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Fast and Broadband Calculation of the Dyadic Green’s Function
in the Rectangular Cavity; An Imaginary Wave Number

Extraction Technique

Mohammadreza Sanamzadeh* and Leung Tsang

Abstract—An analytical approach for the calculation of the dyadic Green’s functions inside the
rectangular cavity over a broad range of frequency is presented. Both vector potential and electric
field dyadic Green’s functions are considered. The method is based on the extraction of the Green’s
function at an imaginary wavenumber from itself to obtain a rapidly convergent eigenfunction expansion
of the dyadic Green’s function. The extracted term encompasses the singularity of the Green’s function
and is computed using spatial expansions. Results are illustrated for a rectangular cavity up to 5
wavelengths in size with thousands of cavity modes obtained by the 6th order convergent expansion.
It is shown that for an accurate and broadband simulation, the proposed method is many times faster
than the Ewald method.

1. INTRODUCTION

The Green’s function is a fundamental tool in the analysis of every physical system, and it provides an in-
depth insight into the dynamical behavior of the system. Based on this, obtaining the Green’s function
for a given system is as difficult as solving the problem directly. However, since the Green’s function
can determine the response of the system to an arbitrary excitation it contains more information about
the system than the solution of the dynamical variable like the wave function. The Green’s function is
the collective response of all the resonant wave functions in a unique way such that it is closely related
to the spatial distribution of the density of states.

In particular, Green’s functions are of importance as it provides the response for an arbitrary
distribution of the source. They are also useful for formulating the integral equations for various
boundary value problems. Commonly used Green’s functions include free-space Green’s functions,
periodic Green’s functions for empty periodic lattices, Green’s functions of regular geometry such as a
sphere or cylinder, Green’s functions of layered media, etc. [1–4].

The Green’s function inside the cavity is also studied extensively [5–8]. In general for a cavity
of regular shape (rectangular, cylindrical, ...), an expression for the Green’s function can be found by
either a spatial sum in terms of image sources [5] or a spectral sum in terms of the eigen-modes. Both
of the pure spatial and spectral methods have slow convergence in terms of the number of included
images/modes. While the spatial expansion can capture the singularity in the source region well, it has
a slow convergence for the observation points far from the source. On the other side, spectral expansion
does not converge in the proximity of the source as a consequence of the singular behavior of the Green’s
function. The famous Ewald’s technique is about to obtain a hybrid spectral-spatial summation that
has an exponential convergence rate [9–12] which is a successful technique of taking advantage of both
spectral and spatial expansions. Another method based on the Chebyshev polynomial approximation
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is reported [13] that provides an efficient way of evaluation of the Green’s function in the rectangular
cavity.

However, all of the mentioned methods are implemented for computation of the Green’s function
at a single frequency such that obtaining a broadband response required a frequency sweep. For the
cavity Green’s function, there are lots of resonance modes that require a fine frequency sweep to capture
the resonances correctly. In this paper, a new approach of obtaining the dyadic Green’s function inside
the cavity based on imaginary wavenumber extraction is presented. The proposed approach can be
used to evaluate the vector potential and electric field dyadic Green’s function inside the rectangular
cavity rapidly and over a broad range of frequency. This technique is previously applied to a variety of
geometries including the Green’s function of irregular shape waveguide [14], periodic structure including
scatterers (photonic crystals) [15–18], radiation from circuit boards [19], and scalar Green’s function
inside the cavity to capture the wideband behavior including the resonances. All prior published works
are for the 2D case. In this paper, we treat the Dyadic Green’s functions of the 3D cavity.

The method is a hybrid spatial-spectral method and from this point of view is similar to the Ewald
method. For a given level of accuracy and even for response at one frequency, it can be faster than the
Ewald method and it provides a broadband response over decades of bandwidth with an only one-time
evaluation of the modes. The idea of extraction from the Green’s function has been used and studied
before. The BIRME method [20–22] is proposed with utilizing extraction of the corresponding static
Green’s function from itself to accelerate the spectral expansion. The BBGFL (broadband Green’s
function with low wavenumber extraction) method [14, 23] also uses the extraction of the Green’s
function at some low (close to DC but not necessarily DC) wave number. However, the imaginary
wavenumber extraction is a superior approach as the extracted terms can be rapidly computed.

The logic behind the extraction techniques is separating a singular part of the Green’s function
and compute it by a different method (spatial series with an exponential convergence). The reduced
Green’s function after extraction, which represents a smooth function (it is regular even at the source
point) will have a better convergence rate as it can be constructed by low-frequency spatial modes, in
principle.

This paper has two main parts. The first part is devoted to the vector potential dyadic Green’s
function of the rectangular cavity. The different spatial and spectral representations are discussed in
Section 2. Several numerical examples are brought to compare the accuracy of the proposed method
and comparison of computation cost against the Ewald method. A broadband computation of the
vector potential dyadic Green’s function over two decades of bandwidth with 1000 resonant modes is
also shown. In Section 3, the electric field dyadic Green’s function is studied. Spectral representation of
the electric field dyadic Green’s function is derived, and imaginary wavenumber extraction is applied.
Singularity of the dyadic Green’s function is extracted in terms of static Green’s function. A numerical
example of evaluation of the dyadic Green’s function with the proposed method is provided. Finally, a
broadband evaluation of the electric field dyadic Green’s function is performed in the last section.

2. VECTOR POTENTIAL DYADIC GREEN’S FUNCTION

Under the Lorentz gauge, the vector potential Ā(r̄) satisfies the vector Helmholtz equation of

∇2Ā(r̄) + k2Ā(r̄) = −μJ̄(r̄) (1)

while the scalar potential satisfies

∇2φ(r̄) + k2φ(r̄) = −1

ε
ρ(r̄). (2)

The electric field in terms of the potentials is expressed as Ē(r̄) = iωĀ(r̄) − ∇φ(r̄) where e−iωt time
dependence convention is used for harmonic fields throughout the text. On the surface of the cavity,
the normal component of the magnetic field must vanish, and consequently tangential component of Ā
vanishes through B̄ = ∇× Ā. On the other hand, the scalar potential itself also vanishes on the surface
of the cavity and within the Lorenz gauge ∇ · Ā = iωμεφ and thus ∇ · Ā = 0 on the cavity surface.
These are the boundary conditions to be satisfied by the vector potential.
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In order to integrate the wave equation of the vector potential, the vector potential dyadic Green’s

function GA(r̄, r̄
′) can be introduced such that,

∇2GA(r̄, r̄
′) + k2GA(r̄, r̄

′) = −Iδ(r̄ − r̄′) (3)

subject to the conditions n̂ × GA = 0 and ∇ · GA = 0 on the boundary of the cavity. Upon using the

Green’s identity for Ā and GA, the vector potential can be written in terms of the current source as

Ā(r̄) = μ

∫
dr̄′GA(r̄, r̄

′) · J̄(r̄′) (4)

The electric field can be obtained in terms of potentials (in Lorenz gauge) as

Ē(r̄) = iωĀ(r̄)− 1

iωμε
∇∇ · Ā(r̄) = iωμ

[
I +

∇∇
k2

]
·
∫

dr̄′GA(r̄, r̄
′) · J̄(r̄′) (5)

Now, the electric field dyadic Green’s function can be identified as

G(r̄, r̄′) =
[
I +

∇∇
k2

]
·GA(r̄, r̄

′). (6)

Notice that in Eq. (5), the differential operator ∇∇ is supposed to operate on the result of the vector
potential integration, but in order to get Eq. (6), order of the differentiation and integration operators
are exchanged. If the vector potential integrand does not have second order derivative (around source

point where GA is singular), exchanging the differentiation and integration operators introduces a higher
order singularity that has been studied extensively [24–27]. Note that the vector potential dyadic Green’s
function for a rectangular cavity is a diagonal dyadic, i.e.,

GA = Gxx
A x̂x̂+Gyy

A ŷŷ +Gzz
A ẑẑ (7)

The vector potential dyadic Green’s function and scalar Green’s function are related through the gauge
condition that is necessary for potentials to uniquely deliver the electromagnetic fields.

2.1. Image Expansion of the Vector Potential Dyadic Green’s Function

Each component of the vector potential dyadic Green’s function satisfies the scalar wave equation of,

∇2Gj
A(r̄, r̄

′) + k2Gj
A(r̄, r̄

′) = −δ(r̄ − r̄′) (8)

which is identical to the free space Green’s function. The required boundary condition to be satisfied by
Gxx

A is the Dirichlet on the sidewalls and the Neumann on the end caps (with respect to x direction). The
collective response of the image sources with proper amplitude and location will produce the required

boundary condition for different components of GA as

Gj
A(r̄, r̄

′) =
∑
n,m,p

(−1)m+n+p+sjG0

(
r̄; r̄mnp(r̄

′)
)

(9)

where sj = m for j = x and r̄mnp(r̄
′) = (mLx + (−1)mx′, nLy + (−1)ny′, pLz + (−1)pz′) represents the

location of the image charges. The spatial expansion of Eq. (9) has a poor convergence and many terms
should be included in the summation to get a convergent result.

2.2. Spectral Expansion with Imaginary Wave Number Extraction

Since the vector potential Green’s function should satisfy the Dirichlet and Neumann conditions on the
sidewalls and end caps, respectively, the eigenfunctions of the wave equation that satisfy the required
boundary condition are of the form,

ψx
mnp(r̄) =

√
4(2− δm)

V
cos

mπ

Lx

(
x+

Lx

2

)
sin

nπ

Ly

(
y +

Ly

2

)
sin

pπ

Lz

(
z +

Lz

2

)

ψy
mnp(r̄) =

√
4(2− δn)

V
sin

mπ

Lx

(
x+

Lx

2

)
cos

nπ

Ly

(
y +

Ly

2

)
sin

pπ

Lz

(
z +

Lz

2

)

ψz
mnp(r̄) =

√
4(2− δp)

V
sin

mπ

Lx

(
x+

Lx

2

)
sin

nπ

Ly

(
y +

Ly

2

)
cos

pπ

Lz

(
z +

Lz

2

)
(10)
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where ψx
mnp is an eigenfunction of the wave equation that satisfies appropriate boundary conditions

of Gxx
A on the cavity walls. One may verify that the required boundary conditions of n̂ × GA = 0,

and ∇ · GA = 0 is satisfied by these eigen-solutions. Also, the modes are normalized such that each
component of the vector potential dyadic Green’s function can be written as

Gj
A(r̄, r̄

′) =
∑
α

1

k2α − k2
ψj
α(r̄)ψ

j∗
α (r̄′) (11)

Although this expansion of the Green’s function is desired because of simple dependence on the frequency
of excitation, the summation converges slowly.

Gj
A(r̄, r̄

′) =
∑
α

1

k2α − k20
ψα(r̄)ψ

∗
α(r̄

′) ≈
∑
α

1

k2α − k20
(12)

In the case of continuous spectrum in lossless free space,

Gj
A(r̄, r̄

′) =
1

(2π)3

∫
d3k̄

1

k2 − k20
eik̄·(r̄−r̄′) ≤ 1

(2π)3

∫
dk

k2

k2 − k20
→ ∞ (13)

which shows that the summation is not absolutely convergent and has very poor convergence, mainly
due to the singularity (sharp variations) of the Green’s function. If we can somehow separate the
singular part of the Green’s function, then the leftover should have a better convergence rate. Assume
that we extract the Green’s function at another wave number k = kL from the desired Green’s function.
Since the eigenfunctions do not depend on the frequency of excitation, the expression reads

Gj
A

(
r̄, r̄′, k

) −Gj
A

(
r̄, r̄′, kL

)
=

∑
α

[
1

k2α − k2
− 1

k2α − k2L

]
ψj
α(r̄)ψ

j∗
α (r̄′)

=
∑
α

[
k2 − k2L

(k2α − k2)
(
k2α − k2L

)
]
ψj
α(r̄)ψ

j∗
α (r̄′) (14)

or

Gj
A(r̄, r̄

′, k) = Gj
A(r̄, r̄

′, kL) +
∑
α

[
k2 − k2L

(k2α − k2)(k2α − k2L)

]
ψj
α(r̄)ψ

j∗
α (r̄′) (15)

If we are able to compute the Green’s function at single wave number kL, then the Green’s function
at any other wavenumber k will be calculated through the spectral summation where the summand
decreases as O(k−4

α ) which is of fourth-order instead of O(k−2
α ). Now, if we take kL = iξ, an imaginary

number, the extracted term which is the Green’s function at imaginary wave number, is very well
behaved (exponentially decaying with distance) and can be easily computed by spatial domain series
(see Appendix A),

Gj
A(r̄, r̄

′, k) = Gj
A(r̄, r̄

′, iξ) +
∑
α

[
k2 + ξ2

(k2α − k2) (k2α + ξ2)

]
ψj
α(r̄)ψ

j∗
α (r̄′) (16)

We can proceed to further accelerate the spectral summation. The frequency dependent factor in the
summand of Eq. (16) can be factorized as[

k2 + ξ2

(k2α − k2) (k2α + ξ2)

]
=

k2 + ξ2

(k2α + ξ2)

[
1

k2α − k2
− 1

k2α + ξ2

]
+

k2 + ξ2

(k2α + ξ2) (k2α + ξ2)

=

(
k2 + ξ2

)2
(k2α + ξ2)2 (k2α − k2)

+
k2 + ξ2

(k2α + ξ2)2
(17)

where the last term can be written as

k2 + ξ2

(k2α + ξ2)2
=
k2 + ξ2

−2ξ

∂

∂ξ

1

(k2α + ξ2)
(18)
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which is proportional to the spectral coefficient of the Green’s function expansion of Eq. (11) for k = iξ.
Therefore,

Gj
A(r̄, r̄

′, k) = Gj
A(r̄, r̄

′, iξ) − k2 + ξ2

2ξ

∂

∂ξ
Gj

A(r̄, r̄
′, iξ) + (k2 + ξ2)2

∑
α

ψj
α(r̄)ψ

j∗
α (r̄′)

(k2α + ξ2)2(k2α − k2)
(19)

This expansion is of the sixth order of convergence and converges with the inclusion of the few terms
in the summation. Now, the spectral series in terms of eigenmodes converges much faster than the
conventional eigenmode expansion of (11). There is an overall computational gain if the extracted terms
Gj(r̄, r̄′; iξ) and ∂ξG

j(r̄, r̄′; iξ) at the imaginary wavenumber can be computed rapidly. The extracted
terms can be computed by the image series which has an exponential convergence for imaginary wave
numbers.

Gj
A(r̄, r̄

′, iξ) =
∑
α

1

k2α + ξ2
ψj
α(r̄)ψ

j∗
α (r̄′) =

1

4π

∑
n,m,p

(−1)n+m+p+sj
e−ξ|r̄−r̄mnp|

|r̄ − r̄mnp| (20)

where sj = m if j = x and so on. Similarly, for the imaginary wave number derivative of the the Green’s
function

∂

∂ξ
Gj

A(r̄, r̄
′, iξ) =

∑
α

−2ξ

(k2α + ξ2)2
ψj
α(r̄)ψ

j∗
α (r̄′) = − 1

4π

∑
n,m,p

(−1)n+m+p+sje−ξ|r̄−r̄mnp| (21)

Note that for a wideband computation of the Green’s function, the imaginary wavenumber extracted
terms of Eqs. (20) and (21) should be computed one time irrespective of the desired frequency bandwidth.

2.3. Ewald Summation Technique

The Ewald summation technique has been applied to the vector potential dyadic Green’s function of
the rectangular cavity [5, 6, 9, 10]. The derivation of the Ewald summation for the rectangular cavity
here closely follows that of [10], and center of coordinate system is shifted such that 0 ≤ xj ≤ Lj . From
the image expansion of the vector potential dyadic Green’s function Gxx

A we have

Gxx
A (r̄, r̄′) =

∑
n,m,p

(−1)n+p e
ikRmnp

4πRmnp
(22)

where Rmnp = |r̄ − r̄mnp| and r̄mnp is the location of image sources. The locations of images dipoles
constitute a periodic lattice in space with periods 2Lx, 2Ly, and 2Lz in x, y, and z directions,
respectively, and each lattice site is occupied by a cluster of 8 dipoles. The series of Eq. (22) does
not reflect the periodicity of the problem explicitly. Instead, we can write the image expansion in terms
of the response of a dipole cluster around the given lattice site. Within the primitive cell, upon defining

Xr = x− (−1)rx′

Ys = y − (−1)sy′

Zt = z − (−1)tz′

where r, s, t ∈ {0, 1}, and the distance between the image sources and the observation point can be
written as

Rmnp, rst =
√

(Xr + 2mLx)2 + (Ys + 2nLy)2 + (Zt + 2pLz)2 (23)

thus, the Green’s function takes the form of

Gxx
A (r̄, r̄′;E) =

∑
n,m,p

∑
r,s,t

(−1)s+t e
ikRmnp, rst

4πRmnp, rst
(24)

This representation is equivalent to the original representation of Eq. (22). Following the Ewald
approach, the Green’s function is decomposed to two parts utilizing the error erf(x) and the
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complementary error functions erfc(x) that satisfy erf(x) + erfc(x) = 1 (for any number x),

Gxx
A1(r̄, r̄

′;E) =
∑
n,m,p

∑
r,s,t

(−1)s+t e
ikRmnp, rst

4πRmnp, rst
erfc(ERmnp, rst)

Gxx
A2(r̄, r̄

′;E) =
∑
n,m,p

∑
r,s,t

(−1)s+t e
ikRmnp, rst

4πRmnp, rst
erf(ERmnp, rst)

(25)

Here, E is a free parameter (with the dimension of wave number) that controls the share of each
summation in Eq. (25). Since erfc(x) → 0 as x → ∞ exponentially, the first series is exponentially
convergent. However, the second part is not affected by the error function at long distances and has a
slow convergence. Using the Poisson summation formula of,∑

mnp

f(αm, βn, γp) =
1

αβγ

∑
mnp

F

(
2πm

α
,
2πn

β
,
2πp

γ

)
(26)

where F (k̄) is the Fourier transform of the function f(r̄), and the second series can be transformed to
a spectral sum of

Gxx
A2(r̄, r̄

′;E) =
1

8V

∑
n,m,p

∑
r,s,t

(−1)s+t

∫
d˜̄re−i(kxmx̃+kynỹ+kzpz̃) e

ikRrst

4πRrst
erf (ERrst) (27)

where Rrst =
√

(Xr + x̃)2 + (Ys + ỹ)2 + (Zt + z̃)2, kxm = mπ/Lx and so on. This integral can be
computed analytically. First, let’s shift the variables to get

Gxx
A2(r̄, r̄

′;E) =
1

8V

∑
n,m,p

∑
r,s,t

(−1)s+tei(kxmXr+kynYs+kzpZt)

∫
dr̄e−i(kxmx+kyny+kzpz) e

ik|r̄|

4π|r̄| erf (E|r̄|) (28)

Now, since the integrand is only function of |r̄|, upon switching to the Spherical coordinate with z axis
toward the direction of (kmx, kny, kpz) the integral becomes,

I =

∫
dr̄e−i(kxmx+kyny+kzpz) e

ik|r̄|

4π|r̄|erf(E|r̄|)

=

∫ ∞

0
dr

∫ π

0
dθr2 sin θe−ikmnpr cos θ e

ikr

2r
erf (Er)

=
2E

kmnp
√
π

∫ ∞

0
dreikr

1

2i

[
eikmnpr − e−ikmnpr

] ∫ r

0
dte−E2t2 (29)

The Fourier transform of the function e−E2r2 can be easily computed, and from that, the Fourier
transform of its integral can be found as∫ ∞

0
dreikr

∫ r

0
dte−E2t2 =

i
√
π

2kE
e−k2/4E2

(30)

Therefore,

I(kmnp, E) =
1

2kmnp

[
1

k + kmnp
e−(k+kmnp)2/4E2 − 1

k − kmnp
e−(k−kmnp)2/4E2

]
(31)

which has an exponential decay as a function of summation variables m,n, p. Therefore, the second
part of the Green’s function becomes

Gxx
A2(r̄, r̄

′;E) =
1

8V

∑
n,m,p

∑
r,s,t

(−1)s+tei(kxmXr+kynYs+kzpZt)I(kmnp, E) (32)
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This is an expansion in terms of the propagating waves which can be transformed to standing waves
through,∑

r

eikxmXr +
∑
r

e−ikxmXr = eikxm(x−x′) + eikxm(x+x′) + e−ikxm(x−x′) + e−ikxm(x+x′)

= 2cos kmx(x− x′) + 2 cos kmx(x+ x′) = 4 cos kmxx cos kmxx
′ (33)

except m = 0 term which is simply equal to 2. The other terms can be treated similarly and finally,

Gxx
A2(r̄, r̄

′;E) =
∑
n,m,p

ψx
mnp(r̄)ψ

x
mnp(r̄

′)I(kmnp, E) (34)

where ψx
mnp is the eigenfunction of wave equation that satisfies boundary condition of Gxx

A over the
cavity walls. The Ewald spectral summation is exactly the same as the conventional spectral expansion
weighted by the spectral coefficient I(kmnp, E). In the limit that E → 0, I → 0 and we recover pure
spatial expansion (image expansion). On the other hand, when E → ∞, I becomes (k2mnp − k2)−1, and
the spectral expansion of the Green’s function is recovered.

As E increases, the convergence of the spatial series improves while it slows down for the spectral
series. We can find the value of E that provides equal asymptotic convergence rates for both parts. An
optimum selection of E is given in the literature [10] as

Eo =

√
π

2 3
√
V

(35)

that will be used in the future computations.

2.4. Numerical Validation

The Ewald technique provides an exponentially convergent series that results in highly accurate results.
In this section, we use Ewald method with a relatively large number of included terms as a benchmark
solution.

Consider an empty cavity of dimensions Lx = Ly = Lz = L with perfect conductor walls. The
source dipole is located at r̄′ = (Lx/4, Ly/4, Lz/4).

In the first comparison, the excitation wavelength is selected to be λ = 0.93L. The Green’s function
obtained by the imaginary extraction approach will be compared to that of Ewald summation for two
settings; one is done when acceptable maximum relative error is 10−5, and the other comparison is done
when a highly accurate results with maximum relative error of 10−8 within the given observation grid is
required. With a fixed level of error, two approaches are compared through the computation cost (All
of the numerical routines are written by the same programmer and computed on the same machine).
In [10], the Ewald technique was illustrated for a rectangular cavity with L = 0.3λ.

2.4.1. First Comparison: Moderate Accuracy

Figure 1 shows the xx component of vector potential dyadic Green’s function over the plane of z = 0
inside the cavity computed by the 6th order convergent summation with imaginary wavenumber
extraction. The maximum relative error with respect to the benchmark is less than 10−5 for all of
the observation grid points. This result is obtained by including 10 modes (in each direction) in the 6th
order summation and 5 clusters of image dipoles to compute the extracted terms with the computational
time per observation point of 0.55msec-CPU.

In order to obtain the same level of accuracy, the Ewald method is also evaluated to reach a relative
error of 10−5. The CPU time for this method is 0.76msec-CPU for evaluation of the dyadic Green’s
function at one point.

Figure 2 plots the relative error of the 6th order method and Ewald method against the benchmark
in dB.
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Figure 1. Vector potential Green’s function Gxx
A calculated by 6th order convergent spectral expansion,

using 6 modes in each direction and ξ = 2/L.

(a) (b)

Figure 2. Relative error of 6th order convergent series and Ewald method against the benchmark. (a)
6th order Imaginary extraction. (b) Ewald method.

2.4.2. Second Comparison: Highly Accurate Results

In this part, we set the acceptable error to 10−8 to compare the performance of two approaches. It is
clear that the Ewald method performs better if a highly accurate result is desired. The convergence
rate of the Ewald method is exponential while the imaginary extraction technique provides 6th order
power-law convergence. In order to achieve the desired accuracy, the computation cost of the Ewald and
imaginary extraction techniques are 1.7 and 8.2msec-CPU per point, respectively. Therefore, if a very
accurate value of the Green’s function is required, the Ewald sum is superior from the computational
cost standpoint.

However, the comparison of the results in Tab. 1 is shown for a single frequency calculation. If a
broadband solution of the dyadic Green’s function is required, a very fine frequency sweep should be
performed to capture individual resonance lines of the cavity (the resonance lines are closely spaced
for a 3-dimensional cavity) that in turn leads to a large number of evaluations of the Green’s function
for different frequencies. For example, in order to find the Green’s function of the cavity of dimension
L3 for excitation wavelengths λ from very long λ 	 L to as small as λ/L = 0.2, there are thousands
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Table 1. Computation cost of 6th order imaginary extraction technique against the Ewald method for
different accuracies.

Accuracy Computation cost per point (CPU-msec)

10−5 Ewald 0.76

6th 0.55

10−8 Ewald 1.7

6th 8.2

of resonances. Accounting a few numbers of frequency points to capture a resonance in the Green’s
function correctly, the number of required frequency points would be several thousand. However, such a
response can be obtained by a single run of the imaginary extraction. For the computational comparison
of this wideband example (given required accuracy of 10−5), the expected cost of Ewald method is about
10, 000×0.76 CPU·msec while for the imaginary extraction method it only takes 10CPU·msec including
the computation cost for a simple loop over frequency to evaluate the spectral coefficients.

Figure 3 plots the broadband Green’s function for excitation wavelength 0.05 ≤ λ/L ≤ 5 which is 2
decades of bandwidth obtained by imaginary wavenumber extraction technique with only one evaluation
of the eigenmodes. The Green’s function is shown over the line x = z = 0 as a function of L/λ for
130 frequency samples. The exact resonant frequencies are avoided as much as possible in plotting the
broadband Green’s function for a lossless cavity.

Figure 3. Vector potential Green’s function Gxx
A (0, y, 0;λ) calculated by the 6th order convergent

spectral expansion over two decades of bandwidth.

3. ELECTRIC FIELD DYADIC GREEN’S FUNCTION

Given that we have the expression for the vector potential dyadic Green’s function, one may calculate
the electric field dyadic Green’s function through Eq. (6). However, it is more insightful to begin with
the electric field dyadic Green’s function directly to have a better treatment of its singular behavior in

the near field region. The electric field Green’s function G(r̄, r̄′) inside the cavity satisfies the vector
wave equation of

∇×∇×G(r̄, r̄′)− k20G(r̄, r̄
′) = Iδ(r̄ − r̄′) (36)

subject to the Dirichlet boundary condition n̂ × G(r̄ ∈ ∂V, r̄′) = 0. If we are able to find the vector
eigenfunctions F̄α(r̄) that satisfy the homogeneous vector wave equation with eigen-wavenumber kα
subject to the same type of boundary condition as imposed on the Green’s function, i.e., n̂ × F̄α(r̄ ∈
∂V ) = 0 such that,

∇×∇× F̄α(r̄)− k2αF̄α(r̄) = 0 (37)
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then, an eigenmode expansion can be developed for the dyadic Green’s function that satisfies the
inhomogeneous vector wave equation. The vector eigenfunctions, which correspond to the Hermitian
operator ∇×∇×−k2 (for real values of k2 and given boundary conditions) constitute a complete and
orthogonal basis that spans vector fields in the space that follow the same type of boundary conditions.
The idea of completeness can be extended to include generalized functions as well. An eigenfunction
expansion of the delta function (which satisfies the corresponding boundary condition on the wave
equation operator) can be obtained as

Iδ(r̄ − r̄′) =
∑
α

F̄α(r̄)F̄α(r̄
′) (38)

where, it is assumed that the vector eigenfunctions are normalized according to∫
V
d3r̄F̄α(r̄) · F̄ ∗

β (r̄) = δαβ (39)

Upon expanding the dyadic Green’s function in terms of vector eigenfunctions and substituting in the
inhomogeneous vector wave equation of the dyadic Green’s function we arrive at the similar expansion
as the scalar case,

G(r̄, r̄′) =
∑
α

1

k2α − k20
F̄α(r̄)F̄α(r̄

′) (40)

It is straightforward to verify that the following vector wave functions satisfy the homogeneous vector
wave equation as well as the electric field boundary condition on the walls of the cavity.

M̄α(r̄) = ∇× (
ẑψM

α (r̄)
)

N̄α(r̄) =
1

kα
∇×∇× (

ẑψN
α (r̄)

)
L̄α(r̄) = ∇ (

ψL
α(r̄)

)

where,

ψM
α (r̄) =

√
8

V
cos

mπ

Lx

(
x+

Lx

2

)
cos

nπ

Ly

(
y +

Ly

2

)
sin

pπ

Lz

(
z +

Lz

2

)

ψN
α (r̄) =

√
8

V
sin

mπ

Lx

(
x+

Lx

2

)
sin

nπ

Ly

(
y +

Ly

2

)
cos

pπ

Lz

(
z +

Lz

2

)

ψL
α(r̄) =

√
8

V
sin

mπ

Lx

(
x+

Lx

2

)
sin

nπ

Ly

(
y +

Ly

2

)
sin

pπ

Lz

(
z +

Lz

2

)
(41)

The transverse wave functions M̄α and N̄α are divergence free and with corresponding eigenvalues of

k2α =

(
mπ

Lx

)2

+

(
nπ

Ly

)2

+

(
pπ

Lz

)2

(42)

The longitudinal wave functions L̄α are curl-free and span the degenerate eigenspace corresponding to
the eigenvalue of k = 0. Inclusion of the longitudinal wave functions is critical in the computation of
the Green’s function in the source region [28] and beyond that (as will be shown later). If we assume
normalized eigenfunctions over the volume of the cavity, the dyadic Green’s function can be written as

G(r̄, r̄′) = − 1

k20

∑
α

L̄α(r̄)L̄α(r̄
′) +

∑
α

[
M̄α(r̄)M̄α(r̄

′) + N̄α(r̄)N̄α(r̄
′)

k2α − k20

]
(43)

Note that the vector wave functions are assumed to be normalized here.
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3.1. Normalization of Vector Modes

By taking kx = mπ/Lx, ky = nπ/Ly, kz = pπ/Lz and shifting the center of coordinate system for
convenience we have,

M̄α · M̄α =
(∇ψM

α × ẑ
) · (∇ψM

α × ẑ
)
= −ẑ · [∇ψM

α × (∇ψM
α × ẑ

)]
=

[|∇ψM
α |2 − |∇ψM

α · ẑ|2]
=

8

V
sin2 kzz

[
k2x sin

2 kxx cos
2 kyy + k2y cos

2 kxx sin
2 kyy

]
(44)

Therefore, ∫
V
dr̄M̄α · M̄α = k2αρεmεnεp (45)

where εn = 1 + δn and k2αρ = (k2x + k2y). Similarly,∫
V
dr̄N̄α · N̄α = k2αρεmεnεp (46)

and for longitudinal wave functions, ∫
V
dr̄L̄α · L̄α = k2αεmεnεp. (47)

The dyadic Green’s function in terms of unnormalized vector wave functions M̄, N̄ , and L̄ becomes

G(r̄, r̄′) = − 1

k20

∑
α

1

εmεnεp

1

k2α
L̄α(r̄)L̄α(r̄

′) +
∑
α

1

εmεnεp

1

k2αρ

[
M̄α(r̄)M̄α(r̄

′) + N̄α(r̄)N̄α(r̄
′)

k2α − k20

]
(48)

3.2. Singularity Extraction

In order to extract the singularity of the dyadic Green’s function, let’s consider the asymptotic behavior
of each terms as α→ ∞. For L̄α term,

lim
α→∞

1

k2α

∣∣L̄α(r̄)L̄α(r̄
′)
∣∣ = lim

α→∞
1

k2α

∣∣∇ (ψα(r̄))∇′ (ψα(r̄
′)
)∣∣ = O(1) (49)

which tends to a constant, but for M̄α and N̄α terms,

lim
α→∞

∣∣∣∣ 1

k2αρ

M̄α(r̄)M̄α(r̄
′)

k2α − k20

∣∣∣∣ ≈ O
(

1

k2α

)

lim
α→∞

∣∣∣∣ 1

k2αρ

N̄α(r̄)N̄α(r̄
′)

k2α − k20

∣∣∣∣ ≈ O
(

1

k2α

) (50)

The first term does not represent a convergent series. Since the asymptotic spectral behavior tends to
a constant value, it contains a delta function singularity in the spatial domain (which is known as the
singularity of the dyadic Green’s function [24–27]). For the free space dyadic Green’s function expansion
in terms of continuous spectrum of eigenfunctions, after evaluating one of the spectral integrations by
contour integration technique, contribution of the L̄ L̄ term includes a delta function singularity and
an static pole term that exactly cancels the static pole hat arise from the N̄ N̄ term [2, 4]. Therefore,
the net contribution of the L̄ L̄ term is just a delta function singularity at the source point. However,
for the cavity Green’s function where the modes are discrete, the L̄ L̄ term similarly contains a delta
function singularity at the source point and a static contribution that extends beyond the source point.
The static pole does not appear here for either L̄ L̄ or N̄ N̄ as a consequence of the discrete spectrum.
Noting that ψL

α = ψα is an eigenfunction of the scalar potential wave equation, and the summation in
the L̄L̄ part of the dyadic Green’s function can be decomposed into two parts: one with all the indices
non-zero, and the other contains at least one zero index,

G(r̄, r̄′)
∣∣∣∣
LL

= − 1

k20

∑
m,n,p �=0

1

k2α − 02
∇∇′ψα(r̄)ψα(r̄

′)− 1

k20

∑
m,n,p
mnp=0

1

k2α − 02
∇∇′ψα(r̄)ψα(r̄

′)
1

εmεnεp
(51)
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The second term is identically zero. By interchanging the summation and differential operators in the
first summation symbolically (the singularity should be taken care of) as

G(r̄, r̄′)
∣∣∣∣
LL

= − 1

k20
∇∇′ ∑

m,n,p �=0

1

k2α − 02
ψα(r̄)ψα(r̄

′) =
1

k20
GL(r̄, r̄

′) (52)

where,

GL(r̄, r̄
′) = −∇∇′Gφ(r̄, r̄

′; k = 0) (53)

that corresponds to the derivative of the scalar Green’s function Gφ(r̄, r̄
′) of the cavity at DC. Notice

that GL is a frequency-independent part of the dyadic Green’s function G. Using the image expansion
of the scalar Green’s function of the cavity

Gφ(r̄, r̄
′; k = 0) =

1

4π

∑
n,m,p

(−1)n+m+p 1

|r̄ − r̄mnp(r̄′)| (54)

where r̄mnp(r̄
′) is the position of image sources. Taking R̄mnp = r̄ − r̄mnp(r̄

′), then the x-component of

the posterior part of GL for r̄ 
= r̄′ becomes

GL(r̄, r̄
′) · x̂ =

1

4π

∑
m,n,p

(−1)n+p 1

R3
mnp

(
3R̂mnpR̂mnp − I

)
· x̂ (55)

while for the y-component of the posterior part, (−1)m+p should be replaced in the summand and so on.
This series converges much better than the image expansion of the dynamic dyadic Green’s function.
The image expansion of the dynamic dyadic Green’s function is proportional to R−1

mnp while the DC part

converges as R−3
mnp versus the number of included images. This term captures the near field singularity

of the dyadic Green’s function in the source region. All in all, the dyadic Green’s function for r̄ 
= r̄′
(apart from a delta function singularity at r̄ = r̄′) can be written as

G(r̄, r̄′; k0) =
1

k20
GL(r̄, r̄

′) +
∑
α

1

k2αρ

1

εmεnεp

[
M̄α(r̄)M̄α(r̄

′) + N̄α(r̄)N̄α(r̄
′)

k2α − k20

]
(56)

In addition, a delta function singularity is buried in the definition of GL = −∇∇′Gφ(r̄, r̄
′; k = 0)

at r̄ = r̄′. If we consider the image expansion of Eq. (54), singularity comes from the exciting dipole
term m = n = p = 0. Therefore, the delta function singularity would be the same as free space case.

For r̄ sufficiently close to r̄′, the singular part G
sing

L can be written as

G
sing

L (r̄, r̄′) = −∇∇′ 1

4π|r̄ − r̄′| =
1

4π
∇∇ 1

|r̄ − r̄′| (57)

Applying the trace to both sides of Eq. (57) and noting that Tr∇∇ = ∇2, it yields TrG
sing

L = −δ(r̄−
r̄′). Since there is no preference between different directions near the source, G

sing

L = −1/3Iδ(r̄ − r̄′)
and the complete expansion of the dyadic Green’s function that is valid everywhere reads,

G(r̄, r̄′; k0) = − 1

3k20
Iδ(r̄ − r̄′) +

1

k20
GL(r̄, r̄

′) +
∑
α

1

k2αρ

1

εmεnεp

[
M̄α(r̄)M̄α(r̄

′) + N̄α(r̄)N̄α(r̄
′)

k2α − k20

]
(58)

3.3. Spectral Summation Acceleration

Following the imaginary wave number extraction of Eq. (14) and upon subtracting the dyadic Green’s
function at the imaginary wave number of k = iξ from itself yields,

G(r̄, r̄′; k) = G(r̄, r̄′; iξ) +
(

1

k2
+

1

ξ2

)
GL(r̄, r̄

′)

+
∑
α

1

k2αρεα

k2 + ξ2

(k2α − k2)(k2α + ξ2)

[
M̄α(r̄)M̄α(r̄

′) + N̄α(r̄)N̄α(r̄
′)
]

(59)
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The DC term does not add any computational effort as it is frequency independent term. In

Eq. (59), the imaginary wavenumber extracted termG(r̄, r̄′; iξ) will be computed by the image expansion

which converges very fast in terms of included images (see Appendix A). The second term GL will be
computed by the static image expansion in Eq. (55) which converges much faster than dynamic image
expansion. The modal series is now accelerated to the fourth-order of convergence with respect to α.
We can proceed to further accelerate the summation by following the same procedure as the vector
potential Green’s function,

G(r̄, r̄′; k) = G(r̄, r̄′; iξ)− k2 + ξ2

2ξ

∂

∂ξ
G(r̄, r̄′; iξ) +

(
1

k2
+

1

ξ2

)
GL(r̄, r̄

′) +
k2 + ξ2

2ξ

∂

∂ξ

(−1

ξ2

)
GL(r̄, r̄

′)

+
∑
α

1

k2αρεα

(k2 + ξ2)2

(k2α + ξ2)2(k2α − k2)

[
M̄α(r̄)M̄α(r̄

′) + N̄α(r̄)N̄α(r̄
′)
]

(60)

Again, since GL(r̄, r̄
′) is frequency independent, it leads to a great simplification of the terms,

G(r̄, r̄′; k) = G(r̄, r̄′; iξ)− k2 + ξ2

2ξ

∂

∂ξ
G(r̄, r̄′; iξ) +

(k2 + ξ2)2

k2ξ4
GL(r̄, r̄

′)

+
∑
α

1

k2αρεα

(k2 + ξ2)2

(k2α + ξ2)2(k2α − k2)

[
M̄α(r̄)M̄α(r̄

′) + N̄α(r̄)N̄α(r̄
′)
]

This is the 6th order convergent spectral expansion of the dyadic Green’s function of the rectangular
cavity. It only remains to compute the imaginary wavenumber derivative of the dyadic Green’s function.
The image expansion of the dyadic Green’s function of the rectangular cavity that is given in the

Appendix A can be used to find ∂ξG(r̄, r̄
′; iξ). Note that for a wideband solution, the extracted terms

with imaginary wavenumber as well as the static term GL should be evaluated only one time for a
broadband frequency sweep.

Figure 4 plots the xx component of the electric field dyadic Green’s function of the cavity over the
plane z = 0 inside the cavity for the exciting wavelength of λ = 0.93L. The source point and physical
parameters are the same as the vector potential case in Section 2.4. A wideband evaluation of Gxx is
depicted in Fig. 5 with the observation points on the line z = x = 0 in the cavity and the exciting
wavelength in the range of 0.05 ≤ λ/L ≤ 5. Notice that the difference between the vector potential

GA and electric field G dyadic Green’s functions is dominant at low frequencies (near field). At high

Figure 4. Electric field dyadic Green’s function Gxx(x, y, 0) calculated by 6th order convergent spectral
expansion for exciting wave length of λ = 0.93L.
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Figure 5. Electric field dyadic Green’s function Gxx(0, y, 0;λ) calculated by 6th order convergent
spectral expansion over two decades of bandwidth.

frequencies,

G(r̄, r̄′) =
[
I +

∇∇
k2

]
·GA(r̄, r̄

′) ≈ GA(r̄, r̄
′) (61)

The difference between two dyadic Green’s functions is more pronounced around the source region
where the electric field dyadic Green’s function is hyper singular (∝ 1/R3).

APPENDIX A. IMAGE EXPANSION OF THE DYADIC GREEN’S FUNCTION

The free space Green’s function G0(r̄, r̄
′; k) at wavenumber k that satisfies the vector wave equation of(

∇×∇×−k2
)
G0(r̄, r̄

′; k) = Iδ(r̄ − r̄′) (A1)

subject to the radiation boundary condition at infinity, for r̄ 
= r̄′ can be directly obtained by
differentiating the scalar Green’s function as

G0(r̄, r̄
′; k) =

[(
3

k2R2
− 3i

kR
− 1

)
R̂R̂+

(
− 1

k2R2
+

i

kR
+ 1

)
I

]
G0(R; k) (A2)

where G0(R; k) = eikR/4πR is the scalar free space Green’s function and R = |r̄ − r̄′|. In order to
obtain the cavity Green’s function that satisfies the Dirichlet boundary condition on the walls, image
sources should be placed all around the world in order to produce the response with vanishing tangential
component over the walls. Once the boundary conditions are satisfied, presence of the walls does not
have any additional effect on the fields, and they can be removed. Fig. A1 shows a 2D profile (xy plane)

Ly

Lx

J (r )'

Figure 6. A profile of the images dipoles for a x-directed dipole current J̄ in the cavity with PEC
walls. Change of color corresponds to a sign flip in the dipole moments.
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of the images dipoles around a cross-section of the cavity for a x-directed dipole in the cavity. Changing
color from blue to red shows a flip in the sign of the dipole. For a x-directed dipole with unit amplitude,
the collective response of all the dipoles in Fig. A1 including the main dipole inside the cavity would be

G⊥(r̄, r̄′) · x̂ =
∑
mn

(−1)nG0

(
r̄;mLx + (−1)mx′, nLy + (−1)ny′, z′

) · x̂
Here, G⊥(r̄, r̄′) · x̂ is the collective response of the image dipoles for a plane perpendicular to z;

the source dipole is located at (x′, y′, z′) inside the cavity; (mLx + (−1)mx′, nLy + (−1)ny′, z′) is the

location of the image dipoles for 2D profile of Fig. A1; and G0 is the free space dyadic Green’s function.
Taking the other two walls into account yields,

G(r̄, r̄′) · x̂ =
∑
p

(−1)pG⊥(r̄, r̄′′p) · x̂

=
∑
m,n,p

(−1)n+pG0

(
r̄;mLx + (−1)mx′, nLy + (−1)ny′, pLz + (−1)pz′

)
· x̂ (A3)

For real values of k, Eq. (A3) has a slow convergence rate that makes it not an attractive way of
computing the cavity Green’s function. However, for an imaginary wavenumber k = iξ, it has an
exponential convergence rate. In this case, the free space dyadic Green’s function becomes

G0(r̄, r̄
′; iξ) =

[
−
(

3

Q2
+

3

Q
+ 1

)
R̂R̂+

(
1

Q2
+

1

Q
+ 1

)
I

]
ξe−Q

4πQ
(A4)

where Q = ξR and R is the distance between the source and observation points. Similarly, for the
wavenumber derivative of the dyadic Green’s function, the image expansion of Eq. (A3) can be evaluated
with considering

∂

∂ξ
G0(r̄, r̄

′; iξ) =
e−Q

4π

([(
6

Q3
+

6

Q2
+

3

Q
+ 1

)
R̂R̂−

(
2

Q3
+

2

Q2
+

1

Q
+ 1

)
I

])
(A5)

that is still exponentially convergent.
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