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A Camouflage Device without Metamaterials

Fei Sun1, Yijie Zhang2, Julian Evans2, and Sailing He2, *

Abstract—We propose a camouflage device that can greatly reduce scattering in the microwave
frequency using only uniform copper plates with no internal structuring (no metamaterials). The
camouflage device is designed by optical surface transformation (OST), which is derived from
transformation optics but much simpler than transformation optics. The key of our design is to
choose suitable arrangement and lengths of these copper plates that satisfy Fabry-Perot condition.
The proposed camouflage device can work when the detecting wave comes from a wide-angle range (not
only works for some discrete angles). The proposed method will give a new and simple way to design
and realize camouflage device.

1. INTRODUCTION

With the development of transformation optics [1–3] and metamaterials [4–6], it is no longer a science
fiction to achieve the idea of invisibility and camouflage. Experimental demonstrations across many
spectral regimes [4–10] and types of field [11–14] have been reported. However, the enthusiasm for
a practical full cloak has diminished due to the stringent requirements and challenging fabrication of
metamaterials. Carpet-cloaks [15–17] can readily avoid the singularities but can only hide an object
attached to a surface. Full-space invisibility cloaks guide waves around a concealed region creating two
optically isolated spaces. From the perspective of transformation optics, a point-extended coordinate
transformation can be utilized to design such optical isolation cloaks (OICs) [1, 3], which requires a
singularity at the inner boundary of the cloak. Although the singularity can be removed by eikonal
approximation, the performance of the reduced cloak is substantially reduced [4]. Landy et al. reported
a full cloak that avoids singularities or approximations but only works for one particular detection angle
(unidirectional cloak) using traditional transformation optics [6]. In this study, we use optical surface
transformation (OST) to design a camouflage device that can greatly reduce the scatterings for a wide-
continuous-angle detection (e.g., from +60 degree to −60 degree) and only requires one homogeneous
anisotropic material. We also designed uniform metallic plates to realize the camouflage device in
the microwave frequency without any reductions. Numerical simulations show very strong scattering
suppression effect for both beam illumination and point sources.

2. THEORETICAL METHOD

OST is a new theoretical design method derived from transformation optics [18, 19] as a surface-to-
surface correspondence method. Two surfaces linked by optic-null medium (ONM) are equivalent
surfaces in OST [18]. OST is broadly applicable in the design of lenses [18, 20], electromagnetic
open resonators [21], overlapped illusions [22], waveguide bends [23], scattering cover-up cloaks [24],
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subwavelength focusing [25], etc. ONM has extremely large permittivity and permeability along its
main axis, and close to zero in orthogonal directions. The ONM serves as a perfect endoscope, which
can project the electromagnetic field distribution from one surface identically onto another along its
main axis. The ONM with its main axis along the x direction in Cartesian coordinate system can be
expressed as:

ε = μ = diag
(

1
Δ

,Δ,Δ
)

, Δ → 0. (1)

The building block of our camouflage device is a shifter designed using OST. As shown in Fig. 1(a),
the surfaces S1 and S2 with the same area are linked by an ONM of main axis along +45 degree
(the direction of main axis is indicated by the green arrow). The length of the shifter is d in the x
direction. The shifted distance between S1 and S2 along the y direction is d. Numerical simulation
shows that both phase and amplitude distributions on S1 are projected onto S2 through the ONM (see
Fig. 1(b)). The designed shifter can also work for other incident angles (see Figs. 1(c)–(e)). Unlike
electromagnetic shifters designed by transformation optics [26], the shifter designed by OST does not
need any coordinate transformation or mathematical calculation to determine the material parameters
of the device. All we need to do is to fix the relative position of input surface S1 and output surface
S2, and find the proper projecting direction to align the main axis of the ONM. With different length
the shifter designed by transformation optics needs new material design. However, for electromagnetic
wave shifter designed by OST, it only needs one homogeneous medium (ONM), no matter how other
parameters change. Even if the geometrical size or shifted length changes, shifter designed by OST can

(a) (b)

(c) (d) (e)

Figure 1. (a) Shifter schematic. (b)–(e) 2D numerical simulations for the designed shifter when the
incident angles of the Gaussian beams are 0, ±20, ±40, and ±60 degrees. We plot snapshots of the
normalized magnetic field’s z component distribution for the TM wave case.
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still be realized by the ONM (but with different main axis’ direction). Later, we will show how to use
metallic plates to realize ONM, which means that all kinds of shifters designed by OST can be realized
by metallic plates.

Placing four electromagnetic shifters around a square of size
√

2d creates a region that no detecting
wave can reach and achieves a concealed region (see Fig. 2(a)). From the perspective of OST, surfaces
SI and SII (colored green) are equivalent surfaces: the electromagnetic wave incident onto SII will
be smoothly redirected around the concealed region and transmitted to SI without being distorted.
Similarly, surfaces SIII and SIV (colored blue) are also equivalent surfaces, which can be treated as the
mirror symmetry of SII and SI on x axis, respectively. The materials in regions I–IV are all ONM
whose main axis is indicated by the red arrows (+45 degree for the regions II and IV; −45 degree for
the regions I and III). The regions II and III are the designed electromagnetic shifter. The regions I
and IV are the mirror image of the designed shifter. The performance of designed camouflage device
is verified by numerical simulations in Figs. 2(b)–(e), which shows this camouflage device can work
effectively when the incident angle of the detecting beam illumination changes. In Figs. 2(b)–(e), we set
a PEC boundary condition as the boundary of the concealed region in the central square. Some small
scattering in Figs. 2(b)–(e) is mainly due to the finite height (along y direction) of our device. The
effective working surfaces of our device are the front and back planes in Fig. 2(a). If the height of our

(a)

(b) (c)

(d) (e)

Figure 2. (a) The schematic diagram to design a camouflage device with four electromagnetic shifters.
(b)–(e) 2D numerical simulations for the snapshots of the distributions for the normalized magnetic
field’s z component: the incident detecting waves are Gaussian beams with the same waist radius
w0 = 2λ0 when the incident angle changes from 0 degree to 60 degree by a 20-degree increments onto a
PEC square wrapped by our camouflage device (Left) or onto only a PEC square without camouflage
device (Right). The geometrical size of our camouflage device is size of each shifter in the OIC is
d = λ04/3 and H = λ010/3.
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device along y direction is limited, a small part of the detecting wave may impinge onto the slope sides
of our device, and consequently leads to small scatterings. However, compared with the cases when
our ONM structure is removed, one sees that our device can greatly reduce the scattering of the PEC
square (see Figs. 2(b)–(e)).

3. REALIZATION DESIGN

To realize the necessary ONM, we use metallic plates that satisfy Fabry-Perot resonance conditions [27].
In our design, the thickness of ONMs along its main axis is fixed (

√
2d). We can use metallic plates

whose length satisfies L =
√

2d = mλ0 (m = 1, 2, 3...) along the +45 and −45 to realize the ONMs in
the regions II & IV and regions I & III, respectively. The basic structure to realize OIC by metallic
plates is shown in Fig. 3(a). The metal acts as a perfect electric conductor (PEC) in our design for
the microwave frequency range. When the period is much smaller than the wavelength of incident

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 3. (a) The schematic diagram to realize the camouflage device in Fig. 2(a) by metallic plates.
The metallic plates (colored yellow) with fixed length L = mλ0 = 5.66 cm (λ0 = 2.83 cm and m = 2
satisfying F-P resonance condition) and thickness l1 = 1.5 mm. The thickness of each air layer is
l2 = 2mm. All other regions are air. The geometrical size of the camouflage device here are H = 6.65 cm,
d = 4 cm, and α = 45 degree. (b)–(h) are 2D numerical simulations for the snapshots of the normalized
magnetic field’s z component distribution. (b)–(e) are cases that the incident detecting waves are
Gaussian beams with the same waist radius w0 = 2λ0 when the incident angles change from 0 degree to
60 degree by a 20 degree step. (f)–(h) are cases that the detecting waves are produced by a magnetic
line current source.
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electromagnetic wave, the layered structure of PEC and air can be treated as an effective medium with
extreme anisotropy satisfying the condition of an ONM [27]. The direction of the metallic plates is the
same as the direction of the ONM’s main axis. We only use simple uniform copper plates to realize
an ONM in the microwave regime and combine these structures to achieve our camouflage device. The
performance of the camouflage device realized by metallic plates in Fig. 3(a) is verified by numerical
simulations (see Figs. 3(b)–(h)). Our device consists of copper plates and concealed region which are
larger than the working wavelength and can be arbitrarily scaled using the same OST designs without
new requirements for the ONM.

4. BANDWIDTH

The camouflage device based on the ONMs can still work if the wavelength is detuned from the designed
wavelength. Fig. 4(a) shows the normalized scattered power from a PEC square with and without the
camouflage device when the wavelength varies. The normalized scattered power is defined as ratio of
the surface integration of the scattered Poynting vector on an enclosure space (enclosing the camouflage
device) to the incident power of the detecting Gaussian beam. The camouflage device can effectively
reduce the scattering of the PEC square for a broadband frequency range. We also plot the electric field
distribution when the wavelength is at the designed one and off the designed one in Figs. 4(b) and (c),
respectively. When the wavelength is off the designed one, the scattering is mainly due to the reflection.
As the wavelength becomes much smaller than the designed one, each copper-air pair in our structure

(a)

(b) (c)

Figure 4. (a) The normalized scattered power when the wavelength varies for the cases with our
camouflage device (blue) and without the camouflage device (red). The detecting wave is a Gaussian
beam with the same size as in Fig. 2 with an incident angle of 0 degree. The geometrical size of the
camouflage device is the same as the designed one in Figs. 2(a). (b) and (c) are 2D numerical simulation
results for the snapshots of the distributions for the normalized magnetic field’s z component when the
wavelength is at and off the designed one, respectively.



112 Sun et al.

cannot be treated as the effective medium for the detecting wave, and consequently the camouflage
device will lose its function gradually.

5. THE LATERAL DISPLACEMENT (PHASE SHIFT) PROBLEM

Although our camouflage device can keep the magnitude and wave front of incident detecting wave
undisturbed, there is lateral displacement (phase shift) of the point source for the viewer on the right
side (the source seems closer to the observer on its right side in Figs. 3(f)–(h)). That is the main
difference between our camouflage device and perfect invisibility cloaking. The lateral displacement
(phase shift) is due to the special feature of ONM: the region filled by ONM is ‘optic-null’. Since
electromagnetic field distribution on the input surface is perfectly projected onto the output surface
of our ONM device, it seems that the spatial region between the input surface and output surface of
the ONM device does not exist, i.e., an “optic-null space”. A restoring layer that can compensate the
“optic-null space” produced by ONM has been designed to fix this problem. The restoring layer is
designed by a spatial compression coordinate transformation with the help of transformation optics. As
shown in Fig. 5(a), a restoring layer with thickness t is added on the right surface of the camouflage
device (with a total length of 2d along x direction). Since the camouflage device filled by ONM is
optic-null space, the whole effective space of the system in Fig. 5(a) (the camouflage device and the

(a) (b)

(c) (d)

Figure 5. (a) Fix the phase shift problem by adding a restoring layer on the right surface of the
camouflage device. (b) The coordinate transformation relation in the reference space (Left) and the
real space (Right) to design the restoring layer by Transformation Optics. (c) shows the 2D numerical
simulation results when the designed restoring layer is added to the camouflage device. The size of the
camouflage device is the same as the one in Fig. 2. The thickness of the restoring layer is t = 2λ0/3.
The detecting waves are produced by a magnetic line current source in front of the cloak. (d) shows
the comparison situation when we remove the camouflage device, restoring layer and PEC square (just
a magnetic line current in free space).
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(a) (b) (c)

(d) (e) (f)

Figure 6. 2D numerical simulations when the restoring layer described by Eq. (3) is added on the
right surface of the camouflage device for the Gaussian beam detecting case: we plot the snapshots of
the normalized magnetic field’s z component distribution for the TM wave case. (a)–(f) The incident
angles of the Gaussian beams are 10, 20, 30, 40, 50 and 60 degrees. Note that were scale the figure in
(f) to see a larger computation domain. The sizes of the Gaussian beam and the camouflage device are
the same as the case considered for Fig. 2. The thickness of the restoring layer is t = λ0/6.

(a)

(b) (c)

Figure 7. (a) and (b) are the sketch map and photograph of the measurement system. (c) The
photograph of our OIC by copper plates. The length and thickness of copper plates are L = mλ0 =
5.66 cm (λ0 = 2.83 cm and m = 2; satisfying F-P resonance condition) and l1 = 1.5 mm, respectively.
The thickness of each air layer is l2 = 2 mm. The geometrical size of the cloak here are H = 6.65 cm,
d = 4 cm, and α = 45 degree.



114 Sun et al.

restoring layer together) exactly equates to the effective space of the restoring layer. Then we fill some
special medium inside the restoring medium to make its effective space equate to a free space region
with thickness 2d + t along x direction. This can be made by a spatial compression transformation of
transformation optics (see Fig. 5(b)): a free space with thickness 2d + t along x direction is compressed
into a slab region (the restoring layer) with thickness t along x′ direction:⎧⎪⎪⎨

⎪⎪⎩
x′ =

t

2d + t
x

y′ = y

z′ = z

. (2)

Here we use quantities with and without primes to indicate the quantities in the real and reference
spaces, respectively [1–3]. With the help of transformation optics, the required permittivity and
permeability of the restoring layer can be given by:

ε′ = μ′ = diag
(

t

2d + t
,

2d + t

t
,

2d + t

t

)
. (3)

If we add such a restoring layer described by Eq. (3) on the right surface of the camouflage device,
the lateral displacement problem of the point source can be fixed (see Figs. 5(c) and (d)). Note that
there are some small disturbances on the wave front, which is due to the limited size of our cloak.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. (a)–(c) The distribution for the measured normalized magnetic flux density’s z component in
the waveguide system. (d)–(f) 2D numerical simulation results corresponding to the measured (a)–(c),
respectively. The designed working wavelength is 2.83 cm. (a) and (d): our designed cloak is around
the concealed object (a PEC square) when the detecting line current source is on the left side of the
structure. The location of our cloak is indicated by the black dashed line. (b) and (e): only the PEC
square is set on the right side of the detecting line current source (the cloak is removed). The location
of the PEC square is indicated by the black dashed line. (c) and (f): only a line current source is in
free space (both cloak and PEC square are removed).
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When the restoring layer is applied (see Fig. 5(c)), the viewer at the right side cannot find any lateral
displacement (i.e., the wave on the right side looks like the wave produced by a point source in free
space in Fig. 5(d)). In this case, our camouflage device can work as an invisibility cloak.

If the detecting wave is a Gaussian beam as shown in Figs. 2(b)–(e), there is also a lateral
displacement for the output beam. This is also due to the ‘optic-null’ feature of the ONM: the
electromagnetic field on the input surface of the ONM device is exactly projected to the output surface
of the ONM device, and the spatial region filled with ONMs can be considered as of non-existence. The
restoring layer given in Eq. (3) can compensate the “optic-null space’ produced by ONM and thus the
lateral displacement problem for the Gaussian beam detecting case is also fixed (see Fig. 6).

6. EXPERIMENTAL MEASUREMENT

We perform experimental characterization in a 2D planar waveguide system (Figs. 7(a) and (b)) with
two big aluminum planes to form the 2D planar waveguide. The separation between the upper aluminum
plane and the lower aluminum plane is 2 cm. The fabricated cloak (Fig. 7(c)) consists of copper plates,
and some foamed plastic materials (εr = μr = 1 in the microwave frequency) are used in the bottom to
firmly fix the copper plates. Figs. 8(a)–(c) are the measured results when wavelength is the designed one
(e.g., λ0 = 2.83 cm). Figs. 8(d)–(f) give the numerical simulation results corresponding to the measured
results in Figs. 8(a)–(c), respectively.

7. DISCUSSION AND CONCLUSION

Very recently, two designs have been published by adopting eps-nearly-zero materials and perfect
electric conductor to achieve invisibility cloaks [28, 29]. Although their cloaks also require ONM for
realization, their designing processes are still based on traditional TO (i.e., involve complex coordinate
transformation and tensor calculations). Our design in this study is based on the OST, which is a
graphical designing method. OST is a surface-to-surface directional projecting method without any
mathematical calculations. The whole designing process of the OST is to choose suitable geometrical
shapes of input/output surfaces and the directions of the ONMs between these two surfaces. Our
method is much simpler and flexible than TO. For the recent work on an omnidirectional cloak [28],
the design is still a spatial stretching-compressing coordinate transformation. Just some regions of the
cloak require ONMs and the remaining regions require other materials. The whole camouflage device of
our design only requires the same ONMs for realization. Another recent study [29] on invisibility cloak
has a similar structure as our camouflage device. However, their cloak still has the phase shift problem,
which can be fixed by some restoring layer in our design (see Figs. 5 and 6). Their method is the
further coordinate transformation inside the transformation-invariant medium (i.e., ONM), which also
needs coordinate transformations and mathematical calculations. We also made some studies on the
further coordinate transformation inside the transformation-invariant medium in 2014 [30]. However,
the camouflage device in this study is designed by our novel optical design method (i.e., OST) without
involving any mathematical calculations. Actually our structures were proposed much earlier than
those in the recent work [29] (we have proposed in a straightforward way the same/similar designs
much earlier in 2018; see, e.g., our patents filed in early 2018 on the same camouflage device [31] and
retro-reflectors [32]).

Note that the camouflage device by perfect ONM (given in Eq. (1)) is independent on the
polarization of the detecting waves. However, as metallic plates (satisfy Fabry-Perot resonance
conditions) can effectively realize ONM only for the TM polarized beams, the camouflage device by
metallic plates in Figs. 3 and 4 can only work for TM polarized beams. In this study, all detecting
waves in numerical simulations are the TM waves. All full-wave numerical simulations are made by
commercial software COMSOL Multiphysics 5.3 (wave optics package in frequency domain). We choose
free triangular meshing with a maximum element size of one over ten working wavelengths.

In conclusion, the function of the metallic plates array designed here is like many perfect endoscopes,
which can guide the detecting wave around the concealed objects and redirect it back to the original
direction. Designing a camouflage device using the OST graphical method is simpler and more
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convenient than transformation optics. The proposed camouflage device can work for both wide-angle-
incident plane waves and line current source, which can be realized by one homogeneous ONM. A simple
array of metallic plates where the length of each plate satisfies the F-P resonance condition can serve
as an effective ONM. Our camouflage device can effectively reduce the scattering of the PEC square in
a broad frequency band. The proposed camouflage device is realized by just one material with robust
performance verified by numerical simulations. The proposed method provides a new way to design
camouflage device, which can potentially be extended to 3D case and applied in different wavelength
regimes.
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