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Advanced EMC Assessment of Composites Material:
Monte Carlo Statistical Description with Spherical Inclusions

and Improvement with SROM

Sébastien Lalléchère*

Abstract—This article proposes an advanced methodology to deal with the complexity of composite
materials modeling up to 60GHz. For radiofrequency (RF) requirements, it has been demonstrated
that the distribution of conductive inclusions plays a major role. Since their locations are intrinsically
subject to uncertain assumptions, the Monte Carlo (MC) technique is considered as a golden standard.
Unfortunately, the computational costs involved by coupling full-wave electromagnetic (EM) simulations
and MC remains prohibitive. The aim of this proposal is to demonstrate the interest of stochastic
reduced order method (SROM) to tackle computational constraints, jointly with the statistical precision
needed for a realistic description of RF composites.

1. INTRODUCTION

Nowadays, various industrial areas (automotive, aerospace, communication) are expressing an increasing
interest for composite materials. In this framework, a constant demand exists for reliable and efficient
numerical tools to characterize such media over large frequency bandwidth (from direct current to tens
ofGHz), including but not restricted to applications such as electromagnetic interference/compatibility
(EMI/EMC), 5G networks, more electrical aircrafts/automobiles. The state-of-the-art regarding full-
wave electromagnetic (EM) modeling shows that various methods were successfully used to simulate
composite fiber-reinforced media including models in frequency domain (finite element method [1],
integral equation [2]), and time domain (finite difference [3], discontinuous Galerkin [4], finite integral
technique (FIT) [5]). However, due to the intrinsic variability of composite materials (e.g., conductivity,
locations or shapes of inclusions, . . . ), full-wave modeling is often needed to assess EM shielding
properties (shielding effectiveness for instance) as accurately as possible. Obviously, the computing
resources available have to be taken carefully into account in this process (involving the achievement of
a realistic number of simulations, here 10 maximum considering computing costs in Table 1). Mostly,
the variability of inputs is taken into account through MC procedures [6]. Nevertheless, the computing
costs required by full-wave simulations through MC is often a crucial constraint, leading to a limited
number of simulations [1, 2]. In this framework, the next sections 2 and 3 will put the focus on the
interest of alternative technique, through stochastic reduced order method (SROM).

2. PROBLEM STATEMENT

The aim of this work is to provide accurate and efficient homogenisation procedures to characterise RF
properties of composite materials. This relies on results previously obtained regarding Maxwell-Garnett
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Figure 1. Description of problem statement: EM propagation through composite (two-phase) material
with conductive spherical inclusions. (a) Numerical setup (CST simulations). (b) Randomizing the
location of inclusions (100 different samples).

(MG) effective medium principles [7], dynamic homogeneisation method (DHM) [1], and use of full-wave
3D time domain simulations to accurately match DHM equivalent material [5]. Thus, Fig. 1(a) and
Table 1 briefly summarize the numerical characteristics of FIT simulations provided with CST.

As an extension to [5], one hundred full-wave 3D simulations were achieved in order to provide a
reference set of results for the EM assessment of the shielding properties of RF composite. Indeed, in
order to properly initiate the two-phase (complex permittivity ε1 and ε2, Table 1) composite model with

Table 1. Numerical characteristics of CST simulations, referring to Fig. 1.

EM source Plane wave excitation [0.1; 60] GHz

Output Outer (composite) E-field probe, see Fig. 1(a)

Matrix characteristics ε1 = 5ε0, σ1 = 0S/m, 6mm3-parallelepiped

Conductive inclusions ε2 = ε0, σ2 = 1, 000 S/m, spheres 0.1mm-diameter

Composite volumetric rate ν = 10%/1,146 inclusions in total

EM solver Transient, total duration=400 ps/meshing ≈ λ/40

Computing hardware PC, Quad-core Intel Xeon processor, RAM 12GB

Computing time costs ≈ 6 hours per composite sample, see Fig. 1(b)
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mixing DHM rule, it is necessary to define ε∞ standing for the complex permittivity of the so-called
infinite medium [5] as follows:

ε∞ = ε1 + ε2 (d/λ)
γ , (1)

where d represents the equivalent size of inclusions, λ the assumed wavelength, and γ the equivalent
coefficient optimized from mean value given by full-wave simulations [1]. This allows replacing expensive
3D simulations (see Table 1) with realistic homogenised equivalent model.

As depicted in Fig. 1 and Table 1, the whole procedure requires important computational resources
for 100 time domain simulations. The reference statistical result (averaged EM attenuation due to the
presence of composite material) will be considered in the following from the latter dataset.

3. THEORETICAL PRINCIPLES AND METHODOLOGY

It is noticed that the proposed work covers the whole methodology depicted in Fig. 2.

(a)

(b)

(c)

(f)

(e)

(d)

Figure 2. Flow chart summarizing modeling steps [(a)–(f)]. [(a); (c)–(f)]: using Matlab. [b]: from
automated CST simulations.

The process described in Fig. 2 is monitored (with Matlab) through:

• Steps A–B: the respective levels A and B are dedicated to the generation of composite samples
and CST monitoring through COM-interface communication with Matlab. The details about the
automated pre-/post-treatments and launching of deterministic time domain simulations are given
in [5].

• Steps C–D: considering the huge number of random variables (RV) needed (3 × 1, 146 = 3, 438
considering each Cartesian component of the inclusions), the C-level is devoted to the construction
of a restricted number of sub-samples depending on an uniform meshing of the composite sample
(here through ncx×ncy×ncz = 2× 2× 12 = 48 0.5mm-cubes). It is independent of the statistical
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assumption considering inclusions inside dielectric matrix, and the main goal is to construct metrics
well-fitted to achieve levels C-D in Fig. 2. Depending on the physical nature of composite, this
sub-sampling might be freely adapted by defining alternative meshing (see for instance the deposit
of fibers evoked in [8]). Step D is devoted to the filtering of initial 3, 438 random parameters
to a restricted number of RVs (here 48), still allowing a physical interpretation of the random
distributions of conductive inclusions. The density (in terms of number of inclusions) of each sub-
sample given in step C is finally computed. The impact of the subsampling steps has been studied:
the results with increasing number of subcells (i.e., ncx, ncy, ncz/6 = 3, ncx, ncy, ncz/6 = 4, . . . )
validate the convergence of the proposed methodology (data not shown here).

• Steps E–F: the E-level stands for the SROM choice of a weighted (optimised) design of experiments
(DoE) considering the inital 100 samples generated (see level A). Step F enables computing final
statistical results (mean, variance, . . . ) from the set of simulations given by E-level and SROM
(see details in equation 2). The assessment of the averaged EM attenuation is crucial with
respect to (wrt) EMT-like procedures, the DHM final step relies on the mean characteristics of
EM shielding [5].

The core of the proposed methodology relies on filtering the huge number of RVs (i.e., 3, 438 due
to Cartesian locations of inclusions); in this framework, classical stochastic techniques (e.g., stochastic
collocation, unscented transform, . . . ) are facing curse of dimensionality [9]. Although alternative
methods exist to cope with this problem (see for instance works in [10]), the high number of RVs and
the computing costs expected from full-wave simulations required to drastically decrease the number
of simulations, still preserving accuracy (steps [C-F] in Fig. 2). The main principles of SROM [11] are
derived from pattern classification techniques [12] as follows:

• Level 1: providing an initial set composed of N samples (here 100 full-wave simulations, Fig. 1) of
composites as described in step D (Fig. 2).

• Level 2: generating nSROM Voronoi subregions (see Fig. 2(e) for two RVs) from random choice of
nSROM samples from N initial set.

• Level 3: computing the Euclidian distance between nSROM -size samples (Level 2) to N initial
dataset (Level 1).

• Level 4: optimisation of nSROM -size samples with a figure of merit highlighting the compliance
between well-chosen statistics from the original N dataset (e.g., density of inclusions in sub-samples,
see Fig. 2(d)). This step provides a weighted set of samples (see equation 2).

Here, an enhanced algorithm has been developed to ensure the convergence of the SROM DoE
(latter levels 1–4). The E-step in Fig. 2 is reproduced ten times checking the uniqueness of the SROM
weighted set of samples (data not shown). In the following, we consider ncx×ncy×ncz = 2×2×12 = 48
RVs (Fig. 2(c)). The random inputs are initially generated 100 times (those reference results are
simulated in time domain with CST), and the random parameters are given through random matrix

Xj
i (i = 1, . . . , N , and j = 1, . . . , 48), standing for the number of inclusions per sub-sample j for full-

wave simulation number i. The SROM procedure enables choosing the optimised dataset (x̂i, wi) for
i = 1, . . . , nSROM , and x̂i is the sample number from the initial N samples. Finally, the mean value of
the chosen output (e.g., EM attenuation S) is defined as follows:

〈S(f)〉 =
nSROM∑

i=1

wiSx̂i
(f) (2)

where 〈S(f)〉 is the averaged EM attenuation needed for DHM extraction (frequency f), and Sx̂i
(f)

stands for the EM shielding extracted from simulation with composite sample number x̂i. The
next section will lay emphasis on the accuracy of results obtained with nSROM = 10 and numerical
characteristics listed in Table 1.

4. NUMERICAL RESULTS FROM MC AND SROM

Figure 3 shows the precision of SROM (black dashed line) wrt the reference MC data (i.e., initial set
of 100 simulations, red solid line).
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Figure 3. Averaged EM attenuation from: the whole initial simulated dataset (100 samples) or part of
it (10 realisations randomly chosen or given by SROM). Reference results are given by MC mean (red
solid line) extracted from the initial set of 100 composite samples (see Fig. 1(b)). Maximum/minimum
caliber wrt 〈S〉 computed from 10 randomly chosen simulations (light blue area, process iterated 10,000
times). Mean EM shielding as given by SROM procedure (black dashed line).

Figure 4. Computing REβ(f) from 〈S〉 due to composite samples: from 10-realisation MC (light blue
solid line), from the 10-simulation SROM optimised DoE (black dashed line), and 0.3%-error isocurve
(orange line)

In order to emphasis the accordance between 100-simulation MC results and SROM ones, 10
simulations are randomly chosen from the initial dataset (process iterated 10,000 times, light blue
area): the results show discrepancy (increasing with frequency) between previous results and MC.
Furthermore, an error criterion is proposed to quantify the quality of the 10-realisation MC data and
SROM:

REβ(f) =
∣∣∣Sβ(f)− SMC(f)

∣∣∣ /
∣∣SMC(f)

∣∣ (3)

with REβ(f) the relative error of mean EM attenuation at frequency f due to the use of method β
(β standing for 10-realisation MC or SROM); reference is still given by full MC simulations (SMC).
The results are shown in Fig. 4: SROM averaged EM shielding is below 0.3% error isocurve over the
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whole frequency bandwidth (orange line), whereas the error gap from 10-realisation MC increases wrt
frequency (up to 6.5%). This demonstrates the interest of weighted set of points from SROM in terms
of precision and computing costs (less than 3 days needed since pre-treatment with SROM only requires
few seconds).

5. CONCLUDING REMARKS

This article demonstrated the efficiency and precision of SROM in the framework of RF composite
modeling: the method offers a 90%-gain regarding the overall full-wave modeling of the random material,
without spoiling the precision of results (maximum 0.3% with reference data). The whole methodology
allows dealing with high number of RVs (hundreds). Regarding the type of inclusions given in this
work (sub-wavelength spheres), the SROM methodology is useful to decrease the number of simulations
needed, comparatively to MC. By keeping the level of accuracy offered by MC, SROM is an efficient
technique to assess electromagnetic field attenuation, and its statistical average may offer attractive
prospects when coupled with DHM procedures. Actual developments are in progress to enhance the
DHM extraction, including second order statistical data (variance) for sensitivity analysis purposes with
different inclusions (varying shapes, sizes, . . . ).
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