensing system. In order to realize the effect of
operating parameters on the performance of photovoltaic driven wireless power transfer system, both
the theoretical analysis and experimental investigation have been carried out. It is found that the power
delivered to the implantable device depends on the fundamental component of the output voltage of
resonant converter associated with the photovoltaic system, transmitting and receiving coil properties,
operating frequency, mutual coupling, and separation gap between the coils. The received power is
observed to be 286 mW for the coil separation gap of 5 cm and load value of 40 Ω at the resonant
frequency of 772.3 kHz. In order to validate the obtained experimental and calculated theoretical
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results, circuit simulation of the resonant photovoltaic system for wireless excitation has been carried
out. It is found that interestingly all the results agree well with each other. Utilizing the proposed
photovoltaic energy driven wireless technology, the automated sensing system facilitates the monitoring
of the temperature of human body in normal and fever conditions, the body temperature of chicken,
and temperature of air in hot sunlight. The experimental investigation and obtained results suggest
that the intended method is not only a potential solution for wireless powering of an implantable
biomedical sensor but also capable to transmit the sensed body parameters wirelessly. The real-time
body temperature of animals and room temperature have been recorded and compared with a calibrated
system which ensures the accuracy of the developed prototype system. The proposed technique is highly
enviable for in vivo health monitoring of patients not only in an isolated and outdoor environments but
also in the areas underprivileged of grid electricity.
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