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Numerical Modelling of Electro-Magnetohydrodynamic Disturbances
(E-MHD) in a Two-Dimensional Configuration in the Vertical

Plane in the Ionosphere: Small Scale and Medium Scale

Ionospheric Disturbances

Victor Nijimbere* and Lucy J. Campbell

Abstract—We have simulated ionospheric disturbances generated by the buoyancy and electrodynamic
effects in a two-dimensional configuration in the vertical plane in the ionospheric F region using
a simple two-dimensional mathematical model for internal gravity waves propagating in the lower
atmosphere, and we have investigated the characteristics (e.g., buyoancy frequency, wavenumber,
wavelength, speed) of the ionospheric disturbances. We find that electrohydrodynamic effects are
mainly responsible for small scale non-travelling ionospheric disturbances, while magnetohydrodynamic
effects are responsible for travelling ionospheric disturbances, including small scale travelling ionospheric
disturbances (SSTIDs), medium scale travelling ionospheric disturbances (MSTIDs) and large scale
travelling ionospheric disturbances (LSTIDs). Our results are in agreement with the results obtained
from observations.

1. INTRODUCTION

The Earth’s ionosphere, the region in the upper atmosphere, contains electrons and ions resulting from
the effects of the ultraviolet and X-ray radiation from the sun which contains enough energy to remove
electrons from the gases in the ionosphere. The density of electrons can significantly affect radio wave
propagation, and consequently the ability to transmit radio waves over long distances and receive signals,
see for example [12, 18]. Radio waves interact with the ionosphere via reflection and refraction from one
layer to another, wave diffraction over obstacles and wave scattering [12].

The ionosphere is subdivided into three main regions, the lower region D extending from an altitude
of about 40 km to 90 km with an electron number density ≈ 2.5×109 m−3, E extending from an altitude
of about 90 km to 160 km with an electron number density ≈ 2× 1011 m−3, and above the E region, the
F region extends to an altitude of more than 800 km with an electron number density ≈ 2.5×1012 m−3.
The F region is strongly magnetized, and most high frequency radio waves of order of GHz are reflected
in this region of the ionosphere.

When there are solar winds, e.g., magnetic storms, and other phenomena that transport random
scatters and perturb the geomagnetic field, their interactions with the ionospheric medium occur in
a random fashion and often generate ionospheric disturbances (waves) and electromagnetic waves,
see [1, 2, 5, 6, 13, 24] and references therein. Ionospheric disturbances comprise large scale travelling
ionospheric disturbances (LSTIDs) with horizontal wavelength longer than 1000 km propagating at
a speed greater than 300 m sec−1, medium scale travelling ionospheric disturbances (MSTIDs) with
horizontal wavelength longer than 100 km propagating at a speed less than 400 m sec−1, and small scale
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ionospheric disturbances with wavelength shorter than 100 km [2, 9, 27, 31]. It is also well known that
not all small scale ionospheric disturbances are travelling [2, 9, 27].

Downward propagating ionospheric disturbances can reach the lower atmosphere and interact with
atmospheric waves and consequently affect the general circulation of the atmosphere and, hence, weather
and climate [5, 14, 17, 19]. They can also damage (electric) power grids, avionics and ground systems,
GPS and other positioning, navigation and timing (PNT) systems, and radio communication systems
(e.g., Mobile satellite communications), and hence cause considerable human and economic losses, see
for example [3, 30]. It is thus important for us to understand the properties of the ionosphere in
order to ensure effective radio communications and to adequately protect satellites (spatial stations)
and astronauts who travel in the ionosphere, electric power grids, avionics and ground systems, and
aircraft passengers and crew, and therefore mitigate the losses which may be caused by ionospheric
disturbances [3, 6, 25].

Our understanding of the ionosphere can be significantly improved by performing numerical
simulations using mathematical models like those used for weather prediction and climate modeling
in the lower atmosphere. The fluid dynamics governing equations which are based on the law of
conservation of mass, momentum and energy can apply in the ionosphere. However, electrodynamic
processes have to be taken into consideration. Furthermore, to take into account the presence of random
scatters in the medium, the ionosphere can be considered to be an isotropic medium with weakly-random
fluctuations in time as in [22], and thus we can model the ionospheric disturbances in terms of stochastic
partial differential equations (SPDEs). Our purpose is to simulate the nonlinear interactions between
the electromagnetic field and the medium. Our numerical model will be solved using a numerical method
based on the Wiener chaos expansion (WCE) as described in Nijimbere [20, 21].

It was found that electrodynamic processes can play an important role in the variation of the
buoyancy effects and hence can generate ionospheric wave-like structures resembling atmospheric
(internal) gravity waves [11, 13]. Kelley et al. called these ionospheric wave-like structures
electrohydrodynamic waves. These wave structures (or ionospheric disturbances) are mainly generated
by the Lorentz force and the Joule heating produced from intensified auroral electrojet and/or intense
particle precipitation in the auroral and subauroral regions during geomagnetic storms [7, 11].

In the present study, we investigate ionospheric disturbances (waves) generated via the Lorentz
force, and we separately look at the roles of the electrohydrodynamic and magnetohydrodynamic
effects. Thus, we categorize these waves into two categories which are electrohydrodynamic disturbances
(EHD) generated by the effects due to the electric field and magnetohydrodynamic disturbances (MHD)
generated by the effects due to the magnetic field.

We consider that electrodynamic processes play an important role in the variation of the buoyancy
force [11, 13]. In that case, a simple two-dimensional mathematical model analogous to that for
internal gravity waves [29] propagating in the neutral (lower) atmosphere can be used to model the
electro-magnetohydrodynamic (E-MHD) disturbances. It consists of a rectangular domain in a plane
perpendicular to the surface of the earth with Cartesian coordinates, x in the horizontal direction and
z in the vertical direction, and the waves are considered to be perturbations to some basic background
(or mean) flow. The background flow velocity has no vertical component, and its horizontal component
is the horizontal mean flow speed, for example it could be represented as

ū = (ū(z), 0).

This configuration allows mathematical analyses using perturbation theory and both linear and
nonlinear numerical simulations. In this study, waves are generated at the upper boundary of the
rectangular domain and propagate downward in the negative z-direction toward the Earth. The
results of our numerical simulations show that electrohydrodynamic effects are mainly responsible for
small scale ionospheric disturbances which are non travelling [9], while magnetohydrodynamic effects
are responsible for travelling ionospheric disturbances comprising small scale travelling ionospheric
disturbances (SSTIDs), medium scale travelling ionospheric disturbances (MSTIDs) and large scale
travelling ionospheric disturbances (LSTIDs).

We organize the paper as follows. The mathematical model in terms of streamfunction, vorticity
and density is derived in Section 2. In Section 3, we describe the numerical implementation (the
numerical model and boundary conditions), and some results are described in Section 4. A general
discussion and some conclusions are given in Section 5.
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2. MATHEMATICAL MODELLING

The mathematical model for the ionospheric α-species or plasma consists of the momentum equation

�α
Duα

Dt
= −∇pα + �αg + μ∇2uα + �α,el(E + uα × B), (1)

the continuity equation
1
�α

D�α

Dt
+ ∇ · uα =

1
�α

(Qα − Lα)Mα, (2)

the energy equation in terms of the ionospheric α-species density under Boussinesq approximation (see
Appendix A)

D�α

Dt
= Tα ∇2�α − κα

Cp,α
∇ · (E × H), (3)

Maxwell’s equations describing the electromagnetic field

∇× E = −∂B
∂t
, (4)

∇× H = Jα +
∂D
∂t

, (5)

∇ · D = �α,el, (6)
∇ · B = 0, (7)

and the electric charge of the α species continuity equation
∂�α,el

∂t
= −∇ · Jα, (8)

where uα = x̂uα + ẑwα, �α, pα and �α,el are the velocity, the density, the pressure and the electric
charge density of the ionospheric α-species (plasma); g = −ẑg, g ≈ 9.8 m sec−2, is the acceleration due
to gravity; Qα and Lα are production and loss rates of the α-species, respectively; μα is the α-species
viscosity coefficients; Tα is the thermal diffusivity; Cp,α is a typical specific heat capacity at constant
pressure; κα ≈ 1/Tα,0 is a typical plasma thermal expansion; Tα,0 is a reference temperature; E and H
are the electric and magnetic field vectors; D and B are electric and magnetic flux densities; Jα is the
current density; D

Dt = ∂
∂t + u ∂

∂x + w ∂
∂z denotes the derivative following the fluid motion; and x̂ and ẑ

are unit vectors in the horizontal (west to east) and vertical directions, respectively.
The ideal magnetohydrodynamic (MHD) assumption is commonly used to formulate the MHD

equations [8, 15]. It makes use of the expression E = −u × B for the electric field E in Maxwell’s and
energy equations [8, 15]. In that case, E+u×B = 0 in the momentum Equation (1). As a result of this,
there is no magnetohydrodynamic problem to solve. To get around these inconsistencies, we consider
that the ionosphere is a weakly-dispersive time-dependent linear isotropic medium as in Nijimbere and
Campbell [22], and thus, we obtain the expressions for E,H,B and �α,el to substitute in the momentum
Equation (1) and in the energy Equation (3).

The vector quantities E and D, and H and B are thus related by

D(r, t) = ε(t)E(r, t) and B(r, t) = μ(t)H(r, t), (9)

where ε(t) and μ(t) are, respectively, the permittivity and permeability of the medium; r is the position
vector; and each component of E is the solution of

∇2E − μ
∂2(εE)
∂t2

− dμ

dt

∂(εE)
∂t

= 0 (10)

We consider a two-dimensional rectangular domain x1 ≤ x ≤ x2 and −∞ < z ≤ z2, where x represents
the horizontal (west to east) coordinate, and z is the altitude, and we let

E(x, z, t) = x̂Ex(x, z, t) + ẑEz(x, z, t) and D(x, z, t) = x̂Dx(x, z, t) + ẑDz(x, z, t). (11)

Electric measurements indicate that, under certain circumstances (e.g., during solar winds), the upper
region of the ionosphere, known as the F region, may behave like an electric dynamo with a direct
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current electric field [10, 26]. Therefore, we have to carefully choose initial and boundary conditions for
Eq. (10) that will give a solution representing a direct current electric field.

Following [22], we solve Eq. (10) subject to the initial conditions

Ex(x, z, 0) = f(0)
ρse

ηez

ε(0)
sin (ηex) and Ez(x, z, 0) = f(0)

ρse
ηvz

ε(0)
cos (ηvx), x1 ≤ x ≤ x2, −∞ < z ≤ z2

(12)
and the boundary conditions

Ex(x, z2, t) = f(t)
ρs

ε(t)
sin (ηex) and Ez(x, z2, t) = f(t)

ρs

ε(t)
cos (ηvx), t ≥ 0, (13)

where

f(t) =
{

1, if t < t0
0, if t > t0

, (14)

acts as a switch-off of the electromagnetic field source, t0 > 0, and ρs is a constant reference surface
charge density at the altitude z1, the source level of the electromagnetic field. Thus, these conditions
give the electric field vector solution

E(x, z, t) = x̂Ex(x, z, t) + ẑEz(x, z, t) = x̂f(t)
ρs

ε(t)
eηe(z−z2) sin (ηex) + ẑf(t)

ρs

ε(t)
eηv(z−z2) cos (ηvx). (15)

Using Eq. (9), we obtain the electric flux density

D(x, z, t) = x̂ε(t)Ex(x, z, t) + ẑε(t)Ez(x, z, t) = x̂f(t)ρse
ηe(z−z2) sin (ηex) + ẑf(t)ρse

ηv(z−z2) cos (ηvx).
(16)

Maxwell’s Equation (6) gives

�α,el(x, z, t) = ∇ ·D =
∂Dx

∂x
+
∂Dz

∂z
= f(t)

[
ηeρse

ηe(z−z2) cos (ηex) + ηvρse
ηv(z−z2) cos (ηvx)

]
. (17)

The electric charge density �α,el is indeed time-independent prior the electromagnetic field source is
switched off. Therefore, the ionosphere acts like an electric dynamo with a direct current. The magnetic
flux density is obtained using Maxwell’s Equation (4),

B(x, z, t) = −
∫

∇× Edt = ŷBy = ŷ
∫ (

∂Ez

∂x
− ∂Ex

∂z

)
dt

= −ŷf(t)ρs

[
ηee

ηe(z−z2) sin (ηex) + ηve
ηv(z−z2) sin (ηvx)

] ∫
1
ε(t)

dt. (18)

In the next section, the momentum equation is written in terms of the streamfunction and the
vorticity using the Boussinesq approximation (see Appendix A). Under the Boussinesq approximation,
it is assumed that the density slowly varies with time and in space, and so D�α/Dt � �α. We also
assume that �α is large enough so that (Qα − Lα)Mα � �α. This corresponds to a configuration
where the production and loss rates of the α species are almost equal (Qα ≈ Lα), for example, in the
ionospheric F region. In that case, the continuity Equation (2) reduces to

∇ · uα = 0. (19)

This form of the continuity equation allows us to define the streamfunction for the plasma by

−∂Ψα

∂z
= uα and

∂Ψα

∂x
= wα,

and the vorticity by
∂wα

∂x
− ∂uα

∂z
=
∂Ψα

∂x
+
∂Ψα

∂z
= ∇2Ψα.



Progress In Electromagnetics Research B, Vol. 86, 2020 43

2.1. Streamfunction-Vorticity Formulation

The Lorentz force per unit of electric charge uα ×B, where B is given by Eq. (18), is thus given by
uα × B = (x̂uα + ẑwα) × ŷBy = −x̂wαBy + ẑuαBy, (20)

where By is the y-component of the magnetic flux density. Under the Boussinesq approximation
(Appendix A), it is assumed that the density is constant except in the buoyancy terms where it multiplies
the acceleration due to gravity g. Using the Boussinesq approximation and the fact that the Lorentz
force does not have a y-component, the y-component of the momentum Equation (1) can be decoupled
from the other two components. Therefore, in two-dimensional Cartesian coordinates in the vertical
xz-plane, we have

∂uα

∂t
+ uα

∂uα

∂x
+ wα

∂uα

∂z
= − 1

�αo

∂pα

∂x
+ να∇2uα − �α,elBy

�αo

wα +
�α,el

�αo

Ex, (21)

and
∂wα

∂t
+ uα

∂wα

∂x
+ wα

∂wα

∂z
= − 1

�αo

∂pα

∂x
− �α

ρ̄α
g + να∇2wα +

�α,elBy

�αo

uα +
�α,el

�αo

Ez, (22)

where the components of the electric field vector Ex and Ez are given by Eq. (15), and the electric
charge density �α,el is given by Eq. (17). να = μα

�αo
is the plasma kinematic viscosity, and �α0 is a

constant reference density.
In the ionospheric F region, Tα varies slowly between 1000 and 1500 Kelvin with altitude z and the

magnetic storm intensity [33]. Therefore, we are justified to use the Boussinesq approximation [28]. We
take into consideration density variations in the term involving the buoyancy force in the momentum
Equation (22), i.e., the term multiplied by the acceleration due to gravity g [28]. The vertical
gradient dρ̄(z)/dz is also considered to be small compared with the density ρ̄(z) so that terms in
the vertical momentum equation that are proportional to the ratio (dρ̄(z)/dz)/ρ̄(z) can be neglected in
the streamfunction-vorticity formulation. We express the background plasma mean flow density as

ρ̄α(z) = ρα0 e
−(z−z1)/Hi , (23)

where Hi ≈ k/(mαg)Tα is the ionospheric scale height; k = 1.38 · 10−23J · K−1 is Boltzmann constant;
mα is the mass of the α-species; as before, Tα is their temperature; and g is the magnitude of the
acceleration due to gravity. The ionospheric (plasma) buoyancy frequency is thus given by

N2
i = − g

ρ̄α

dρ̄α

dz
=

g

Hi
. (24)

We now combine Eqs. (21) and (22) and obtain the vorticity equation in terms of the
streamfunctions Ψα and the vorticity ∇2Ψα by differentiating Eq. (21) with respect to z and Eq. (22)
with respect x and subtracting one equation from another to eliminate the pressure terms. This gives

∇2Ψαt − Ψαz∇2Ψαx + Ψαx∇2Ψαz + g(ρ̄α)−1�αx − να∇4Ψα

− (�α0)
−1

[
(�α,elBy)xΨαz − (�α,elBy)zΨαx − (�α,elEx)z + (�α,elEz)x

]
= 0. (25)

The energy Equation (3) is written in terms of the streamfunction Ψα and the plasma density �α as

�αt − Ψαz�αx + Ψαx�αz − Tα∇2�α = − κα

Cp,α
∇ · (E × H). (26)

We perform a numerical study based on a nondimensional mathematical model consisting of
the vorticity Equation (25) and the energy Equation (26). Parameters and variables are made
nondimensional using the typical length scales Lx and Lz in the horizontal and vertical directions,
a typical velocity U , a plasma reference density �α0 , a reference surface charge density ρs, a typical
electric permittivity 〈ε〉, a typical magnetic permeability 〈μ〉, a reference plasma thermal expansion κα

and a reference specific heat capacity at a constant pressure Cp,α. Denoting the dimensional quantities
by asterisks, the corresponding nondimensional quantities are given by:

x =
x∗

Lx
, z =

z∗

Lz
, t =

t∗U
Lx

,Ψα =
Ψ∗

α

ULz
, �α =

�∗α
�α0

, ρ̄α =
ρ̄∗α
�α0

, �α,el =
�∗α,el

�α,el0

, ηe = Lxη
∗
e , ηv = Lzη

∗
v ,

g =
Lzg

∗

U2
, να =

Lxν
∗
α

UL2
z

,Tα =
LxT ∗

α

ULz
, By =

�α,el0LzB
∗
y

U
,Ex =

�α,el0LxE
∗
x

U2
and Ez =

�α,el0LzE
∗
z

U2
. (27)
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In nondimensional form, Eqs. (25) and (26) respectively become

∇2Ψαt − Ψαz∇2Ψαx + Ψαx∇2Ψαz + g(ρ̄α)−1�αx − να∇4Ψα

−(�α,elBy)xΨαz + (�α,elBy)zΨαx + (�α,elEx)z − (�α,elEz)x = 0. (28)

and
�αt − Ψαz�αx + Ψαx�αz − Tα∇2�α = −∇ · (E ×H), (29)

where the nondimensional Laplacian and gradient operators are respectively ∇2 = δ ∂2

∂x2 + ∂2

∂z2 and
∇ = x̂

√
δ ∂

∂x + ẑ ∂
∂z , δ = L2

z/L
2
x is the horizontal to vertical aspect ratio.

The vertical length scale Lz has to be of the same order of magnitude as the scale height of
the ionosphere Hi in order for the Boussinesq approximation to be valid, while the magnitude of the
horizontal length scale Lx is of the same order as that of the horizontal extent of the wave source.
This implies Lz � Lx, and thus the aspect ratio can be considered as a small parameter in the
nonedimensional mathematical model. Thus, a small aspect ratio is required in order to simulate long
waves (0 < δ � 1). Indeed, our mathematical model can be used to simulate ionospheric disturbances
with longer horizontal wavelength (MSTIDs and LSTIDs) than atmospheric gravity waves.

2.2. Stochastic Modelling: The Ionosphere as a Weakly-Random Time-Dependent Linear
Isotropic Medium

In a weakly-random time-dependent isotropic medium, we express the permittivity ε(t) and the
permeability μ(t) as

ε(t) = 〈ε〉 + Δε(t) and μ(t) = 〈μ〉 + Δμ(t), (30)

where Δε(t) and Δμ(t) are independent Gaussian random variables with mean zero [32], 〈ε〉 and 〈μ〉
are the averages of the permittivity and permeability respectively, and Δε(t) � 〈ε〉 and Δμ(t) � 〈μ〉.
In that case, the asymptotic approximation (1 + a)θ ∼ 1 + θa which is valid when a� 1 can be used to
obtain

1
ε(t)

=
1

〈ε〉 + Δε(t)
∼ 1

〈ε〉

[
1 − Δε(t)

〈ε〉

]
(31)

and
1
μ(t)

=
1

〈μ〉 + Δμ(t)
∼ 1

〈μ〉

[
1 − Δμ(t)

〈μ〉

]
. (32)

Therefore, ∫
1
ε(τ)

dτ ∼ t

〈ε〉 . (33)

Next, substituting Eq. (31) in Eq. (15), we obtain the nondimensional electric field vector

E(x, z, t) = x̂Ex(x, z, t) + ẑEz(x, z, t)

∼ x̂e
√

δηe(z−z2) sin (ηex)
[
1 − Δε(t)

〈ε〉

]
+ ẑe

√
δηv(z−z2) cos (ηvx)

[
1 − Δε(t)

〈ε〉

]
. (34)

Substituting Eq. (32) in Eq. (18) gives the nondimensional magnetic flux density

B(x, z, t) = ŷBy ∼ −ŷ f(t)
[
ηee

√
δηe(z−z2) sin (ηex) + ηve

√
δηv(z−z2) sin (ηvx)

]
t. (35)

The magnetic flux density is indeed linear in time. Thus, using Faraday’s law of induction, we should
obtain a constant electromotive force (voltage), showing that the ionosphere acts as a direct current
dynamo [22].

Using (9), we obtain the nondimensional magnetic field vector

H(x, z, t) =
B(x, z, t)
μ(t)

= ŷHy ∼ −ŷ f(t) t
[
ηee

√
δηe(z−z2) sin (ηex) + ηve

√
δηv(z−z2) sin (ηvx)

] [
1 − Δμ(t)

〈μ〉

]
,

(36)
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and from Eq. (17), we obtain the nondimensional electric charge density

�α,el(x, z, t) = f(t)
[
ηee

√
δηe(z−z2) cos (ηex) + ηve

√
δηv(z−z2) cos (ηvx)

]
. (37)

The vorticity Equation (28) can thus be rewritten as

∇2Ψαt − Ψαz∇2Ψαx + Ψαx∇2Ψαz + g(ρ̄α)−1�αx − να∇4Ψα

−Γ1(x, z, t)Ψαz + Γ2(x, z, t)Ψαx + Γ3(x, z, t)
[
1 − Δε(t)

〈ε〉

]
= 0, (38)

where Γ1(x, z, t), Γ2(x, z, t) and Γ3(x, z) are given respectively by
Γ1(x, z, t) =[�α,el(x, z)By(x, z, t)]x

= − tf(t)
{√

δ
[
η3

ee
2
√

δηe(z−z2) cos (2ηex) + η3
ve

2
√

δηv(z−z2) cos (2ηvx)
]

+
ηeηv

2
e
√

δ(ηe+ηv)(z−z2) [(1+δ)(ηe+ηv) cos((ηe+ηv)x)+(1−δ)(ηv−ηe) cos((ηv − ηe)x)]
}
,

(39)

Γ2(x, z, t) = [�α,el(x, z)By(x, z, t)]z

= −tf(t)
{
δ
[
η3

ee
2
√

δηe(z−z2) sin (2ηex) + η3
ve

2
√

δηv(z−z2) sin (2ηvx)
]

+

√
δηeηv(ηe + ηv)

2
e
√

δ(ηe+ηv)(z−z2) [(1 + δ) sin ((ηe + ηv)x) + (1 − δ) sin ((ηv − ηe)x)]
}
(40)

and
Γ3(x, z, t) = (�α,elEx)z − (�α,elEz)x

=
√
δf(t)

[
η2

ee
2
√

δηe(z−z2) sin (2ηex) − η2
ve

2
√

δηv(z−z2) sin (2ηvx)
]

+
δηv(ηv + ηe)

2
e
√

δ(ηe+ηv)(z−z2)[sin ((ηv + ηe)x) + sin ((ηv − ηe)x)]

− ηe

2
e
√

δ(ηe+ηv)(z−z2)[(ηv + ηe) sin ((ηv + ηe)x) + (ηe − ηv) sin ((ηe − ηv)x)]. (41)

Using the fact that Δε(t) is a random variable with mean zero and Δε(0) = 0, Δε(t)/〈ε〉 can be written
as σEẆE(t) in Eq. (38) where ẆE(t) is a Wiener process, and σE is a small constant [21, 22]. Hence,
the vorticity Equation (38) becomes

∇2Ψαt − Ψαz∇2Ψαx + Ψαx∇2Ψαz + g(ρ̄α)−1�αx − να∇4Ψα

−Γ1(x, z, t)Ψαz + Γ2(x, z, t)Ψαx = −Γ3(x, z, t) + σEΓ3(x, z, t)ẆE(t), (42)
where the last two terms on the left hand side of Eq. (42) represent the magnetohydrodynamic effects,
while the terms on right hand side of Eq. (42) represent the electrohydrodynamic effects.

Before reformulating the energy Equation (29), let us recall the conservation of the electromagnetic
energy (or Poynting Theorem) [4]

−∇ · (E × H) =
∂EEM

∂t
+ E · J =

[
E · ∂D

∂t
+ H · ∂B

∂t

]
+ E · J, (43)

where ∂EEM
∂t = E · ∂D

∂t + H · ∂B
∂t is the electromagnetic energy density rate; E · ∂D

∂t is the electric energy
density rate; H · ∂B

∂t is the magnetic energy density rate; and E · J is the energy (in form of heat or
Joule heating) dissipating rate density. Our study focuses on disturbances generated via Lorentz force,
the Joule heating E · J will therefore be omitted in our mathematical model.

We note that the electric energy density rate is zero, E · ∂D
∂t = 0 since, according to Eq. (16),

∂D
∂t = 0. In that case, in the numerical modelling of electrohydrodynamic disturbances (EHD), the
energy Equation (29) reduces to

�αt − Ψαz�αx + Ψαx�αz − Tα∇2�α = 0, (44)
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which is the same as the energy equation associated to internal gravity waves in the neutral (lower)
atmosphere [29]. In the numerical modelling of magnetohydrodynamic (MHD) disturbances, on the
other hand, the divergence of the Poynting vector ∇ · (E × H) (or the electromagnetic energy rate per
unit of volume) is thus given by

∇ · (E×H) = −∂EEM

∂t
= −H · ∂B

∂t

∼ − tf(t)
2

{
δη2

ee
2
√

δηe(z−z2) [1 − cos(2ηex)] + η2
ve

2
√

δηv(z−z2) [1 − cos(2ηvx)]

+ 2
√
δηvηee

√
δ(ηv+ηe)(z−z2) [cos((ηv − ηe)x) − cos((ηv + ηe)x)]

}[
1−Δε(t)

〈ε〉

] [
1 − Δμ(t)

〈μ〉

]
.

(45)

Next, substituting Eq. (45) into the energy Equation (29) and neglecting the term of order
O [(Δε(t)/〈ε〉) (Δμ(t)/〈μ〉)], the energy equation can thus be written as

�αt − Ψαz�αx + Ψαx�αz − κα∇2�α = Γ4(x, z, t)
[
1 − Δε(t)

〈ε〉 − Δμ(t)
〈μ〉

]
, (46)

where

Γ4(x, z, t) ∼
tf(t)

2

{
δη2

ee
2
√

δηe(z−z2) [1 − cos(2ηex)] + η2
ve

2
√

δηv(z−z2) [1 − cos(2ηvx)]

+ 2
√
δηvηee

√
δ(ηv+ηe)(z−z2) [cos((ηv − ηe)x) − cos((ηv + ηe)x)]

}
. (47)

We write Δμ(t)/〈μ〉 as σHẆH(t) where ẆH(t) is a Wiener process, and σH is a small constant. This
gives the stochastic energy equation

�αt − Ψαz�αx + Ψαx�αz − Tα∇2�α = Γ4(x, z, t) − Γ4(x, z, t)[σEẆE(t) + σHẆH(t)]. (48)

3. NUMERICAL IMPLEMENTATION

In this section, we describe our numerical model. It is obtained using a procedure similar to that in [20].
The numerical model consists of the nondimensional vorticity Equation (42), and the nondimensional
energy Equation (48), where each dependent variable is defined as a sum of an initial mean part and a
time-dependent perturbation part (or wave).

We write

Ψα(x, z, t) = ψ̄α(z) + εψα(x, z, t) and �α(x, z, t) = ρ̄α(z) + ερα(x, z, t). (49)

where ε = LzU
ϕ � 1 and ϕ is the dimensional amplitude of the wave at the source, and as before, Lz is

the vertical length scale while U is a typical velocity scale. Substituting Eq. (49) into Eqs. (42) and (48),
we obtain

ζαt + ūαζαx − ū
′′
αψαx + ε(ψαxζαz − ψαzζαx) + g(ρ̄α)−1�αx − να∇2ζα

−Γ1(x, z, t)(−ε−1ūα + ψαz ) + Γ2(x, z, t)ψαx = −Γ3(x, z, t) + σEΓ3(x, z, t)ẆE(t), (50)

ζα = ∇2ψα (51)

and

ραt +ūαραx +ρ̄
′
αψαx +ε(ψαxραz−ψαzραx)−Tα∇2ρα = Γ4(x, z, t)−Γ4(x, z, t)[σEẆE(t)+σHẆH(t)], (52)

where the superscript prime indicates a derivative with respect to z.
The small parameter ε characterizes the nonlinearities due to wave-wave interactions. In the present

study, we examine the nonlinear interactions between the electromagnetic field and the waves and



Progress In Electromagnetics Research B, Vol. 86, 2020 47

consider a configuration in which the parameter ε is small enough that the nonlinear terms (representing
the nonlinear wave-wave interactions) that multiplies ε can be neglected.

We solve Eqs. (50)–(52) on a rectangular domain in the vertical plane defined by 0 ≤ x ≤ 2π and
z1 ≤ z ≤ z2 subject to the initial conditions

ψα(x, z, 0) = ζα(x, z, 0) = ρα(x, z, 0) = 0 (53)

and the boundary conditions,

ψα(x, z1, t) = ζα(x, z1, t) = ρα(x, z1, t) = 0, (54)

and
ψα(x, z2, t) = ζα(x, z2, t) = ρα(x, z2, t) = 0. (55)

In the simulations, we numerically solve Eq. (50)–(55) using a WCE-based numerical method as
described in [20, 21]. This method effectively transforms a stochastic initial boundary value problem into
a deterministic one by separating the random effects from the deterministic effects. The deterministic
problem is then solved using an appropriate classical numerical method. Here, we use the predictor-
corrector method used in [21, 23], which uses the second-order Adams-Bashforth as a predictor scheme
and the second-order Adams-Moulton scheme as a corrector scheme. This technique is stable and
relatively large time and large space increments can be used while the magnitude of errors remains
small [21, 23].

We numerically simulate the electrohydrodynamic disturbances (EHD) generated by the effects due
the electric field and the magnetohydrodynamic disturbances (MHD) generated by the effects due to
the magnetic field. In the simulations of EHD interactions, the terms representing the effects due to the
magnetic fields are set to zero in the plasma vorticity Equation (50) and in the energy Equation (52)
(Γ1 = Γ2 = Γ4 = 0), while the terms representing the electric field effects are nonzero (Γ3 �= 0). In
the simulations of MHD interactions, the terms representing the effects due to the magnetic field are
nonzero in the plasma vorticity Equation (50) and in the energy Equation (52) (Γ1 �= 0, Γ2 �= 0 and
Γ4 �= 0), while the terms representing the electric field effects are neglected (Γ3 = 0).

4. THE RESULTS OF THE NUMERICAL SIMULATIONS

Simulations are performed over the nondimensional time interval from t = 0 to t = 20 on a rectangular
domain given by 0 < x < 2π and 40 < z < 80. Following [21], we can deduce that the numerical
errors will be order 10−2 at t = 20. In the numerical simulations, the nondimensional acceleration due
to gravity is set to g = 9.8 and the buoyancy frequency to N = 1 so that using Eq. (24) gives the
ionospheric height scale Hi = 9.8. The kinematic viscosity is set to να = 10−6. The mean flow velocity
is ūα = 4. We first perform numerical simulations with the aspect ratio δ = 0.2 and then with δ = 0.1 to
simulate long waves. The choice of these parameters will be clear once our results are dimensionalized
(see Section 4.3).

We also ensure that Δε(t)/〈ε〉 = δEWE(t) and Δμ(t)/〈μ〉 = δHWH(t) are indeed smaller than 1
(Δε(t)/〈ε〉 � 1 and Δμ(t)/〈μ〉 � 1) for all t. To do so, we generate the random vectors of WE values
and WH values, and respectively identify their maximum values over the time interval and thus set
δE = 0.01/|max{WE}| and δH = 0.01/|max{WH}|, see for example [22]. Therefore, the amplitude of
the random fluctuations is small relative to the deterministic part (the mean), and hence solutions are
almost deterministic.

4.1. EHD: Electrohydrodynamic Effects and Generation of Small Scale TIDs
(Γ1 = Γ2 = Γ4 = 0, Γ3 �= 0)

In the numerical simulations of EHD disturbances, Γ1 = Γ2 = 0 in Eq. (50) and Γ4 = 0 in Eq. (52). We
set ηe = 2η and ηv = η so that

Γ3(x, z, t) = η2f(t)
{

0.45e0.9η(z−z2) sin (2ηx) − 1.8e1.8η(z−z2) sin (4ηx)

−e1.35η(z−z2)[0.15 sin (3ηx) + 0.85 sin (ηx)]
}
, (56)
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and, according to (56), the electric field generates the horizontal wavenumbers η, 2η, 3η and 4η. We also
set 〈ε〉 = −1.5 as in [22], and η = 1. In the switch-off function f(t), t0 = 5.

We can approximate the nondimensional mean horizontal wavenumber of the EHD perturbations
at early time as 〈kx〉 =

∑
i |ki||〈ψ̂αi〉|/

∑
i |〈ψ̂αi〉|, where as before, |〈ψ̂αi〉| is an absolute value of the

weight corresponding to the wavenumber ki on Figure 4(a), and thus obtain 〈kx〉 ≈ 1.63 so that
the nondimensional horizontal wavelength at early time is approximately 〈λx〉 = 2π/〈kx〉 = 1.23π.
According to Figure 4(b), on the other hand, the nondimensional horizontal wavenumber of the EHD
disturbances at a later time, t ≥ 10, is 〈kx〉 ≈ 1, and so 〈λx〉 = 2π/〈kx〉 = 2π as observed in Figure 1(b).
This demonstrates that EHD disturbances have almost doubled their wavelength at t = 10, which then
remained constant after t = 10 as in the case of linear atmospheric GWs [29].
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Figure 1. EHD disturbances: contour plots of the mean horizontal (component) velocity perturbation
〈−ψαz(x, z, t)〉, (a) at t = 1 and (b) at t = 20. The overall wavenumber of the perturbations in (a) is
greater than that of the perturbations in (b). The vertical to horizontal aspect ratio is δ = 0.2.
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Figure 2. EHD disturbances: contour plots of the mean vertical (component) velocity perturbations
〈ψαx(x, z, t)〉, (a) at t = 1 and (b) at t = 20. The overall wavenumber of the perturbations in (a) is
greater than that of the perturbations in (b). The horizontal to vertical aspect ratio is δ = 0.2.



Progress In Electromagnetics Research B, Vol. 86, 2020 49

0 5 10 15 20
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0 5 10 15 20
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

< ���z  

t

<��x  

t

>>

(a) (b)

Figure 3. EHD disturbances: the mean amplitude of the wave perturbations as a function of time t in
the center of our rectagular domain. In (a) the mean amplitude of the perturbations of the horizontal
component of the velocity 〈−ψαz(x, z, t)〉, and (b) the mean amplitude of the perturbations of the
vertical component of the velocity 〈ψαx(x, z, t)〉. The horizontal to vertical aspect ratio is δ = 0.2.
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Figure 4. EHD disturbances: Fourier spectrum of the mean amplitude of the wave streamfunction
〈ψ̂α(k, z, t)〉 as a function of the wavenumber k at height z = 60, and at the time, (a) t = 1 and (b)
t = 20. The horizontal to vertical aspect ratio is δ = 0.2.

4.2. MHD: Magnetohydrodynamic Effects and Generation of Medium and Large Scale
TIDs (Γ1 �= 0, Γ2 �= 0, Γ4 �= 0 Γ3 = 0)

In the numerical simulations of MHD waves, Γ3 = 0, while Γ1 �= 0 and Γ2 �= 0 in (48). We also consider
that ηe = 2η and ηv = η as in Section 4.1. This gives

Γ1(x, z, t) = −η3t
{
3.6 e1.8η(z−z2) cos (4ηx) + 0.45 e0.9η(z−z2) cos (2ηx)

+e1.35η(z−z2) [3.6 cos (3ηx) − 0.8 cos (ηx)]
}
, (57)

Γ2(x, z, t) = −η3t
{
1.6 e1.8η(z−z2) sin (4ηx) + 0.2 e0.9η(z−z2) sin (2ηx)

+1.35 e1.35η(z−z2) [1.2 sin (3ηx) − 0.8 sin (ηx)]
}

(58)
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Figure 5. MHD disturbances: contour plots of the mean horizontal (component) velocity perturbation
〈−ψαz(x, z, t)〉, (a) at t = 1 and (b) at t = 20. The overall wavenumber of the perturbations in (a) is
greater than that of the perturbations in (b) as in Figure 1. The horizontal to vertical aspect ratio is
δ = 0.2.
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Figure 6. MHD disturbances: contour plots of the mean vertical (component) velocity perturbation
〈ψαx(x, z, t)〉, (a) at t = 1 and (b) at t = 20. The overall wavenumber of the perturbations in (a) is
greater than that of the perturbations in (b) as in Figure 2. The horizontal to vertical aspect ratio is
δ = 0.2.

and

Γ4(x, z, t) = η2f(t) t
{
0.4e1.8η(z−z2)[1 − cos(4ηx)] + 0.5 e0.9η(z−z2)[1 − cos(2ηx)]

+0.9 e1.35η(z−z2) [cos(ηx) − cos(3ηx)]
}
. (59)

In contrast to EHD waves, we expect that MHD waves develop the zero wavenumber harmonic
corresponding to the mean flow evolution as the result of nonlinear interactions between waves and the
ionosphere via the Lorentz force as seen in Figure 8 (the nonlinear terms involving Γ1 and Γ2). This
shows that there is a transfer of momentum flux to the mean flow.

The nondimensional mean horizontal wavenumber of MHD perturbations can be approximated
as 〈kx〉 =

∑
i |ki||〈ψ̂αi〉|/

∑
i |〈ψ̂αi〉|, where as before, |〈ψ̂αi〉| is the absolute value of the weight
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Figure 7. MHD disturbances: the mean amplitude of wave perturbations as a function of time t near
the upper boundary of our rectagular domain. In (a) the mean amplitude of the perturbations of the
horizonal component of the velocity 〈−ψαz(x, z, t)〉, and (b) the mean amplitude of the perturbations of
the vertical component of the velocity 〈ψαx(x, z, t)〉. The horizontal to vertical aspect ratio is δ = 0.2.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ˆ  

k

ˆ  

k

< �� <�� >>

(a) (b)

Figure 8. MHD disturbances: Fourier spectrum of the mean amplitude of the wave streamfunction
〈ψ̂α(k, z, t)〉 as a function of the wavenumber k at height z = 60, and at the time, (a) t = 1 and (b)
t = 20. The horizontal to vertical aspect ratio is δ = 0.2.

corresponding to the wavenumber ki. Using the data that we have used to obtain Figures 8(a) and
8(b), we thus obtain 〈kx〉 ≈ 1.41 at early time, while 〈kx〉 ≈ 0.47 at a later time. This gives the overall
wavelength 〈λx〉 ≈ 2π/〈kx〉 ≈ 1.41π and 〈λx〉 ≈ 2π/〈kx〉 = 4.25π at early and later time respectively
as may be observed in Figures 5 and 6 showing that at t = 20, MHD disturbances have tripled their
wavelengths.

Our results show that MHD disturbances have longer wavelengths than EHD disturbances. Further,
when comparing Figure 7 against Figure 3, the amplitude of EHD disturbances is smaller than that
of MHD showing that the effects due to the electric field are weaker compared to those due to the
magnetic field. Therefore, numerical simulations of the combined electric and magnetic effects should
not produce any new result.
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4.2.1. Configuration Where the Horizontal to Vertical Aspect Ratio δ = 0.1

In addition, we also performed numerical simulations, where the horizontal to vertical aspect ratio
δ = 0.1, in order to simulate longer waves than when the aspect ratio δ = 0.2. We obtained that
EHD disturbances have the horizontal nondimensional 〈λx〉 ≈ 1.44π rather than 〈λx〉 ≈ 1.23π as
obtained in the configuration where δ = 0.2. The nondimesional wavelength did increase and reached
the nondimensional value 〈λx〉 ≈ 2π at a later time and then remained constant as in the linear
atmospheric gravity wave case as before.

We have, as well, simulated MHD perturbations in a configuration where δ = 0.1. We found that
MHD disturbances have the nondimensional horizontal wavelength 〈λx〉 ≈ 1.50π at early time and
reached 〈λx〉 ≈ 5.62π at a later time, showing that the horizontal wavelength are longer than in the
configuration where δ = 0.2. The nondimensional horizontal wavelength of the MHD disturbances have
quadrupled at t = 20 rather than triple as in the configuration where δ = 0.2. In the next section, we
examine the corresponding dimensional quantities.

4.3. Dimensional Analysis

We consider that the α-species in the ionospheric F region are predominantly oxygen ions, and their
average temperature is around Tα ≈ 1100 K [33]. Then the ionospheric scale height is approximately
H∗

i ≈ k/(mαg)Tα = 29.2 km. The value of the nondimensional height scale in the numerical simulations
is Hi = 9.8, and so, the vertical length scale Lz = H∗

i /Hi = 3.0 km. Thus the wave source, or the upper
boundary of our rectangular domain, is in the ionospheric F region at 238 km above the planet Earth,
while the lower boundary is in the ionospheric F region at 119 km above the planet Earth.

4.3.1. Configuration Where the Horizontal to Vertical Aspect Ratio δ = 0.2: Small Scale Travelling
Ionospheric Disturbances (SSTDIs)

In the configuration where the horizontal to vertical aspect ratio δ = 0.2, the horizontal length
scale Lx = Lz/

√
δ = 6.7 km. This implies that at early time the EHD disturbance wavelength is

〈λ∗x〉 = 〈λx〉 · Lx ≈ 1.23π · Lx = 26.0 km, while at a later time, 〈λ∗x〉 = 〈λx〉 · Lx ≈ 2π · Lx = 42.1 km.
Therefore, 1.50 · 104 m−1 ≤ 〈k∗x〉 ≤ 2.42 · 10−4 m−1. In the numerical simulations, the acceleration
due gravity g = 9.8, so its dimensional scale is g∗/g = (9.8/9.8)m sec−2 = 1m sec−2. This implies
that the velocity scale U =

√
Lz g∗/g = 54.8m sec−1, and so the dimensional mean flow velocity

ū∗α = ūα U = 4 · 54.8m sec−1 = 219.2m sec−1.
Using Eq. (24), the buoyancy frequency is approximately Ni =

√
g∗/H∗

i = 0.02 sec−1. Therefore,
following the linear stability theory of atmospheric GWs [29], it can readily be shown that if the
perturbations generated as a result of the buoyancy effects are travelling (or are waves), then their mean
vertical wavenumber 〈m∗〉 should satisfy 〈m∗〉2 = N∗2

i /ū∗2

α − 〈k∗〉2 > 0. So, their cut-off horizontal
wavenumber has to satisfy 〈k∗xc〉 < N∗

i /ū
∗
α = (0.02/219.2)m−1 = 0.91 · 10−4 m−1. Therefore, EHD

perturbations simulated in this study are not travelling since their mean horizontal wavenumber is
greater than the cut off horizontal wavenumber, 〈k∗x〉 > 〈k∗xc

〉 = 0.91 · 10−4 m−1. This implies that the
wavelength of travelling disturbances have to be longer than 〈λx∗

c
〉 = 2π/〈k∗xc〉 = 69.0 km.

The time scale is Lx/U , and so this suggests that EHD disturbances took the time t∗ = (Lx/U)t ≈
41min to double their wavelength, while MHD disturbances have tripled their wavelength.

MHD perturbations simulated in this study have a mean horizontal wavenumber 〈k∗x〉 ≈ 2.10 ·
10−4 m−1 at early time, while at a later time, their mean horizontal wavenumber is 〈k∗x〉 ≈ 0.70·10−4 m−1.
In this case at a later time, 〈λ∗x〉 ≈ 89.6 km, showing that our simulated perturbations are small scale
disturbances. At a certain time, the wavenumber of the MHD perturbations became small than the
cut-off wavenumber, and as a result, MHD perturbations became travelling ionospheric disturbances
(SSTIDs). This is in agreement with observations that have shown that smaller spatial and shorter
temporal scale disturbances exist in the ionosphere, and that not all disturbances seen are in fact
travelling, see for example Harris et al. [9].
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4.3.2. Configuration with the Horizontal to Vertical Aspect Ratio δ = 0.1: Medium Scale Travelling
Ionospheric Disturbances (MSTIDs)

The goal here is to show that magnetohydrodynamic effects are mainly responsible for medium
scale travelling ionospheric disturbances (MSTIDs). Under similar conditions (same pressure and
temperature), we can simulate MSTIDs. To do so, we set the horizontal to vertical aspect ratio
δ = 0.1. In that case, the horizontal length scale Lx = Lz/

√
δ = 9.5 km. Therefore, at early time,

EHD disturbances have an overall wavelength 〈λ∗x〉 ≈ 42.9 km, while at a later time, 〈λ∗x〉 ≈ 59.6 km.
So, 1.05 · 104 m−1 ≤ 〈k∗x〉 ≤ 1.46 · 10−4 m−1. The velocity scale U =

√
Lz g∗/g = 97.5m sec−1, and so

the dimensional mean flow velocity ū∗α = ūα U = 390.0m sec−1.
The buoyancy frequency, as before, is approximately Ni =

√
g∗/H∗

i = 0.02 sec−1. In that case, the
cut-off mean horizontal wavenumber for travelling disturbances is 〈k∗xc〉 = N∗

i /ū
∗
α = (0.02/390)m−1 =

0.5 · 10−4 m−1 corresponding to the cut-off mean horizontal wavelength 〈λ∗x〉 = 122.5 km, showing
that travelling ionospheric disturbances, in this case, should be MSTIDs, see for example [27, 31].
However, EHD disturbances are small scale disturbances and are non-travelling [9] because their overall
wavenumber is greater than the cut-off wavenumber k∗xc.

MHD perturbations, on the other hand, have the dimensional mean horizontal wavelength
〈λ∗x〉 = 〈λx〉 · Lx ≈ 44.8 km at early time, and 〈λ∗x〉 = 〈λx〉 · Lx ≈ 167.7 km at later time. This
demonstrates our simulated travelling ionospheric disturbances are MSTIDs travelling at the speed
ū∗α = 390.0m sec−1, see for example [27, 31]. Therefore, magnetohydrodynamic effects are responsible
for travelling ionospheric disturbances of auroral origin.

The time scale is Lx/U , this suggests that MHD disturbances took the time t∗ = (Lx/U)t ≈ 32min
to quadruple their wavelength.

5. GENERAL DISCUSSION AND CONCLUSIONS

In magnetohydrodynamic (MHD) modeling, the ideal magnetohydrodynamic assumption is commonly
used [8, 15]. The substitution E = −u × B is used for the electric field E in Maxwell’s equations
and the energy equations [8, 15]. However, this implies that E + u × B = 0 in the momentum
Equation (1). Hence, the momentum equation is reduced to Navier-Stokes equation. As a result of
the ideal magnetohydrodynamic assumption, there is no magnetohydrodynamic problem to solve.

The electric field E is often neglected while the term u × B is kept in the momentum equation in
order to avoid this. However, this is in contradiction with the substitution E = −u × B in Maxwell’s
and energy equations. Hence, there are inconsistencies in these simplifications. The equations based on
these simplifications are what are generally called MHD equations.

To avoid the inconsistencies in the standard MHD formulation, we considered the ionosphere as an
isotropic medium with weakly-random fluctuations in time as in [22]. Following [22], we obtained the
expressions for E and B for a configuration corresponding to an electric dynamo which we substituted
in the momentum Equation (2) and energy Equation (3). We then proceeded as in [20], wrote the later
equations in streamfunction-vorticity formulation and solved the resulting equations in a configuration
where the buoyancy and electrodynamic effects play the main role to generate ionospheric disturbances
as has been suggested by [11, 13].

We carried out numerical simulations (see procedure in [20, 21]) and separately investigated the
electrohdrodynamic (EHD) and magnetohydrodynamic (MHD) effects. A simple two-dimensional
mathematical model for internal gravity waves propagating in the lower atmosphere [29] consisting
of a rectangular domain in a plane perpendicular to the surface of the earth with Cartesian coordinates
has been used and allowed us to obtain some of the characteristics of the ionospheric disturbances, e.g.,
wavenumber or wavelength and speed.

Our results suggest that EHD perturbations are small scale non-travelling ionspheric disturbances
with an average horizontal wavelength shorter than 100 km. Non-travelling small scale ionospheric
disturbances are often observed in the upper atmosphere (see for example [9]), and thus, our study
suggests that they are mainly generated by electrohydrodynamic (EHD) effects.

As a result of the magnetohydrodynamic (MHD) effects, we were able to simulate small scale
travelling ionspheric disturbances (SSTIDs) with an average wavelength of order 100 km propagating
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with a speed of 219 m sec−1, and medium scale treavelling disturbances (MSTIDs) with an average
wavelength of order 170 km propagating at a speed of 390 m sec−1 as may be observed in the ionosphere,
see for example [9, 27, 31].

Our simulation results have shown that the overall wavelength of the MHD disturbances quadrupled
in about a half an hour (30 min) as a result of nonlinear interactions between waves and the ionosphere
via the Lorentz force. We should expect that their wavelength will further elongate if simulations
are continued over a prolonged period of time so that we obtain large scale travelling ionospheric
disturbances (LSTIDs) [7, 27, 31]. However, we have stopped our numerical simulations early to avoid
wave reflections at the out flow (lower) boundary which would significantly affect our simulation results.
To avoid wave reflections, we should implement a time-dependent radiation (boundary) condition at
the lower (wave exit) boundary as in [23].

Our investigation suggests that travelling ionospheric disturbances (SSTIDs, MSTIDs and LSTIDs)
of auroral origin are generated by magnetohydrodynamic (MHD) effects.

APPENDIX A. THE CONTINUITY EQUATION AND THE ENERGY EQUATION
UNDER THE BOUSSINESQ APPROXIMATION

Taking into account the electromagnetic energy, the equation of conservation of energy for the α-species
(or plasma) takes the form

�α
Deα
Dt

= −∇ · qα − pα∇ · uα + ωα + ∇ · (E × H), (A1)

where �α
Deα
Dt represents the internal energy of the α-species per unit of volume and per unit of time,

ωα is the viscous dissipation of the α-species per unit of volume and per unit of time and qα is the heat
flux vector of the α-species (per unit of area and per unit of time), and as before E×H is the Poynting
vector.

At a constant volume, the energy of the ionospheric plasma (α-species) [28] is eα = CV,α Tα, where
CV,α = (∂eα/∂Tα)V is the specific heat capacity at constant volume V , and the relation between the
pressure pα, the specific mass �α and the temperature Tα is the equation of state pα = Rα�Tα, where
Rα = Cp,α − CV,α, and Cp,α = (∂hα/∂Tα)p is the specific heat capacity at constant pressure and hα is
the enthalpy of the plasma [16].

We assume that �α is large enough so that (Qα − Lα)Mα � �α. This assumption is valid in the
ionospheric F region where the production rate of the α-species Qα and their loss rate Lα are almost
equal, Qα ≈ Lα. In that case, the continuity Equation (2) reduces to

1
�α

D�α

Dt
= −∇ · uα. (A2)

The goal here is to simplify Eq. (A1) using the Boussinesq approximation. The later approximation
is commonly used in the study of geophysical flows, see Spiegel and Veronis [28]. In the governing
equations, the fluid density and temperature are assumed to be constant under the Boussinesq
approximation, except the terms involving the effects due gravity. The following assumptions are made
in the Boussinesq approximation:

(i) The variation of �α (density) in time and space is small enough so that 1
�α

D�α

Dt ≈ 0.

(ii) The fluid is almost incompressible or the density does not change much with the pressure pα, ∂�α

∂pα
.

(iii) The density varies by only a small amount in the vertical direction.
(iv) The fluid viscosity coefficient μα and the thermal conductivity Kα are assumed to be constant and

the viscous dissipation ωα is negligible.

Thus, the continuity Equation (A2) reduces to ∇ · uα = 0 under the Boussinesq approximation
(assumption 1). Even though this is the case, it cannot be justified to neglect the term pα∇ · uα in the
Equation (A1) because although the term ∇ · uα is small, the pressure can be large and the product
pα∇ ·uα can be of the same order of magnitude as the other terms in Eq. (A1). Therefore, we keep the
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term pα∇ · uα in Eq. (A1) and rewrite it in terms of �α and Tα using the continuity Equation (2) and
the equation of state of a perfect gas, pα = Rα�αTα.

Next, multiplying both sides of Equation (A2) by the pressure pα and assuming that the plasma is
incompressible yields

−pα∇ · uα =
pα

�α

D�α

Dt
=
pα

�α

[(
∂�α

∂Tα

)
DTα

Dt
+

(
∂�α

∂pα

)
Dpα

Dt

]
≈ pα

�α

(
∂�α

∂Tα

)
p

DTα

Dt
, (A3)

where, as before, the subscript p denotes differentiation of �α with respect to Tα at constant pressure.
Using the equation of state for a perfect gas, Equation (A3) can be written as,

−pα∇ · uα ≈ pα

�α

(
∂

∂Tα

(
pα

RαTα

))
p

DTα

Dt
=
pα

�α

pα

Rα

(
− 1
T 2

α

)
DTα

Dt
= −Rα�α

DTα

Dt
. (A4)

Substituting (A4) into the Equation (A1), and using eα = CV,α Tα and Rα = Cp,α − CV,α yields

Cp,α �α
DTα

Dt
= −∇ · qα + ωα + ∇ · (E × H), (A5)

According to Fourier’s law of heat conduction, qα = −Kα∇Tα, where Kα is the thermal conductivity.
Moreover, under the Boussinesq approximation, the ratio, for instance, of the magnitude of viscous
dissipation ωα to the term Cp,α �α

DTα
Dt is very small (∼ 10−7) in geophysical flows. This is shown,

using dimensional analysis, in Kundu and Cohen [16], p 120. Therefore, the viscous dissipation term in
Eq. (A5) is negligible and can be dropped. Thus, substituting qα = −Kα∇Tα into Equation (A5), we
obtain

Cp,α �α
DTα

Dt
= −∇ · (−Kα∇Tα) + ∇ · (E × H) = Kα∇2Tα + ∇ · (E ×H). (A6)

Using the incompressibility property (second assumption in the Boussinesq approximation), then
�αTα = �α,oTα,o = constant, where �α,o and Tα,o are some reference density and reference temperature
respectively. A slight change in temperature T ′

α leads to a slight change in density �′α. Writting Tα as
Tα = Tα,o + T ′

α and �α as �α = �α,o + �′α, where �
′
α � �α,o, T

′
α � Tα,o gives

�′αTα,o + �′αT
′
α + �α,oT

′
α = 0. (A7)

Neglecting the term �′αT ′
α which is very small in magnitude compared to the other terms since it is a

product of perturbation quantities, and using the fact that �α − �α,o = �′α and Tα − Tα,o = T ′
α gives

�α = �α,o [1 − κα(Tα − Tα,o)] , (A8)

where κα = 1/Tα,o is the thermal expansion.
Thus, using Eq. (A8), the energy Equation (A6) can be written in terms of the density �α as

D�α

Dt
= Tα∇2�α − κα

Cp,α
∇ · (E × H). (A9)

This equation can be written in terms of the streamfunction Ψα and the density �α as

�αt − Ψαz�αx + Ψαx�αz − Tα∇2�α = − κα

Cp,α
∇ · (E × H), (A10)

where, as before, the subscripts, x, z and t, indicate partial differentiation with respect to x, z, and t,
respectively.
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