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Phaseless Microwave Imaging of Dielectric Cylinders: An Artificial
Neural Networks-Based Approach
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Abstract—An inverse method for parameters estimation of dielectric cylinders (dielectric properties,
location, and radius) from amplitude-only microwave information is presented. To this end two
different Artificial Neural Networks (ANN) topologies were compared; a Multilayer Perceptron (MLP)
and a Convolutional Neural Network (CNN). Several two-dimensional (2D) simulations, with different
sizes and locations of homogeneous dielectric cylinders employing the Finite Differences Time Domain
(FDTD) method, were performed to generate training, validation, and test sets for both ANN models.
The prediction errors were lower for the CNN in high Signal-to-Noise Ratio (SNR) scenarios, although
the MLP was more robust in low SNR situations. The CNN model performance was also tested for 2D
simulations of dielectrically homogeneous and heterogeneous cylinders placed in acrylic holders showing
potential experimental applications. Moreover, the CNN was also tested for a three-dimensional model
simulated as realistic as possible, showing good results in predicting all parameters directly from the
S-parameters.

1. INTRODUCTION

Inverse problem in microwave imaging from phaseless data (amplitude-only) is a challenging problem
[1]. It gained attention because of simple measurement apparatuses requirements and its consequent
reduction of costs. To solve this problem, two main approaches were proposed: using phase
retrieval methods [2] and reconstructing the scatterers directly from measurements [3]. In the former,
the phase was estimated from the amplitude-only data, and then amplitude and phase were used
with the traditional reconstruction algorithms. Latter, several approaches were developed using
deterministic [4, 5] and stochastic methods [6, 7]. As a stochastic method, ANN have advantageous
capabilities to account for nonlinear effects which are present in inverse scattering problems [8]. A variety
of inverse scattering ANN-based approaches were developed, including hybrid methods combining ANN
and iterative methods [9]. Particularly for phaseless scenarios, one of the first works in this direction
was proposed in the earliest 2000’s by Bermani et al. [6]. The authors employed an MLP to solve
(not simultaneously) two problems: reconstructing the dielectric properties of a cylinder, with known
radius and position, and detecting the position of a buried cylinder, with known dielectric properties
and radius.

In the field of Deep Learning, the improvements which provide CNN respect to MLP networks for
recognizing patterns in images and complex data are notorious [10]. Recently, some works presented
different CNN-based approaches for solving the inverse scattering problem, showing the potential of the
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Argentina.



96 Fajardo, et al.

model [8, 11, 12]. The CNNs of these works are based on the U-Net [13] and use both, amplitude and
phase information. Surprisingly, to our knowledge, the CNN for solving the microwave Electromagnetic
(EM) inverse problem with amplitude-only information has not been employed yet. In this work, we
implemented such a topology and compared the results with an MLP. We computationally addressed the
inverse scattering problem of estimating simultaneously dielectric and geometric parameters of an infinite
cylinder. The homogeneous cylinder was illuminated by a circular array of monopole antennas (similar to
the array presented by Meaney et al. [15]), and the electric field magnitude was computed by FDTD in a
2D simplified model. Such simulations were used to train the ANN. Using the trained ANN, particularly
the CNN, heterogeneous cylinders were evaluated as well, and the predicted effective parameters are
commented. In order to show the validity of the method, a full three-dimension simulation (using
Finite Element Method (FEM)) was also provided, in which the whole setup was modeled as realistic
as possible.

2. MATERIALS AND METHODS

2.1. Direct EM Scattering Problem Solution

The EM direct problem was solved using FDTD, implemented with the free available software
MEEP [16]. The transmitter monopole antenna was considered as a line of current (a point source
in 2D) emitting a TM-polarized electric field Ez ∝ ejωt, with “z” being the axis parallel to that of the
antennas, ω = 2πf , and f is the frequency of 1.1 GHz. The receiver antenna was not modeled, and
the value of the electric field at the nearest point in the grid was collected instead. The geometry is a
simplification of the one presented by Meaney et al. [15]. It consists of a circular array of 16 monopole
antennas equally angularly spaced and disposed in a circle with a diameter of 15.2 cm. The object under
study (e.g.: homogeneous cylinder) was placed within the investigation domain, which was a concentric
circle with a diameter of 14.0 cm. The coupling bath was a glycerin-water mixture in 80 : 20 proportion
with dielectric properties εr = 28.6 and σ = 1.26 Sm−1 at 1.1 GHz. The size of the simulation box
was 25 cm × 25 cm (with the array in the center); the spatial grid resolution of the simulation box
was 1.0 mm; and the Courant factor was 0.5. The boundary conditions were Perfectly Matched Layers
(PML), i.e., total absorption in the box edges.

In order to validate the FDTD models, the simulations were compared to analytical known results
(not shown here) [17, 18]. A total of 10000 simulations of the direct EM problem were performed
with different scatterer cylinders. The location, radius, and dielectric properties of the cylinders
were randomly varied (uniform distributions) within the intervals described in Table 1. From these
simulations the total field magnitude (|Et|) was obtained. A simulation for the incident field magnitude
(|Einc|) was also computed (without the scatterer cylinder) for normalization purposes. The simulation
of each particular cylinder implies that 16 (number of transmitters) × 16 (number of receivers excluding
the transmitter) = 256 values were saved.

Table 1. Simulated range of the dielectric properties (at 1.1 GHz) and radius of the cylinder.

Radius (mm) εr σ (Sm−1)
[2.0, 30.0] [10.0, 80.0] [0.40, 1.60]

A whole setup simulation was also computed in 3D for validation purposes. Simulations were
performed using ad hoc software applying the FEM approach (similar to the work of Attardo et al. [19]).
The model is composed of: two monopole antennas (transmitter and receiver, which are modeled by a
coaxial cable with the inner connector extended λ/4), the cylinder (with fixed position in the center of
the array), and the acrylic tank container. The simulation box was a cube of 30 cm of side. The model
mesh was heterogeneous, with a finer mesh size at the antennas interfaces. A total of around 200000
linear and triangular elements were used. The size of the finer mesh (around 0.2 mm) was estimated
by a sensitivity analysis. A total of eight (one transmitter and eight receivers) 3D simulations were
computed. The 256 data needed were obtained by the symmetry of the model (the cylinder is in the
center).
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2.2. Inverse Problem Using ANN

The inverse problem in microwave tomography is defined as reconstructing the object under study
(the map of its dielectric properties which we called the outputs) sampling the data (the inputs) in
the observation points (the circular array of 16 antennas). The inputs (xi with i = 1, . . . , 256) of the
network corresponds to the ratio |Et|/|Einc| normalized to the [0, 1] interval (16×16 = 256 values). The
outputs (yi with i = 1, . . . , 5) of the model are: the coordinates of the cylinder center (Xcen, Ycen), its
radius, and the dielectric properties at 1.1 GHz (εr, σ). In this work, a simplified version of this problem
is addressed by using ANN. It is basically a problem of minimization of the difference between the
output of the model and the actual output.

The two kinds of networks commented below were implemented using the Application Programming
Interface Keras [20] with Tensorflow [21] as backend package.

2.2.1. MLP Overview and Topology

An MLP ANN is an interconnected network of artificial neuron-like units, disposed in layers, where all
the units of each layer are connected with all the units of the previous and next layer, but there are no
connections between the units in the same layer. In this kind of ANN, the output of each layer is given
by:

x′ = f(Wx + b) (1)

where f is the activation function of the layer; W is a matrix of adjustable parameters; x and b are,
respectively, the input vector of the layer and a vector containing the bias term of each neuron of that
layer. In general, in a network composed by N layers, the whole operation is a nested composition of
these operations, given by:

ỹ = fN(WNfN−1(· · · (W2f1(W1x + b1) + b2) · · · + bN−1) + bN). (2)

The input vector x is propagated through the network, and an output vector ỹ of parameters is
estimated. Then the result is compared to the actual y vector, and a loss is computed. Typically,
one of the loss metrics used in such a regression is the Mean Absolute Percentage Error (MAPE), if the
number of parameters is n (size of the vector y) then:

MAPE =
1
n

n∑

i=1

|δi| (3)

where
δi =

ỹi − yi

yi
(4)

ỹi and yi are the output of the model and the actual value of this i-th parameter (components of the
vectors ỹ and y), respectively. In this work, we also computed the Mean Absolute Error (MAE) to
avoid divergence in parameters that takes zero (or close to zero) values, which is directly computed as:

MAE =
1
n

n∑

i=1

|ỹi − yi| . (5)

After evaluating the loss, the gradients are retropropagated through the network from y to x, and the
weights are updated in all the neuron-like units composing the network in a direction opposite to that of
the gradients ∇θJ(θ), where J(θ) is the objective or loss function parameterized to the model parameters
θ. Several approaches are used for doing this task [22]. Once the validation loss is low enough, and the
network is capable of generalizing the prediction for new input vectors (not used during the training
period), the matrices with the weights are saved, and its performance is evaluated in the test set.

The implemented topology is described in Table 2. A total of 6000 simulations were used for
training, 2000 simulations were used for the the validation set (in order to prevent the model from
overfitting), and 2000 simulations were reserved for test purposes. The input of the network corresponds
to the ratio |Et|/|Einc| normalized to the [0, 1] interval. The output vector of the model is composed
by 5 parameters: the coordinates of the cylinder center (Xcen, Ycen), its radius, and dielectric properties
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Table 2. Topology of the implemented MLP.

Input Layer Hidden Layers Output Layer
256 units 3 × 100 units 5 units

Activation: ReLU Activation: Linear

(εr, σ). As activation functions, Rectifier linear units (ReLU [23]) functions were used in all the neurons-
like units, except in the output layer, where a general linear function was used. During the network
training, a variation of the standard Gradient Descent (GD) method with adaptative momentum
(presented by Kingma and Ba [24]) was used, which, for this particular study, outperformed that
summarized in [22]. The selected loss function was MAPE (Eq. (3)), and 1000 epochs were required for
convergence redwhile training the network with a batch size of 50.

2.2.2. CNN Overview and Topology

CNN can also be considered a nested composition of functions, from a d-dimensional input space X ∈ R
d

to y ∈ R
n, which is the output space of the inferred variables. The difference with respect to the MLP

lies in the fashion that the internal operations are made, which allows the CNN to extract local features
at different complexity levels. Particularly, the operation described by Eq. (1) changes into convolutional
ones, which are the building blocks of CNNs and are defined on a translation invariance basis and have
shared weights across different spatial locations. Both the input and output of convolutional layers are
2D matrices called feature maps, where the output feature map is obtained by convolving the kernels
on the input feature map as:

ỹ = fs(X;W,b) = W ∗s X + b (6)

Here X is the input feature map; W and b denote kernel and bias, respectively; ∗s represents convolution
operation with stride s. As a result, the resolution of the output feature map fs(X;W,b) is downsampled
by a factor of s. The output feature map of the last convolutional layer can then be fed into a stack of
fully connected layers (MLP), which discard the spatial coordinates of the input and generates a global
estimation for the input image-like matrix [10].

A detailed architecture of the implemented CNN is shown in Table 3. The sizes of the sets, number
of epochs, the batch size, and GD method were the same as those used by the MLP. The input dimension
also had the same input information used for the MLP, but reshaped to 16 × 16 image-like matrices
(Fig. 1).

Figure 1. Input examples: black pixels corresponding to lower values and the white ones to higher
values of the |Et|/|Einc| ratio.

3. RESULTS AND DISCUSSION

3.1. MLP and CNN Comparison

We proposed an ANN similar to the one presented by Bermani et al. [6], but in our work the estimations
are obtained simultaneously (dielectric and geometric properties). Comparison of the estimation quality
for each parameter using both, the MLP and CNN models, are shown in Fig. 2. The histograms show the
percent error of the dielectric parameters and the error in the geometric parameters. A good behaviour
is observed for both MLP Networks and CNNs. Distributions of errors are zero centered and symmetric
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Table 3. Topology of the implemented CNN.

Layer Activation Kernel Filters Input Output
2D Conv. ReLU 3 × 3 32 (16, 16, 1) (14, 14, 32)

Stride: 1
2D Conv. ReLU 3 × 3 64 (14, 14, 32) (12, 12, 64)

Stride: 1
Pool ReLU 2 × 2 64 (12, 12, 64) (6, 6, 64)
Dense ReLU - - 2304 100
Dense ReLU - - 100 100
Dense Linear - - 100 5
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Figure 2. Histograms of geometric (a) and dielectric (c) estimation errors using the MLP model.
Histograms of geometric (b) and dielectric (d) estimation errors using the CNN model.

bell-shaped. CNNs show considerably narrower distributions of the errors than MLP for both dielectric
and geometric parameters.

In Fig. 3, the robustness of the models is tested for each parameter with different SNRs. This
evaluation was performed by corrupting the test set data with Gaussian noise. In general, MLP networks
were more robust than CNNs since with SNRs lower than 50 dB, lower errors were obtained. Particularly,
the geometric properties estimation seems to have similar behaviours (see Figs. 3(a) and (b)). The worst
performance was observed for the conductivity estimated by the CNNs for noise levels lower than 50 dB,
and in this case relative errors of 100% were obtained. However, for SNR greater than 60 dB the CNNs
always give better estimates of all the parameters.

Some reconstruction examples (with noise free data) for the cylinder dielectric properties, radius,
and location using the CNN model described in Table 3 are shown in Fig. 4.
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Figure 3. (a) Xcen, Ycen and radius (red, blue and black lines, respectively) errors behaviour in presence
of noise for the MLP model. (c) εr and σ (red and black lines, respectively) errors behaviour in presence
of noise for the MLP model. (b) Xcen, Ycen and radius (red, blue and black lines, respectively) errors
behaviour in presence of noise for the CNN model. (d) εr and σ (red and black lines, respectively)
errors behaviour in presence of noise for the CNN model. In all cases error bars represent the standard
deviation.

3.2. Prediction of CNN: Homogeneous and Heterogeneous Samples

In this section, we study the behaviour of the previously obtained CNN for the prediction of a
hypothetical experimental situation (with SNR greater than 60 dB): the cylinder to be measured should
not be in contact with the coupling media. In order to fulfill this condition, the cylinder should be put
into a sample holder. Two cases were evaluated: homogeneous cylinders and cylinders with cylindrical
inclusions (heterogeneous) both into sample holders. We remark that the CNNs were trained with
homogeneous cylinders (without holder), and consequently, the predictions for the dielectric parameters
are effective (or equivalent) values.

3.2.1. Homogeneous Cylinder in Sample Container

We considered two sizes of acrylic sample holders with radii 9 mm and 18 mm, respectively. The thickness
was e = 0.5 mm (see inset image in Fig. 5(a)), and the dielectric properties were εr = 2.0 and σ ≈ 0.0 for
both. Fifty simulations for each container were conducted varying the dielectric properties (within the
range presented in Table 1) and the position (within the investigation domain) uniformly. The errors in
the estimated geometric properties (MAE, see Eq. (5)) are shown in Table 4. Fig. 5 shows the results for
the effective dielectric properties predictions. For the relative permittivity, the estimations fall on the
straight line, then the acrylic container seems to not affect its measurement (Fig. 5(a)). Conductivity
estimates are always lower than the actual values, and as expected, this effect worsens for the smaller
container. However, it is a systematic error that can be corrected experimentally.
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Figure 4. Reconstruction examples. The position of the antennas is shown with black dots. The gray
circle represents the true cylinder cross-section, the red circle represents the CNN reconstruction. The
values of εr and σ are also shown for the actual values and the estimated ones (subindex “est”).

Table 4. Mean (standard deviation) of MAE for the estimated (using CNN) geometric parameters of
the homogeneous and heterogeneous cylinders within an acrylic holder (all values expressed in mm).

Cylinder radius Xcen Ycen

Homogeneous (radius 0.9 cm) 0.21 (1.01) 0.25 (0.96) 0.15 (0.90)
Homogeneous (radius 1.8 cm) 0.36 (0.98) 0.15 (1.06) 0.64 (1.28)
Heterogeneous (case (a)) 1.49 (7.15) 0.21 (1.56) 0.58 (1.43)
Heterogeneous (case (b)) 3.39 (6.16) 0.42 (1.28) 0.39 (1.58)
Homogeneous 3D (radius 1.7 cm)* 1.28 0.59 0.03
* Only one simulation was computed.

3.2.2. Heterogeneous Cylinder in Sample Container

We also tested cylinders with cylindrical inclusions (constant radius, relative permittivity, and
conductivity, ri = 2mm, εri = 20, and σi = 0.7 Sm−1, respectively) within an acrylic container (equal
to the one of the previous section). The number of inclusions was varied to obtain different fractions
of occupation, and overlap of inclusions was allowed. A sample with fraction of inclusion φi ≈ 0.3 is
shown in the inset of Fig. 6(a). Two sets of dielectric properties of the background were evaluated: case
(a) εrb = 70 and σb = 1.4 Sm−1; and case (b) εrb = 30 and σb = 1.0 Sm−1. It is important to remark
that the radius of the sample and its position were also varied (within the range of Table 1 and the
investigation domain, respectively).

There are several effective models (homogenisation of mixtures) to study dielectric samples with
inclusions [25]. Two broadly used models in such problems are the Wiener bounds. Particularly, when
the electric field is parallel to the direction of the fibers (inclusions of cylindrical shape), the Wiener
bound takes the form:

ε∗eff = ε∗i φi + ε∗b (1 − φi) (7)

where ε∗j = εrj − σj/ (jωε0) for each component (background and the inclusions, j = b and j = i,
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(a) (b)

Figure 5. (a) Effective relative permittivity and (b) conductivity obtained by CNNs. The circles and
crosses indicate the 9 mm and 18 mm radii, respectively. The inset shows the sample in the holder with
thickness e = 0.5 mm.

(a) (b)

Figure 6. Heterogeneous cylinders with variable fraction of inclusion (φi) in holder. (a) Relative
permittivity. (b) Conductivity. The red crosses and blue circles correspond to case (a) εrb = 70 and
σb = 1.4 Sm−1; and case (b) εrb = 30 and σb = 1.0 Sm−1, respectively. The solid lines represent the
Wiener models.

respectively). The effective relative permittivity and conductivity using this bound are also shown in
Fig. 6. It can be seen that both dielectric properties show linear trends but differ from the Wiener
bound. It is necessary to remark that the Wiener bound is not strictly the analytic behaviour that
these samples would follow, because such a bound was developed for equally spaced layers, parallel
to the electric field. For these heterogeneous samples, there is also a systematic error that can be
corrected experimentally, and the fraction of occupation could be estimated (if the dielectric properties of
inclusions and background are known). Table 4 shows the MAE for the estimated geometric parameters.

3.3. Comparison with a 3D Simulation

The training for both neural networks (MLP and CNN) is a computationally intensive and time
consuming process. Consequently, in order to evaluate several scenarios and conditions it is better
to simulate simple models. In this section, models in 3D were computed in order to simulate the whole
experimental setup with detailed version of the antennas. These conditions determine a computationally
heavy model unfeasible for training purposes. Therefore, in the inverse problem we used the ANNs
trained with 2D homogeneous cylinders. In such a way, it is a validation of the inverse algorithms,
which were trained with computationally lighter models.
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Figure 7. Input of the ANN (|Et|/|Einc|) obtained by simulation of a homogeneous cylinder of 1.7 cm
in radius, 30 cm in length, centered at (Xcen, Ycen) = (0, 0) m, εr = 67.0, and σ = 1.55 Sm−1. (a) 2D
FDTD model and (b) Slice of the 3D FEM model at the center of the monopole antenna. White dots
and dashed line show the positions of the antennas and the scattered cylinder, respectively.

Homogeneous 3D cylinders (30 cm in length) with fixed positions at (Xcen, Ycen) = (0, 0) m were
simulated. One transmitter and one receiver were simulated at a time. The position of the receiver was
varied from position 1 to 8 (see Fig. 7). For example, one simulation is emitting with the transmitter in
position 0 (T0) and receiving with receiver 4 (R4, see Fig. 7(a)). A total of eight 3D simulations were
conduced, and the 256 simulations required by the inverse algorithm were obtained using the symmetry
of the problem. Fig. 7 shows the input of the ANN (|Et|/|Einc|) obtained by the 2D model and the
slice of the 3D model (in the center of the active zone of the monopole, that is, the middle of the
extended inner connector of the coaxial antenna). Qualitatively, a similar behaviour is observed. In an
experimental situation, the measured data are the scattering coefficients (Sij). Particularly, in the 3D
model a lumped port was defined at the coaxial cable, and electric fields were converted to current and
voltage in order to compute the S-parameters.

The reconstruction algorithm using CNN was tested with one cylinder of 1.7 cm in radius with Xcen

and Ycen located in (0.0, 0.0) cm, 30 cm in length, εr = 67.0, and σ = 1.55 Sm−1. The transmission
coefficients were only computed (S12) and normalized to the S12inc

of the model without cylinder
(coupling media only). Finally, |S12|/|S12inc

| data (which ignoring the reflection coefficients is equal
to the |Et|/|Einc| ratio) were taken as input of the CNN, and the predicted parameters were: 1.587
cm, 0.059 cm, −0.003 cm, 67.6, and 1.58 Sm−1, for the radius, Xcen, Ycen, relative permittivity, and
conductivity, respectively. The same data were used to test the reconstruction algorithm using MLP.
The predicted parameters were: 1.667 cm, 0.388 cm, −0.218 cm, 67.5, and 1.70 Sm−1, for the radius,
Xcen, Ycen, relative permittivity, and conductivity, respectively. We remark that for the 3D case both
CNN and MLP inversion algorithms were tested without noise addition.

4. CONCLUSIONS

The results presented in this manuscript show that microwave tomography using amplitude-only
information to reconstruct a simple geometry as an infinite cylinder is achievable with artificial neural
networks. The overall quality of the reconstruction with high signal to noise ratio measurements is better
with the convolutional neural network model. However, with signal to noise ratios below ∼90 dB, the
position and radius estimations become similar and even worse than those of the multilayer perceptron
model (although less biased). Similar behaviour is observed with the estimation of dielectric parameters
of the cylinder. In both neural network models, the more robust estimations are those of the cylinder
position and radius. Applications for measuring homogeneous and heterogeneous cylinders in acrylic
sample holders were proposed. Good results were obtained even with heterogeneous samples with
inclusions.
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Finally, the three-dimensional model validates the proposed algorithms which makes this method
a potential approach to develop a low-cost cylinder imaging and/or measurement setup.
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