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Maxwell’s Definition of Electric Polarization as Displacement

Arthur D. Yaghjian*

Abstract—After reaffirming that the macroscopic dipolar electromagnetic equations, which today
are commonly referred to as Maxwell’s equations, are found in Maxwell’s Treatise, we explain from
his Treatise that Maxwell defined his displacement vector D as the electric polarization and did not
introduce in his Treatise or papers the concept of electric polarization P or the associated electric-
polarization volume and surface charge densities, −∇ ·P and n̂ ·P, respectively. With this realization,
we show that Maxwell’s discussion of surface charge density between volume elements of dielectrics
and between dielectrics and conductors becomes understandable and valid within the context of his
definition of electric polarization as displacement D. Apparently, this identification of D with electric
polarization in Maxwell’s work has not been previously pointed out or documented except very briefly
in [2].

1. INTRODUCTION

One of the important features of Maxwell’s Treatise [1], as mentioned in the paper [2], is Maxwell’s
introduction of the electric displacement vector D without ever defining an electric polarization vector
P or assuming that the change in electric displacement in dielectrics from that in free space is caused
by electric dipoles. In stark contrast, Maxwell thoroughly analyzed magnetization M (magnetic
polarization) in terms of elementary magnetic dipoles produced by hypothetical magnetic charge
separation and introduced the constitutive relation B = μ0(H + M) with H the primary magnetic
field produced by the hypothetical magnetic charge and μ0 the permeability of free space. (In the
present paper, all equations are written using modern SI units.) As explained in [2], although Maxwell
assumed that there was some mechanism for charge separation that produced the displacement vector,
he did not assume that this induced charge separation in a dielectric was caused by electric dipoles
within the dielectric that gave rise to a polarization vector P or polarization volume and surface charge
densities, −∇·P and n̂·P, respectively. He limited his description of dielectrics to the linear constitutive
relation D = εE [1, Art. 68] with ∇ · D = ρe [1, Arts. 83a and 612] (equations that he inferred from
Faraday’s experimental results) but without suggesting the possibility of the more general constitutive
relation D = ε0E + P, where E is the electric field; D is the displacement; ε is the permittivity (which
Maxwell allowed to be a tensor) of the dielectric; ε0 is the free-space permittivity; and ρe is the electric
charge density.

Probably the two main reasons that Maxwell did not introduce an electric polarization vector
P analogous to his magnetic polarization vector M are 1) relatively very little experimentation had
been done with electrets (compared to the vast amount of experimentation with magnets) to strongly
indicate the dipole nature of electric polarization and 2) Maxwell did not know beforehand the form of
Ampere’s law with the ε0∂E/∂t term when he inserted the ∂D/∂t term to make Ampere’s static law
(∇×H = J, where J is the current density) compatible with the continuity equation (∇·J = −∂ρe/∂t)
and the divergence equation (∇ ·D = ρe). Incidentally, it was Maxwell, not Ampere, who first deduced
∇× H = J in his 1856 (Part 1 was read December 1855) paper “On Faraday’s Lines of Force” [3].
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It is well known that Maxwell referred to ∂D/∂t as displacement current and J + ∂D/∂t, rather
than J+∂P/∂t, as the total current. However, although mentioned in Section 4.1 of [2], it has not been
documented with enough detail that Maxwell used the term “electric polarization” synonymously with
the term “electric displacement” or just “displacement.” In other words, when Maxwell talked about the
electric polarization, he was referring to the vector D and not some imaginary vector P that was never
defined in his Treatise or papers. When one realizes this important definition, interpretation and word
usage of Maxwell, several of his statements about electric polarization that seem confusing (if one thinks
of P as electric polarization) become fully understandable when one considers (as Maxwell did) that D
is the measure of electric polarization, whether in a dielectric or the ether, the “luminiferous medium”
that Maxwell assumed filled a vacuum [1, Arts. 782 and 866].† The documentation and clarification of
this important feature of Maxwell’s Treatise (and papers) is the primary objective of the present paper.
As a secondary objective, we review in the next section the principal equations contained in Maxwell’s
Treatise.

2. MAXWELL, FOUNDER OF MAXWELL’S EQUATIONS

The most common present-day expression of the Maxwellian macroscopic electromagnetic field equations
in dipolar media is exemplified in Chapter 1 of Stratton’s book [6] on Electromagnetic Theory, namely

∇× E = −∂B
∂t

(1)

∇× H = J +
∂D
∂t

(2)

∇ · B = 0 (3)
∇ · D = ρe (4)

with constitutive relations

D = ε0E + P (5)
B = μ0(H + M) (6)

and for isotropic, linear, stationary materials

D = εE (7)
B = μH (8)
J = σE. (9)

Each one of the vector-form equations in Eqs. (1)–(9) is found in Art. 619 of Maxwell’s Treatise
(after changing to SI units and Maxwell’s German-script vectors to modern boldface vectors) with
the exceptions of Eqs. (1), (3), and (5).

As explained in the Introduction, Maxwell did not introduce the vector P and thus did not introduce
Equation (5). Nevertheless, his polarization vector D in Eqs. (2) and (7) was quite general in that
Maxwell assumed that the permittivity, as well as the permeability and conductivity, could be tensors,
and thus, the material could be anisotropic [1, Arts. 101e, 298, 428, 608, 609, 794].

The three scalar equations for the rectangular components of the mathematical rendition of
“Faraday’s law” in Eq. (1) can be found as Equation (54) in Maxwell’s 1861 Philosophical Magazine
paper, “On Physical Lines of Force” [7], [5, Ch. 4]. In Maxwell’s Treatise, Equation (1) appears in its
integral form [1, Arts. 579 and 595]

E = −dp
dt

(10a)

† Although a few references have noted that Maxwell does not introduce a vector P, I have not been able to find a single reference
that realizes that when Maxwell uses the term or refers to “electric polarization” he means the vector D and does not have in mind
our present-day concept of electric polarization P, which was introduced many years after Maxwell died. This misunderstanding of
Maxwell continues to be a source of confusion for both scientists and historians of science especially when they try to interpret what
Maxwell says about the charges at the surfaces of dielectrics and at the interfaces of dielectrics and conductors [4, Ch. 3], [5]; see
Section 4 below.
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with E and p defined in terms of integrals of the vectors E and B in Arts. 598 and 591 of the Treatise

E =
∮
C

E · dc, p =
∫
S

B · n̂dS. (10b)

(Maxwell worked extensively with the general Faraday’s law in Eq. (10) in Art. 598 where he shows
that the force v×B must be added to E if the curve C is moving with velocity v, and this implies that
the force exerted on a hypothetical unit electric charge moving with C is E + v × B. Thus, Maxwell
derived the “Lorentz force” from his generalized equation for Faraday’s law [2, 8].)

Maxwell wrote Equation (3) several times in his Treatise as well as in his papers but always in the
scalar form‡

∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
= 0. (11)

It should be noted that Maxwell did not obtain his macroscopic equations by averaging the fields
of discrete charges or dipoles but by assuming that each infinitesimal volume element dV of material
(or ether) had the same electromagnetic properties as a continuum. For example, for magnetization, he
assumed that the dipole moment of the volume element was MdV . He derived the static equations first
and then generalized to the time varying equations. Exactly how he did this, distinguishing between
mathematically defined fields and measurable fields, is explained in [2].

To my knowledge, none of Equations (1)–(9) can be found (in scalar or vector differential or
integral form) in any publications previous to Maxwell’s papers and Treatise, except for Eq. (3), which
W. Thomson determined for magnetostatic fields in his 1851 paper [9]. Moreover, without the papers and
Treatise of Maxwell, it is highly unlikely that other scientists of his time would have inferred in their
lifetimes these equations from Faraday’s Experimental Researches in Electricity [10], which does not
contain a single equation. It took the singular genius of Maxwell — his phenomenal powers of thought
and physical intuition coupled with extraordinary mathematical skills — to deduce these remarkable
equations. It seems to me a travesty to refer to these equations other than “Maxwell’s equations.”
Nonetheless, it would certainly be unfair to Faraday not to refer to the physics that Eqs. (1) and (10)
represent mathematically as Faraday’s law.§ In the Preface and throughout his Treatise, Maxwell gives
full credit for the experiments and ideas underlying most of his equations to Faraday. Indeed, Maxwell
could not have determined his equations without the previous work of Faraday, Oersted, Ampere, Weber,
Thomson and others.

Although Maxwell is generally considered the most important physical scientist between Newton
and Einstein, unfortunately too many commentaries on Maxwell’s work have claimed that Maxwell did
not express his equations in the form of Eqs. (1)–(9) that we know them today. Probably the two main
reasons for that misunderstanding are 1) Maxwell’s definitive 1865 Philosophical Transactions paper [11]
contained (in Maxwell’s words) “twenty variable [scalar] quantities” and “between these twenty [scalar]
quantities we have found twenty [scalar] equations” and 2) in Art. 619 of Maxwell’s Treatise, where he
summarized his general theory for the dynamic electromagnetic field with twelve vector-form equations,
and he used, instead of Eqs. (1) and (3), the equations

B = ∇× A (12)

and
E = −∂A

∂t
−∇ψe (13)

where A and ψe are the vector potential and scalar electric potential. Of course, taking the divergence
of Eq. (12) yields Eq. (3) and taking the curl of Eq. (13) with substitution from Eq. (12) yields Eq. (1).
And, as emphasized above and detailed in [2], Equation (1) (in integral form) and Equation (3) (in scalar
‡ Maxwell uses the derivative symbol “d” rather than the partial derivative symbol “∂”, which was not in wide use during his lifetime.
Nonetheless, he specified that, for example, da(x, y, z)/dx means the derivative of a(x, y, z) with respect to x holding y and z fixed.
§ A “law” of physics is used here to mean the verbal statement of the relationship between measured quantities during repeatable
physical experiments. An “equation” of physics is used to mean the formulation in mathematical symbols of the measured quantities
and their relationship. For example, Faraday summarized his “law” of electromagnetic induction as “A piece of metal or conducting
matter which moves across lines of magnetic force has, or tends to have a current of electricity produced in it” [10, paragraph 3087,
p. 335]. The corresponding Maxwell “equation” is

∮
C E · dc = − ∫

S ∂B/∂t · n̂dS.
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form) also are contain and worked with extensively in other Articles of Maxwell’s Treatise leading up
to Art. 619. The other equations, Eqs. (2), (4) and (6)–(9), are found in Art. 619 along with three
additional equations that Maxwell included, namely his “equation of mechanical force” that gives the
force density on current carrying conductors, polarized dielectrics, and bodies with static charge or static
magnetization (see Equation (14)); his definition of the “total current” as the sum of the conduction
current and the time rate of change of electric displacement (JT = J + ∂D/∂t); and the equation
H = −∇ψm when the magnetic field can be derived from a scalar potential.

3. MAXWELL’S ELECTRIC POLARIZATION VECTOR IS DISPLACEMENT D

As we mentioned in the Introduction, Maxwell’s Treatise (and papers) have no concept of what today
is call the electric polarization P, which was introduced at the turn of the century by Larmor [12],
Leatham [13], and Lorentz [14]. Thus there is also no concept of electric-polarization volume and
surface charge densities, −∇ · P and n̂ · P, in Maxwell’s work, but only what we refer to today as
electric charge density ρe satisfying the continuity equation, ∇ · J = −∂ρe/∂t. In Maxwell’s Treatise,
this electric charge density [1, Art. 31], which he also called “electrification,” or “free electricity,” or
just “electricity,” is a fluid substance (continuum) [1, Art. 36]; and electric conduction current J is the
“transference of electrification” [1, Art. 231].

Throughout Vol. I of his Treatise, Maxwell defined and referred to electric polarization as the
displacement D. (In Vol. II, Maxwell did not discuss electric polarization per se — just displacement.)
He began his discussion of electric polarization in Art. 59 of his Treatise where he said, “It is better,
however, in considering the theory of dielectrics from the most general point of view, to distinguish
between the electromotive intensity [E] at any point and the electric polarization of the medium at that
point, since these directed quantities, though related to one another, are not, in some solid substances,
in the same direction. The most general expression for the electric energy of the medium per unit of
volume is half the product of the electromotive intensity [E] and the electric polarization [D] multiplied
by the cosine of the angle between their directions [E · D/2 — see Art. 111]. In all fluid dielectrics the
electromotive intensity and the electric polarization are in the same direction and in a constant ratio
[D = εE — see Arts. 68 and 111].”

In Art. 60, Maxwell declared again that electric polarization is synonymous with electrical
displacement: “The electric polarization of an elementary portion of a dielectric is a forced state
into which the medium is thrown by the action of electromotive force, and which disappears when
that force is removed. We may conceive it to consist in what we may call an electrical displacement
[D], produced by the electromotive intensity [E]. When the electromotive force acts on a conducting
medium it produces a current through it, but if the medium is a nonconductor or dielectric, the current
cannot flow through the medium, but the electricity is displaced within the medium in the direction
of the electromotive intensity, the extent of this displacement depending on the magnitude of the
electromotive intensity [D = εE], so that if the electromotive intensity increases or diminishes, the
electric displacement increases and diminishes in the same ratio. The amount of the displacement is
measured by the quantity of electricity which crosses a unit of area, while the displacement increases
from zero to its actual amount. This, therefore, is the measure of the electric polarization.”

As a consequence of Maxwell’s definition of the measure of electric polarization as the vector D, the
electric polarization is zero wherever D is zero (not where the present-day electric polarization vector P
is zero). This is further confirmed by the words of Maxwell in Art. 62, “That the energy of electrification
resides in the dielectric medium, whether that medium be solid, liquid, or gaseous, dense or rare, or even
what is called a vacuum, provided it be still capable of transmitting electrical action. That the energy
in any part of the medium is stored up in the form of a state of constraint called electric polarization,
the amount of which [D] depends on the resultant electromotive intensity [E] at the place [D = εE].” In
other words, according to Maxwell’s definition of electric polarization, there exists electric polarization
even in the vacuum/ether if D is not equal to zero. Therefore, whenever Maxwell says that there is
zero electric polarization in a solid dielectric or vacuum/ether, he means that D is zero in that region.
Much of what Maxwell says about electric polarization in his Treatise becomes understandable only
within the realization that Maxwell uses the term “electric polarization” synonymously with “electric
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displacement” or just “displacement.” Maxwell’s expression(
J +

∂D
∂t

)
×B (14)

in Art. 619 for the “mechanical force” exerted by the magnetic induction B on a current carrying
conductor or polarized dielectric is consistent with his assumption that D is the measure of electric
polarization even in the vacuum/ether where D = ε0E. (Today we would properly express this
mechanical force as (J + ∂P/∂t) × B with P = (ε − ε0)E such that the electric polarization force
is zero in a vacuum where ε = ε0 [15, Sec. 2.1.10].)

4. MAXWELL’S SURFACE CHARGE ON DIELECTRICS PRODUCED BY
ELECTRIC POLARIZATION

With Maxwell’s definition of electric polarization as the displacement D, along with his divergence
equation ∇·D = ρe [1, Arts. 83a or 612] and his normal-displacement boundary conditionDn2+Dn1 = σe

(with n̂1,2 defined into the media on either side of the surface) [1, Arts. 83a or 613], where σe is the
surface charge density, his discussions of the surface charge associated with electric polarization in
dielectrics — discussions that have been a source of confusion to the present day [4, Ch. 3], [5] —
become understandable.

For example, consider Maxwell’s statement in Art. 62, “That the surface of any elementary portion
into which we may conceive the volume of the dielectric divided must be conceived to be charged so
that the surface-density at any point of the surface is equal in magnitude to the displacement through
that point of the surface reckoned inwards [into the dielectric]. If the displacement is in the positive
direction, the surface of the element will be charged negatively on the positive side of the element,
and positively on the negative side. These superficial charges will in general destroy one another when
consecutive elements are considered, except where the dielectric has an internal charge, or at the surface
of the dielectric.” In Art. 111, Maxwell repeated, “Conceive any portion of the dielectric, large or small,
to be separated (in imagination) from the rest by a closed surface, then we must suppose that on every
elementary portion of this surface there is a charge measured by the total displacement of electricity
through that element of surface reckoned inwards [into the dielectric].” Maxwell was saying that if
a portion of the dielectric is imagined isolated from any other polarization D, or if the dielectric is
divided into volume elements separated by infinitesimally thin shells in which there is no displacement
(D = 0), that is, no Maxwell electric polarization, then with D maintained at its original value in the
volume elements there is negative surface charge (−Dn) on the positive side of the volume element and

__
__
__
__
__
__

+
+
+
+
+

Figure 1. Cubical volume elements of a dielectric having displacement D (Maxwell electric polarization)
separated by thin shells of zero displacement (zero Maxwell electric polarization). The boundary
condition on normal D requires that σe = −Dn on the positive (right) side of the volume elements
and that σe = +Dn on the negative (left) side of the volume elements.
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positive surface charge (+Dn) on the negative side of the volume element, where n̂ denotes the positive
direction; see Fig. 1. Incidentally, this argument holds for a general D such as in polarized anisotropic
material and, as mentioned above, Maxwell allowed the polarized media to have tensor permittivities,
permeabilities, and conductivities.

This interpretation is further confirmed at the beginning of Art. 325 where Maxwell summarized,
“We have seen that when electromotive force [E] acts on a dielectric medium it produces in it a
state which we have called electric polarization, and which we have described as consisting of electric
displacement [D] within the medium in a direction which, in isotropic media, coincides with that, of
the electromotive force, combined with a superficial charge on every element of volume into which we
may suppose the dielectric divided, which is negative on the side towards which the force acts, and
positive on the side from which it acts.” In a modern-day version of Maxwell’s separated dielectric
volume elements, we would imagine infinitesimally thin free-space (vacuum) separation shells in which
P = 0 but not D = 0 because, unlike Maxwell, we would not consider the vacuum/ether as a dielectric
containing electric polarization. In the case of volume elements separated by free space, Dn is continuous
across the dielectric-vacuum interface and σe = 0 on the dielectric surfaces.

Although Maxwell did not specify how the displacement D could be made zero in the thin-shell
region surrounding the volume elements (see Fig. 1), one could imagine this being done by inserting
perfectly electrically conducting (PEC) material into the thin-shell region (while keeping the D fixed
within the volume elements) and then letting the induced surface charge bleed onto the surfaces of the
dielectric volume elements.

In discussing the Leyden jar, Maxwell explained how, according to his definition of electric
polarization as displacement D, the charge on the surface of a conductor should be ultimately viewed
as a surface charge on the surrounding dielectric (which can be a solid dielectric or the vacuum/ether):
“The charge therefore at the bounding surface of a conductor and the surrounding dielectric, which in the
old theory was called the charge of the conductor, must be called in the theory of induction [E inducing
charge separation and electric polarization D] the surface charge of the surrounding dielectric.” Again,
Maxwell was imagining an infinitesimally thin shell of zero electric polarization (D = 0) separating
the dielectric (which can be the vacuum/ether) from a conductor that, for example, can be a sphere
with a surface charge density σe0. Then the value of D on either side of the external surface of the
conductor will be zero, and thus σe becomes zero at the surface of the conductor. However just inside
the dielectric, the value of the radial displacement is equal to σe0, and thus the surface of the dielectric
contains the surface charge σe0 because D = 0 in the infinitesimally thin shell that borders the inner
surface of the dielectric; see Fig. 2. Again, one could imagine D being made zero in the thin shell by

σσ Dielectric

Conductor

D = 0
e0

Figure 2. Charged conducting sphere separated from a dielectric material by an infinitesimally thin
concentric shell in which D = 0 (zero Maxwell electric polarization). The surface charge on the
conducting sphere is canceled by the opposite charge on the inner surface of the concentric zero-D
shell, and the charge on the outer surface of the concentric zero-D shell is transferred to the inner
surface of the dielectric.
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inserting PEC material into the thin shell and letting the induced surface charge on the inner surface
of the PEC shell cancel the surface charge on the original conductor, then letting the surface charge on
the outer surface of the PEC shell bleed onto the inner surface of the dielectric.

5. CONCLUSION

Although a source of consternation for past and present-day commentaries and histories of Maxwell’s
Treatise, I would assert that none of Maxwell’s explanations concerning surface charge are invalid given
that his volume elements are separated not by infinitesimally thin free-space shells having zero P and
nonzero D, as one would imagine today, but by infinitesimally thin shells having zero D. As discussed
above, Maxwell did this because he assumed that D was the measure of electric polarization even in a
free space vacuum, Maxwell’s ether. Though more than 150 years have past since Maxwell published
his work in electromagnetics, as far as I am aware, this important interpretation of electric polarization
as D in Maxwell’s work has not been previously pointed out or documented except very briefly in [2].

ACKNOWLEDGMENT

The paper benefited from helpful comments by Professor Olav Breinbjerg. This research was supported
in part under the U.S. Air Force Office of Scientific Research (AFOSR) Grant # FA9550-19-1-0097
through Dr. Arje Nachman.

REFERENCES

1. Maxwell, J. C., A Treatise on Electricity and Magnetism, 3rd Edition, Dover, New York, 1954.
2. Yaghjian, A. D., “Reflections on Maxwell’s Treatise,” Progress In Electromagnetics Research,

Vol. 149, 217–249, 2014.
3. Maxwell, J. C., “On Faraday’s lines of force,” Trans. Cambridge Phil. Soc., Vol. 10, 27–83, 1856.
4. Buchwald, J. Z., From Maxwell to Microphysics, University of Chicago Press, Chicago, 1985.
5. Sarkar, T. K., et al., History of Wireless, Wiley, Hoboken, NJ, 2006.
6. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.
7. Maxwell, J. C., “On physical lines of force, Part 2,” Phil. Mag. and J. Sci., Vol. 21, 282–349,

March 1861.
8. Yaghjian, A. D., “Maxwell’s derivation of the Lorentz force from Faraday’s law,” arXiv:1911.04605,

November 2019.
9. Thomson, W., “A mathematical theory of magnetism,” Phil. Trans. Roy. Soc. Lond., Vol. 141,

269–285, January 1851.
10. Faraday, M., Experimental Researches in Electricity, Dover, New York, 2004.
11. Maxwell, J. C., “A dynamical theory of the electromagnetic field,” Phil. Trans. Roy. Soc. Lond.,

Vol. 155, 459–512, 1865.
12. Larmor, J., “A dynamical theory of the electric and luminiferous medium — Part II. Theory of

electrons,” Phil. Trans. Roy. Soc. London (A), Vol. 186, 695–743, 1895.
13. Leathem, J. G., “On the theory of the magneto-optic phenomena of iron, nickel, and cobalt,” Phil.

Trans. Roy. Soc. London (A), Vol. 190, 89–127, 1897.
14. Lorentz, H. A., “The fundamental equations for electromagnetic phenomena in ponderable

bodies deduced from the theory of electrons,” Proc. Roy. Acad. Amsterdam, Vol. 5, 254–266,
September 1902.

15. Hansen, T. B. and A. D. Yaghjian, Plane-Wave Theory of Time-domain Fields: Near-field Scanning
Applications, IEEE/Wiley, New York, 1999.


