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Mask-Constrained Power Synthesis of Large and Arbitrary Arrays
as a Few-Samples Global Optimization

Giada M. Battaglia1, Andrea F. Morabito1, Gino Sorbello2, and Tommaso Isernia1, *

Abstract—With reference to the mask-constrained power synthesis of shaped beams through fixed-
geometry antenna arrays, we elaborate a recently proposed approach and introduce an innovative
effective technique. In particular, the proposed formulation, which can take into account mutual
coupling and mounting platform effects, relies on a nested optimization where the external global
optimization acts on the field’s phase shifts over a minimal number of ‘control points’ located into the
target region whereas the internal optimization acts instead on excitations. As the internal optimization
of the ripple is shown to result in a Convex Programming problem and the external optimization deals
with a reduced number of unknowns, a full control of the shaped beam’s ripple and sidelobe level is
achieved even in the case of arrays having a large size and aimed at generating large-footprint patterns.
Examples involving comparisons with benchmark approaches as well as full-wave simulated realistic
antennas are provided.

1. INTRODUCTION

The optimal synthesis of array antennas plays a key role in many fields of applied electromagnetics
including satellite [1], radar [2], and cellular [3] telecommunications, as well as medical [4], electrical-
energy [5] applications, and many further scenarios [6–22]. Amongst the different possible approaches
to the problem, the ones guaranteeing the best exploitation of the available degrees of freedom (and
hence the most effective use of the antenna resources) are those aiming at a ‘mask-constrained’ power
synthesis. The latter consists in looking for square-amplitude distributions of the field lying between
two arbitrary upper-bound and lower-bound functions [6].

In the case of fixed-geometry arrays (wherein the antenna layout is a-priori assigned while the
elements’ excitations are the only unknowns), the problem has been solved in a globally-optimal fashion
in both cases of pencil [7] and difference [8] beams. In fact, without making any restriction on either
the nature of the field or the excitations distribution or the array’s layout and shape, the synthesis has
been cast as a Convex Programming (CP) or a Linear Programming (LP) problem. By so doing, it
has been also possible to successfully address the ‘optimal compromise’ [9] among sum and difference
patterns as well as the generation of phase-only reconfigurable sum and difference fields for monopulse
radar telecommunications [10].

Unfortunately, quite different circumstances hold true for the synthesis of shaped [11] beams, which
still represents an unsolved canonical problem. In fact, leaving aside the approaches which do not exploit
all the available degrees of freedom (such as the ones looking for pure-real fields [12] or unable to get a full
control of the sidelobes [13]), the problem has been solved in a globally-optimal fashion only in the case
where the sought power pattern is (or can be reduced to) a 1-D trigonometric polynomial. Currently,
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this is indeed possible just for equispaced linear arrays [14], 1-D continuous sources [15], u-v factorable
planar arrays [16], and circularly-symmetric sources and fields [17, 18]. Notably, these capabilities have
also allowed developing interesting solutions for many other cases including, for instance, the isophoric
arrays (see [22] for details concerning this particular architecture). In all the (very many) remaining
instances, e.g., conformal arrangements of elements as well as arrays generating element-dependent
radiation patterns (due to heterogeneity issues or to mutual-coupling and mounting-platform effects),
only sub-optimal solutions seem to be available. In fact, the problem is usually tackled by resorting to a
Global Optimization (GLO) of either the excitations or all the field samples (see for instance [19–21]).
Hence, since in most cases the computational complexity of GLO procedures is expected to exponentially
grow with the number of unknowns [23], it can prevent (in case of arrays composed by a large number
of elements) the actual attainment of the global optimum.

A very recent approach partially overcoming the above difficulties is the one in [24]. In the latter,
the main idea is to reduce the mask-constrained power synthesis of shaped beams to a number of CP
problems by a-priori choosing the field’s phase shifts over a (minimal) [25, 26] number of ‘control points’
which are properly located over the shaped-beam region. The technique led to good results in benchmark
cases (including the synthesis of generic arrays with whatever kind of geometry and completely-arbitrary
element patterns) and showed interesting features such as the capability to determine (if any) a
multiplicity of solutions all corresponding to the desired radiation power pattern. However, since the
field’s phase shifts are explored in an enumerative fashion, the computational burden of that approach
grows very rapidly with the number of control points, so that the computational burden is expected to be
unpractical and/or not effective in case of large-footprint power patterns and large arrays. Moreover, the
sampling of the phase shifts’ space which is needed for enumeration could be inadequate, thus possibly
missing the global optimum.

In order to overcome the above problems, we further elaborate here on our previous approach [24].
In particular, we develop a nested optimization procedure where the external global optimization acts
on the field’s phase shifts over a minimal number of ‘control points’ located into the target region
whereas the internal optimization acts instead on excitations. Then, we show that as long as a given
class of performance parameters (including ripple) is in order, the internal optimization reduces to a
CP problem. Such a circumstance, along with the relatively small number of unknowns involved in the
external optimization, allow a full control of the shaped beam’s ripple and sidelobe level in a number of
cases (involving arrays having a large size and aimed at generating relatively large-footprint patterns)
which cannot be solved in a globally-optimal fashion by the state-of-the-art techniques. In a nutshell, the
proposed method identifies the phases of a few field samples as the actual reason for the non-convexity
(and hence the difficulty) of the problem, and then elaborates on such a circumstance in order to deal
with a global optimization problem having a number of unknowns as small as possible. Comparisons
with [24] and many other methods confirm the interest and the effectiveness of the technique.

In the following, the approach is described in Section 2 while numerical examples involving large
planar arrays and comparisons with several published techniques are shown in Section 3. Conclusions
follow.

2. THE PROPOSED HYBRID APPROACH

In order to introduce the proposed approach, let us consider a region of interest Ω where r is the
spatial variable, and an arbitrary array antenna composed of N generic elements. Also, let Ψn(r)
be the Active Element Pattern (AEP) [27] of the n-th element, which takes into account the possible
heterogeneity amongst the radiating elements as well as mutual coupling and mounting platform effects.
As a consequence, the far-field distribution of the overall array can be written as:

F (r) =
N∑

n=1

InΨn (r) (1)

where In is the excitation of the n-th element. The goal is to find the array excitations generating
a power pattern lying in a given mask [defined by an arbitrary upper-bound function UB(r) plus an
arbitrary lower-bound function LB(r)] and optimising some performance parameter. In order to fix
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ideas, let us suppose we are interested in minimizing the shaped-beam ripple in the region Λ. To this
end, we set the approach’s basic bricks as follows:

i. given the array layout and AEPs, let us sample Λ into L ‘control points’ rΛi, ..., rΛL at the Nyquist
distance [26]†;

ii. let us indicate with ϕi ∈ [−π,+π], i = 1, ..., L, the field phase shift between rΛi and rΛ1, and fix
to 0 the phase value attained by of the field in the point rΛ1 (which acts in the procedure as a
‘reference’ point)‡;

iii. note that the square of the power pattern’s ripple inside the shaped-beam region Λ can be expressed
as:

R (I1, ..., In, ϕ1, ..., ϕL) =
[
P (r) − P (r)

]2 (2)

where P (r) = |F (r)|2 and P (r) = [UB(r) + LB(r)]/2. Therefore, for any fixed L-tuple ϕ1, ..., ϕL, R
is a fourth-order polynomial of the unknowns I1, ..., In. This notwithstanding, we show in Appendix A
that, by a proper choice of the sampling points (and sampling representations), such a function can be
considered to be substantially convex with respect to the field samples (and hence to the excitations,
which linearly depends on them).

On the basis of all the above and by denoting as |F |desired
i the desired value for the field amplitude

at the i-th control point, the overall problem can be conveniently set as:

min
ϕ1, ..., ϕL

{
min

I1, ..., In

(∫
r∈Λ

R(r)dr

)}
(3)

where the internal problem is subject to the following constraints:

R {F (rΛi)} = |F |desired
i cos ϕi i = 1, ..., L (4)

I {F (rΛi)} = |F |desired
i sin ϕi i = 1, ..., L (5)

|F (r)|2 ≤ UB (r) ∀ r ∈ Ω\Λ (6)

P +
√

R ≤ UB (r) ∀ r ∈ Λ (7)

where, by virtue of the definition of P , the constraint (7) also entails that |F (r)|2 ≥ LB(r).
A number of comments are now in order.
Let us first note that, for any fixed value of ϕ1, ..., ϕL, constraints (4)–(5) are equivalent to enforce

|F (rΛi)| = |F |desired
i ∀i, and hence a proper choice of |F |desired

1 , ..., |F |desired
L , and the use of constraints [7],

allows shaping the power pattern inside the region of interest. Also note that one can eventually use
bounds (rather than fixed quantities) for |F |desired

1 , ..., |F |desired
L . At the same time, constraints (6) allow

keeping under control the sidelobes’ behavior outside Λ. Hence, in summary:
• inside the target region Λ, constraints (4) and (5) are used to ensure that the field amplitude attains

a precise value on each of the control points while constraint (7) allows ensuring that its ripple does
not exceed a given threshold;

• outside the target region Λ, constraint (6) allows keeping under control the sidelobes’ behavior.
Notably, constraints (4)–(5) and (6) respectively are linear forms and a positive semi-definite

quadratic form of the excitations. Then, provided R can be considered to be quadratic (which can
be eventually enforced by a denser sampling — see Appendix A), constraints (7) and the objective
function (3) are also convex, so that the overall problem is a CP one, with the inherent advantages in
terms of solutions’ optimality and computational burden. In particular, for any fixed value of ϕ1, ..., ϕL

and |F |desired
1 , ..., |F |desired

L , it admits a single minimum (if any), which is therefore the global optimum.
In Eq. (3) the external minimization will require a GLO tool on a reduced number of unknowns,

whereas the internal minimization can be solved by means of a fast local-optimization. In summary,
the synthesis is conveniently decomposed into two nested parts, i.e., a GLO on L variables and a CP
optimization of the N excitations. It is also worth noting that the cost function (3) can be eventually
† While this criterion will allow avoiding any redundancy, other choices (such as involving the so-called ‘self-truncating’ sampling
series [28] — see also Appendix A) are possible.
‡ This assumption does not entail any lack of generality, as it is simply equivalent to fix the phase reference.
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substituted by other convex cost functions such as for instance the maximum value of R(r) [i.e., using a
minimax criterion on the ripple rather than the one in (3)] or the overall radiated power (which would
optimize directivity) without affecting the CP nature of the overall problem.

The proposed approach exploits the partial convexity§ of the overall synthesis problem with respect
to the excitations in order to reduce the dimensionality of the global optimization problem. In fact,
the GLO algorithm must deal only with the few (auxiliary) variables in which the overall problem is
not convex, i.e., the phase shifts, with a decisive, beneficial effect on both the computational time and
the reliability of the obtained results. In fact, the exploitation of a GLO on just the ‘non-convex part’
of the problem will allow avoiding sub-optimal solutions, i.e., local minima of the objective function.
Moreover, since the required value of L is generally much lower than N , the computational burden of
the proposed synthesis procedure will be lower than the one of any GLO algorithm acting on either
all of the field samples or the array excitations. Finally, possible discretization errors arising in the
enumerative technique [24] are also avoided. As a consequence of all the above, the proposed strategy
is much more effective than the one recently introduced in [24] which, however, was able to identify a
multiplicity of solutions.

In the following Section, we prove the validity of the approach in a number of (benchmark) test
cases of actual interest where the enumerative search exploited in [24] is not adequate (Subsection 3.1)
as well as in the not-trivial case where AEPs (rather than identical isolated element patterns) have to
be considered (Subsection 3.2).

3. NUMERICAL EXAMPLES

In this Section, we report some numerical examples concerning the synthesis of large planar arrays.
In particular, in Subsection 3.1 we provide comparisons with the procedures respectively published
in [14, 29, 30], while in Subsection 3.2 we consider a realistic array of truncated waveguides with full-
wave simulated AEPs.

In order to deal with a number of unknown phase shifts as small as possible, we basically consider
a Nyquist sampling for the choice of the control points. Small displacements have been anyway used in
some cases (as indicated) in order to get a better matching with the mask requirements.

The internal and external parts of the minimization (3) have been respectively performed thorough
the fmincon and ga routines of MATLAB (version R 2016B). Also note that an optimal choice of the
external global optimization procedure is outside of the scope of the proposed general approach.

In all experiments, the radiating system has been set as an equispaced planar array composed by a
different number of elements along the x and y axes, and the r coordinate has been expressed through
the usual spectral variables u and v, i.e., u = βdx sin θ cos Φ and v = βdy sin θ sin Φ [where β = 2π/λ
denotes the wavenumber (λ being the operative wavelength), (dx, dy) are the element spacings along
the x and y axis, and (θ, Φ) respectively denote the elevation and azimuth aperture angles with respect
to boresight). Moreover, we set |F |desired

i = 1∀i.
The radiation performances have been evaluated by means of the ‘peak-to-trough’ ripple (PTR)

(defined as the ratio between the maximum and the minimum value attained by the power pattern
∀r ∈ Λ), the ‘peak’ sidelobe level (PSL) (defined as the ratio between the maximum value attained by
the power pattern ∀r ∈ Ω\Λ and the power pattern’s absolute maximum), and the Dynamic Range
Ratio (DRR) (defined as the ratio amongst the maximum and minimum amplitudes of the excitations).
In particular, for each example, we report the achieved values for these parameters in two different
cases, i.e.:

• case (a), when using the basic formulation of the synthesis problem;
• case (b), when adding to the stopping rule of ga an upper-bound constraint on DRR and turning

off (i.e., erasing) the antennas having a very-small excitation amplitude.

3.1. Comparison with Some Existing Approaches

In the first example, we considered the same array and power mask as the ones adopted in [14, 24], i.e.:
§ By ‘partial convexity’ we mean here convexity for the case of fixed phase shifts.
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• a square equispaced array with N = 225 isotropic elements located along the x and y axes with a
0.5λ spacing;

• the power mask shown in Fig. 10 of [14], which enforces a triangular footprint with PTR = 1dB.

In order to get the desired shaping, L = 10 control points have been located inside the region Λ
as described by Fig. 1(a). The square amplitude of the complex field synthesized through the proposed
approach is shown in Fig. 1, while Table B1 reports the complex excitations set corresponding to it.
The presented method provided {DRR = 144, PTR = 1dB, PSL = −29.4 dB} in the case (a), and
{DRR = 97, PTR = 1dB, PSL = −29 dB} in the case (b) by erasing the 7 elements having the lowest

(a) (b)

Figure 1. Synthesis of a 225-elements array generating a flat-top beam with a triangular footprint
(comparison with [14]) when using the excitations reported in Table B1: (a) 2-D and (b) 3-D
power-patterns representations. Control points’ locations [marked in red in subplot (a)]: (u, v) =
{(−0.85,−0.85), (−0.25,−0.85), (0.35,−0.85), (0.85,−0.85), (−0.25,−0.34), (0.34,−0.34), (0.85,−0.34),
(0.34, 0.17), (0.85, 0.17), (0.85, 0.68)}.

(a) (b) (c)

Figure 2. Synthesis of a 156-elements array generating a flat-top power pattern having a square
footprint (comparison with [29]) when using the excitations reported in Table B2: (a) array layout,
where only the elements internal to the circle of radius 3.5λ (i.e., depicted in red color) are used; (b) 2-D
and (c) 3-D views of the power pattern. Control points’ locations [marked in red in subplot (b)]: (u, v) =
{(0.26,−0.26), (0.78,−0.26), (−0.26,−0.26), (−0.78,−0.26), (0.26,−0.78), (0.78, −0.78), (−0.26, −0.78),
(−0.78,−0.78), (−0.78, 0.26), (−0.26, 0.26), (0.26, 0.26), (0.78, 0.26), (−0.78, 0.78), (−0.26, 0.78),
(0.26, 0.78), (0.78, 0.78)}.
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excitation amplitude. Therefore, in the latter case, as compared to the results in [14] (i.e., DRR = 20,
PTR = 1 dB, PSL = −28 dB) the approach provided a lower PSL and a larger DRR. Moreover, since
it allows the straightforward determination of the array excitations, the present approach is both much
easier to implement and much faster than the one in [14]. Finally, the computational burden was
considerably reduced with respect to [24], where in fact we needed to enforce some symmetry on the
complex pattern in order to halve the number of control points (with a consequent loss of degrees of
freedom).

In the second test case, we compared the proposed technique to the one in [29] by pursuing similar
power-pattern goals through an array composed of a lower number of elements. In particular, starting
from a 16×16 grid (with dx = dy = 0.5λ), an array composed of N = 208 elements has been considered
in [29] by erasing all the antennas external to the circle of radius 4λ. Conversely, by starting from the
same uniform grid but using a circle of radius 3.5λ (see Fig. 2) in order to discard some elements, we
achieved a layout composed of 156 elements. All the element patterns have been set as isotropic and,
in the same way as in [29], the mask has been designed in such a way to generate a flat-top beam with
a square footprint covering the region (|u| < 0.25, |v| < 0.25) and guaranteeing a PSL = −20.6 dB for
(|u| > 0.3125, |v| > 0.3125).

The L = 16 adopted control points are depicted in Fig. 2(b), while the excitations identified
through the proposed approach are reported in Table B2 and the corresponding power pattern is shown

(a) (b) (c)

(d) (e) (f)

Figure 3. Synthesis of a 400-elements array devoted to covering the mainland of China (com-
parison with [30]): (a), (b) map and mask (courtesy of the authors of [30]); (c) 2-D plot of the
achieved power pattern and the exploited control points; (d) amplitude and (e) phase of the synthesized
excitations; (f) 3-D power pattern view. Control points’ locations [marked in red in subplot (c)]: (u, v) =
{(−0.06, 0.66), (0.25, 0.66), (0.56, 0.66), (−0.38, 0.34), (−0.06, 0.34), (0.25, 0.34), (0.56, 0.34), (−0.69, 0.03),
(−0.38, 0.03), (−0.06, 0.03), (0.25, 0.03), (0.56, 0.03), (−0.69,−0.28), (−0.38,−0.28), (−0.06,−0.28), (0.25,
−0.28), (0.56,−0.28), (0.56,−0.60), (0.88,−0.60)}.
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in Fig. 2(b) (2-D plot) and in Fig. 2(c) (3-D plot). The presented method provided {DRR = 174, PTR =
0.3 dB, PSL = −20.6 dB} in the case (a), and {DRR = 19, PTR = 0.45 dB, PSL = −20.6 dB} in the
case (b) by erasing the 6 elements having the lowest excitation amplitude. Therefore, in the latter
case, as compared to the best results in [29] (i.e., DRR = 24.4, PTR = 0.3 dB, PSL = −20.6 dB), the
proposed approach allowed to save the 22.5% of elements while guaranteeing the same PSL and beam
footprint, a slightly lower DRR, and a slightly larger PTR. As in the previous test case, the adopted
mask and the synthesis goals resulted unaffordable by the approach in [24] (where it was possible to
exploit only a quarter of the control points adopted herein).

As the third test case, we provide a comparison with the method recently published in [30]. In
particular, we considered the same array and specifications as the ones adopted therein, i.e., a N = 400
elements square array (composed by 20 × 20 isotropic antennas located on the x and y axes with a
constant 0.5λ spacing) as well as a mask pursuing a uniform coverage of the mainland of China (see
Fig. 3, and also Fig. 7 of [30]).

To get the desired shaping, L = 19 control points have been uniformly set within the target area as
reported in Fig. 3(c). The 2-D and 3-D plots of the achieved power-pattern distribution are respectively
shown in Fig. 3(c) and Fig. 3(f). The amplitude and phase of the corresponding excitations (whose table
is not reported for length and readability issues) are depicted in Fig. 3(d) and Fig. 3(e), respectively.

(a) (b)

(c) (d)

Figure 4. Full-wave synthesis of a realistic array generating a flat-top beam having an elliptical
footprint when using the excitations reported in Table B3: (a) 2-D and (b) 3-D views of the synthesized
power pattern; illustration of the 100-elements WR90 open-ended waveguide array simulated through
CST [(c) subplot, figure taken from [31]); (d) a sample of AEPs. Control points’ locations [red dots in
subplot (a)]: (u, v) = [(0, 0), (−0.63, 0), (0,−0.63), (0.63, 0), (0, 0.63)].
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The presented method provided {DRR = 10000, PTR = 0.12 dB, PSL = −27.9 dB} in the case
(a), and {DRR = 198, PTR = 1dB, PSL = −27.9 dB} in the case (b). Therefore, in the latter case,
it favorably compares to one in [30] by allowing equal PSL performances, a PTR reduction from 1.4 to
1.0 dB and, at the same time, a DRR decrease from 1000 to 198. Finally, it is worth noting that the
number of control points required to realize the China coverage definitively excludes the enumerative
technique developed in [24].

3.2. Full-Wave Synthesis of a Realistic Array

As a final numerical experiment, we tested the proposed technique for the full-wave synthesis of a
N = 100 elements planar array equal to the one considered (for different purposes) in [31, 32], i.e.,
composed by 10× 10 truncated waveguides uniformly spaced with dx = λ and dy = 0.5λ. In particular,
WR90 waveguides having a size of 22.86 × 10.16 mm2, operating at 10 GHz, truncated without any
flaring, and mounted on an infinite ground plane were used [see Fig. 4(c)].

First, in order to perform the synthesis, the AEPs have been computed by CST Microwave Studio
full-wave simulations. Some of them, whose heterogeneity prevents one from using any technique relying
on the array factor concept or trigonometric polynomials,are reported in Fig. 4(d). Then, the ripple has
been minimized within the ellipsoidal shaped target area of axes (sin θ cos Φ, sin θ sin Φ) = (0.22, 0.42)
while pursuing a PSL = −20 dB outside the ellipsoidal area of axes (sin θ cos Φ, sin θ sin Φ) = (0.45, 0.86).
To this end, L = 5 control points have been uniformly set within the target area as reported in Fig. 4(a).

Figures 4(a) and 4(b) respectively show the 2-D and 3-D plots of the synthesized power pattern,
while Table B3 reports the excitations corresponding to it. The PTR and DRR turned out being equal
to 0.28 dB and 32.2, respectively.

4. CONCLUSIONS

An approach aimed at synthesizing shaped patterns subject to arbitrary sidelobe bounds by means of
generic fixed-geometry arrays has been presented and tested on several benchmark cases. The proposed
technique is based on the exploitation of some hidden convexity property, auxiliary variables, and nested
optimization.

As discussed and validated through examples, the approach is very effective even in those cases
where the previous methods based on either enumerative strategies or global optimizations on all the
excitations (or field samples) result too heavy under the computational point of view. In fact, the global
optimization is here performed on a minimal number of unknowns (which are conveniently identified as
the field phase in a low number of control points). By so doing, the computational burden required for
optimizing the synthesis is reduced as much as possible.

The new approach is also very general and overcomes the limitations of the Woodward-Lawson-
related techniques (which do not exploit the degrees of freedom arising from the field’s phase shifts) as
well as of all methods requiring that the field is expressible as a 1-D trigonometric polynomial.

APPENDIX A.

This Appendix is aimed at showing how the R function (2) [and correspondingly the cost function (3)]
can be accurately approximated as a positive semi-definite quadratic function of the excitations. To
this end, as a linear transformation does not affect convexity properties, let us consider a sampling
representation of the field. By so doing, one can rewrite expression (1) as follow:

|F (r)|2 =

∣∣∣∣∣
L∑

m=1

FmS (r− rm)+
Q∑

k=1

FkS (r − rk)

∣∣∣∣∣
2

(A1)

wherein Q is the number of Nyquist samples located in Ω\Λ; S(r−rm) are the chosen sampling functions;
and Fi denotes the value of the field in the sampling point ri. Notably, the first addend [say FDOM(r)]
is known (as field samples have been fixed) while the second addend [say FRES(r)] is the one actually
containing the unknowns. Moreover, in the shaped zone, by virtue both of the typical behavior of
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sampling functions as well as of the fact that it depends on the (low-amplitude) sidelobes’ samples, the
second term can be considered to be negligible (residual) with respect to the first one. Then, by further
elaborating Eq. (A1), one finds:

|F (r)|2 = |FDOM(r)|2 + 2R {FDOM(r)F ∗
RES(r)} + |FRES(r)|2 (A2)

wherein the first (and dominant) term is constant, the second term is a linear function of the unknowns,
and the third one is a quadratic form of the unknowns. Hence, as long as the quadratic part can be
neglected with respect to the previous ones, one can conclude that Eq. (2) is well approximated (within
a controlled accuracy) by a positive semidefinite quadratic form, and hence by a convex function. Also
note that the third and last term can be made smaller and smaller (paying a price in terms of number
of samples) by a proper use of the self-truncating sampling functions discussed in [28].

APPENDIX B.

The aim of this Appendix is to report the excitation values determined by using the proposed approach.

Table B1. Complex excitation coefficients for the design of a 225-elements array generating a flat-top
beam having a triangular contour as per Fig. 1 (first numerical example).

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 
-1.11 - 

1.37i 

-2.80 + 

0.12i 

-4.63 + 

0.58i 

-3.43 + 

1.17i 

0.52 + 

1.35i 

3.38 + 

1.00i 

3.16 + 

1.78i 

1.71 + 

4.78i 

0.00 + 

6.42i 

-1.67 + 

3.57i 

-3.66 - 

1.15i 

-4.83 - 

3.58i 

-8.18 - 

2.65i 

-2.16 + 

1.01i 

2 0 
0.77 + 

3.33i 

-1.14 + 

6.43i 

-2.89 + 

9.09i 

-2.67 + 

3.69i 

0.50 - 

5.68i 

5.02 - 

9.42i 

7.61 - 

2.39i 

7.45 + 

6.28i 

5.06 + 

8.08i 

-0.25 + 

2.27i 

-4.44 - 

4.64i 

-6.64 - 

6.10i 

-1.02 - 

3.16i 

-4.18 - 

0.78i 

3 
0.47 - 

1.00i 

4.12 + 

2.59i 

5.54 + 

9.73i 

3.01 + 

11.74i 

-3.69 + 

3.18i 

-8.09 - 

9.72i 

-4.04 - 

13.39i 

6.64 - 

4.61i 

12.33 + 

5.69i 

7.97 + 

3.23i 

0.72 - 

6.38i 

-4.34 - 

11.76i 

-1.94 - 

8.17i 
0 

4.00 + 

3.45i 

4 
0.26 - 

1.20i 

6.63 - 

0.19i 

12.74 + 

4.39i 

9.84 + 

5.32i 

-3.68 + 

3.93i 

-16.63 

+ 1.33i 

-14.17 

+ 0.91i 

-0.33 + 

1.62i 

11.22 - 

2.02i 

8.94 - 

8.65i 

-0.57 - 

16.16i 

-2.23 - 

14.54i 

0.91 - 

5.73i 

3.80 + 

0.54i 

5.34 + 

3.58i 

5 
0.11 - 

1.03i 

4.61 - 

3.7i 

9.86 - 

8.40i 

8.77 - 

5.13i 

0.18 + 

8.70i 

-7.94 + 

26.29i 

-7.51 + 

30.38i 

1.55 + 

16.72i 

6.77 - 

3.59i 

4.42 - 

16.52i 

-2.21 - 

14.65i 

-4.01 - 

7.38i 

0.61 - 

1.31i 

3.31 - 

0.11i 

1.73 - 

0.71i 

6 0 
-1.13 - 

5.59i 

-2.70 - 

12.35i 

0.30 - 

6.31i 

9.57 + 

15.53i 

23.13 + 

40.37i 

30.76 + 

48.72i 

24.53 + 

32.38i 

9.37 + 

7.85i 

-4.22 - 

4.84i 

-8.18 - 

2.31i 

-6.43 + 

3.57i 

-3.89 + 

1.94i 

-1.96 - 

2.80i 

-2.13 - 

4.15i 

7 
0.79 - 

1.46i 

-4.04 - 

0.14i 

-11.13 

+ 1.91i 

-5.38 + 

5.32i 

24.49 + 

14.17i 

62.60 + 

25.69i 

78.92 + 

34.20i 

57.87 + 

36.06i 

17.29 + 

30.22i 

-11.69 

+20.89i 

-16.58 

+11.00i 

-8.99 + 

3.48i 

-3.34 - 

1.13i 

-2.58 - 

1.91i 

-4.35 - 

1.68i 

8 
3.22 - 

0.78i 

0.12 + 

7.87i 

-4.69 + 

19.66i 

3.23 + 

17.85i 

35.93 + 

1.55i 

80.61 - 

10.95i 

100.0 + 

0.00i 

72.93 + 

28.90i 

19.04 + 

46.62i 

-19.75 

+35.26i 

-23.95 

+ 7.44i 

-6.39 - 

9.44i 

4.51 - 

5.68i 

2.48 + 

1.06i 

-1.14 + 

4.74i 

9 
4.89 - 

1.99i 

7.84 + 

14.25i 

10.37 + 

23.97i 

17.07 + 

15.58i 

38.42 - 

13.81i 

66.06 - 

34.24i 

75.36 - 

18.59i 

50.40 + 

20.21i 

5.88 + 

40.61i 

-23.68 

+22.47i 

-20.41 - 

8.94i 

-1.08- 

20.70i 

11.93 - 

9.80i 

9.18 + 

4.10i 

0.63 + 

8.68i 

10 
6.68 + 

0.90i 

11.32 + 

9.88i 

17.74 + 

13.99i 

23.01 + 

2.14i 

28.32 - 

18.23i 

31.71 - 

25.22i 

26.81 - 

8.01i 

8.13 + 

15.04i 

-13.07 

+17.14i 

-21.36 - 

2.00i 

-11.08 - 

20.87i 

5.63 - 

18.97i 

11.19 - 

4.66i 

7.98 + 

4.19i 

0.41 + 

5.06i 

11 
4.92 + 

2.88i 

8.24 + 

4.79i 

11.76 + 

1.94i 

13.68 - 

5.42i 

11.18 - 

8.06i 

2.98 + 

0.40i 

-9.58 + 

10.33i 

-18.55 

+ 9.91i 

-20.52 - 

2.95i 

-12.47 - 

15.90i 

-1.26 - 

15.28i 

4.71 - 

6.31i 

4.53 + 

1.50i 

1.32 + 

1.73i 

-1.35 - 

0.77i 

12 
1.04 + 

2.93i 

1.67 + 

2.11i 
0 0 

-3.04 + 

6.24i 

-9.54 + 

12.67i 

-15.43 

+12.89i 

-16.29 

+ 2.48i 

-9.48 - 

7.56i 

-2.15 - 

7.47i 

1.83 - 

0.72i 

0.56 + 

4.73i 

-2.18 + 

3.53i 

-2.38 - 

0.06i 

-1.55 - 

2.0i 
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13 
-3.56 + 

3.02i 

-2.46 + 

2.23i 

-2.88 + 

4.92i 

-6.09 + 

8.76i 

-8.92 + 

10.51i 

-9.90 + 

7.17i 

-5.76 - 

0.72i 

1.17 - 

3.98i 

4.34 - 

0.30i 

3.18 + 

6.29i 

-1.28 + 

8.92i 

-3.61 + 

5.06i 

-2.54 + 

0.52i 

-0.52 - 

0.89i 
0 

14 
-4.82 + 

2.17i 

-2.26 + 

3.09i 

-1.63 + 

7.28i 

-3.26 + 

10.27i 

-7.29 + 

6.46i 

-5.84 - 

3.56i 

1.77 - 

10.21i 

10.42 - 

5.78i 

10.88 + 

6.24i 

2.81 + 

12.33i 

-4.78 + 

7.65i 

-4.35 + 

0.04i 

-0.29 - 

2.47i 

1.85 - 

0.68i 

0.09 + 

2.17i 

15 
-4.33 - 

1.42i 

-0.49 + 

2.65i 

1.80 + 

4.86i 

0.15 + 

4.25i 

-3.62 + 

0.14i 

-4.04 - 

6.15i 

2.19 - 

7.78i 

8.20 - 

1.80i 

7.23 + 

5.56i 

0.14 + 

7.25i 

-4.24 + 

2.40i 

-3.04 - 

2.67i 

1.41 - 

3.45i 

3.72 - 

1.29i 

0.98 + 

2.17i 

Table B2. Complex excitation coefficients for the design of a 156-elements array generating a flat-top
beam having a square contour as per Fig. 2 (second numerical example).

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
0 0 0 0 8.95 + 

5.09i 

3.65 – 

2.96i 

0.05 – 

10.8i 

-2.13 – 

12.93i 

-6.18 – 

14.43i 

4.26 – 

10.46i 

0 0 0 0 

2 
0 0 0 4 + 

4.99i 

4.47 – 

0.5i 

0 -4.06 + 

2.17i 

0 -4.86 + 

1.19i 

-5.99 – 

5.45i 

10.45 – 

2.74i 

0 0 0 

3 
0 0 -3.36 – 

4.48i 

2.48 – 

8.86i 

-2.6 – 

6.82i 

-4.64 – 

4.11i 

-7.34 + 

6.03i 

-8.98 + 

9.53i 

-7.83 + 

12.08i 

-13.13 

+ 6.39i 

-11.1 + 

0.04i 

0.5 – 

5.98i 

0 0 

4 
0 3.88 + 

4.84i 

2.46 – 

8.87i 

-5.19 – 

12.14i 

-10.26 

–12.92i 

-11.17 – 

0.78i 

-8.73 + 

16.42i 

-9.14 + 

31.61i 

-10.59 

+29.67i 

-10.21 

+22.38i 

-16.87 

+ 8.07i 

-13.17 

– 6.31i 

-9.31 – 

7.88i 

0 

5 
8.86 + 

5.05i 

4.57 – 

0.51i 

-2.6 – 

6.82i 

-10.26 

–12.92i 

-13.77 

– 9.09i 

-12.04 

+ 1.2i 

-2.32 + 

18.66i 

-0.03 + 

32.5i 

-0.02 + 

31.6i 

-2.98 + 

23.61i 

-14.83 

+ 8.71i 

-11.89 

+ 0.56i 

-9.86 – 

6.1i 

0 

6 
3.57 – 

2.91i 

0 -4.65 – 

4.1i 

-11.17 – 

0.77i 

-12.04 

+ 1.2i 

-2.68 + 

4.46i 

12.62 + 

7.54i 

20.37 + 

13.43i 

20.17 + 

11.46i 

15.4 + 

11.97i 

2.14 + 

9.26i 

-4.77 + 

6.91i 

-6.13 + 

4.99i 

0.54 + 

4.06i 

7 
0.05 – 

10.9i 

-3.96 + 

2.13i 

-7.34 + 

6.03i 

-8.73 + 

16.42i 

-2.3 + 

18.56i 

12.53 + 

7.49i 

31.36 – 

5.85i 

41.39 – 

18.41i 

45.53 – 

16.72i 

34.79 – 

5.35i 

19.38 + 

9.53i 

5.12 + 

16.63i 

2.02 + 

13.45i 

-0.02 + 

5.9i 

8 
-2.27 – 

13.81i 

0 -8.98 + 

9.53i 

-9.14 + 

31.61i 

-0.03 + 

32.6i 

20.37 + 

13.43i 

41.39 – 

18.41i 

57.89 – 

41.45i 

62.48 – 

41.48i 

50.75 – 

19.32i 

36.03 + 

5.15i 

13.92 + 

23.71i 

7.63 + 

21.06i 

-0.66 + 

5.66i 

9 -6.1 – -4.66 + -7.78 + -10.56 -0.02 + 20.17 + 45.34 – 62.48 – 67 – 51.09 – 33.45 + 13.56 + 4.77 + 0.75 + 

14.25i 1.15i 12i +29.57i 31.6i 11.46i 16.65i 41.48i 39.35i 18.39i 9.22i 22.19i 21.37i 8.17i 

10 
5.09 – 

12.5i 

-5.85 – 

5.31i 

-13.13 

+ 6.38i 

-10.2 + 

22.39i 

-2.98 + 

23.61i 

15.4 + 

11.97i 

34.79 – 

5.35i 

51.03 – 

19.43i 

51.28 – 

18.46i 

40.24 – 

6.72i 

17.07 + 

8.35i 

9.44 + 

19.98i 

1.13 + 

18.17i 

2.83 + 

4.71i 
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11 
0 10.25 – 

2.69i 

-11.1 + 

0.03i 

-16.87 

+ 8.07i 

-14.84 

+ 8.7i 

2.14 + 

9.26i 

19.38 + 

9.54i 

36.03 + 

5.14i 

33.45 + 

9.21i 

17.25 + 

8.43i 

11.5 + 

15i 

-3.07 + 

11.6i 

-11.85 

+ 6.67i 

0 

12 
0 0 0.5 – 

5.98i 

-13.16 

– 6.31i 

-11.99 

+ 0.56i 

-4.78 + 

6.91i 

5.12 + 

16.63i 

13.93 + 

23.71i 

13.55 + 

22.19i 

9.57 + 

20.25i 

-3.07 + 

11.6i 

-23.39 

+ 2.25i 

0 0 

13 
0 0 0 -9.31 – 

7.89i 

-9.95 – 

6.16i 

-6.12 + 

4.99i 

2 + 

13.35i 

7.6 + 

20.97i 

4.76 + 

21.38i 

1.13 + 

18.27i 

-11.85 

+ 6.67i 

0 0 0 

14 
0 0 0 0 0 0.54 + 

4.06i 

-0.01 + 

6i 

-0.63 + 

5.36i 

0.76 + 

8.17i 

2.78 + 

4.63i 

0 0 0 0 

Table B3. Complex excitation coefficients achieved in the full-wave synthesis of a 100-elements realistic
array generating a uniform-amplitude field with an elliptical footprint as per Fig. 4 (fourth numerical
example).

 1 2 3 4 5 6 7 8 9 10 

1 
-5.711 - 

20.461i 

-36.775 - 

0.942i 

-18.386 + 

5.429i

-7.305 + 

12.535i 

23.806 - 

10.218i 

30.032 - 

19.397i 

100.000 + 

0.000i 

86.528 + 

0.186i 

62.351 - 

22.601i 

2.602 - 

35.656i 

2 
-21.596 - 

11.254i 

-28.594 - 

7.391i 

-5.024 - 

1.267i 

-9.025 + 

8.554i 

2.889 - 

1.147i 

30.737 - 

4.659i 

69.050 + 

7.251i 

66.637 - 

5.199i 

30.205 + 

7.355i 

-5.295 - 

24.830i 

3 
-29.833 - 

3.623i 
-0.272 - 3.097i 

-12.919 + 

0.946i 

4.871 + 

1.767i 

-7.123 + 

5.181i 

8.664 + 

6.583i 

11.016 + 

6.815i 

26.760 + 

17.773i 

9.792 + 

10.705i 

-21.218 - 

22.007i 

4 
-3.001 - 

9.919i 

-14.542 - 

7.965i 

11.377 + 

0.706i 

2.524 + 

5.110i 

-19.884 - 

3.600i 

-8.808 + 

0.117i 

-1.547 + 

33.124i 

-20.714 + 

29.772i 

-2.989 - 

0.856i 

-42.841 + 

10.211i 

5 
2.697 - 

5.602i 
11.369 - 0.819i 

11.916 + 

0.144i 

7.088 - 

13.834i 

-17.840 + 

10.549i 

-15.094 + 

3.713i 

-16.949 + 

16.758i 

-8.642 + 

20.5360i 

-31.977 + 

17.116i 

18.327 - 

15.238i 

6 
-2.348 - 

24.239i 

-37.126 - 

3.658i 

-19.370 + 

9.919i 

-10.428 + 

9.325i 

24.540 - 

6.509i 

30.096 - 

18.319i 

97.909 - 

1.899i 

87.041 + 

0.986i 

63.28 - 

24.551i 

5.788 - 

32.652i 

7 
-22.455 - 

11.847i 

-27.292 - 

8.202i 

-3.593 + 

0.498i 

-7.140 + 

10.181i 

2.815 - 

1.319i 

25.773 - 

5.833i 

59.220 + 

10.268i 

54.920 + 

0.509i 

23.978 + 

9.809i 

-6.328 - 

23.516i 

8 
-22.162 - 

7.245i 
2.785 - 2.324i 

-11.363 + 

0.911i 

3.364 + 

4.601i 

-11.37 + 

0.807i 

7.646 + 

4.374i 

13.877 + 

5.763i 

26.408 + 

20.055i 

9.837 + 

12.697i 

-14.203 - 

25.302i 

9 
-8.148 - 

10.070i 

-13.104 - 

12.536i 

10.933 + 

4.742i 

3.414 + 

4.564i 

-17.081 - 

0.777i 

-12.404 - 

0.878i 

-13.663 + 

33.037i 

-26.405 + 

32.621i 

-8.270 - 

0.572i 

-43.902 + 

18.571i 

10 
8.894 - 

7.130i 

15.023 + 

0.314i 

8.472 - 

2.410i 

8.175 - 

5.485i 

-20.953 + 

3.503i 

-10.306 + 

1.082i 

-12.315 + 

17.310i 

-6.326 + 

19.736i 

-29.077 + 

15.941i 

28.139 - 

22.053i 
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