
Progress In Electromagnetics Research Letters, Vol. 88, 67–74, 2020

Polarization Difference Smoothing in Bistatic MIMO Radar
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Abstract—This paper investigates the joint direction of departure (DOD) and direction of arrival
(DOA) estimation of coherent targets in bistatic multiple-input multiple-output (MIMO) radar under
the presence of spatially correlated noise. Based on electromagnetic vector sensors at both transmitter
and receiver of MIMO radar, a preprocessing method, namely polarization difference smoothing, is
proposed to remove the coherence between targets and to suppress the spatially correlated noise. Then
DODs and DOAs are estimated using the ESPRIT method. Further, this paper develops a simple
approach for pair-matching between the estimated DODs and DOAs. Simulation results are compared
with the receive polarization smoothing and transmit-receive polarization smoothing methods available
in literature. Results show that the proposed approach improves the performance significantly.

1. INTRODUCTION

In bistatic MIMO radar, transmitter and receiver arrays are at different locations such that the direction
of departure (DOD) and direction of arrival (DOA) are different towards the targets located at far
field [1]. For estimating the DOD and DOA of uncorrelated targets, many investigations have been
found in literature, for example, estimation of signal parameters via rotational invariance technique
(ESPRIT) [2], ESPRIT without pairing [3], multiple signal classification (MUSIC) algorithm [4], trilinear
decomposition-based blind algorithm [5], maximum-likelihood algorithm [6], and the references therein.
Majority of these investigations were based on high-resolution subspace-based methods such as ESPRIT
and MUSIC. In practical applications, the targets are coherent, which leads to a reduction in rank of
the signal covariance matrix, and this matrix rank should be restored before employing ESPRIT and
MUSIC techniques. Spatial smoothing [7, 8] is a standard approach for decorrelating coherent targets by
constructing multiple subarrays and can resolve any number of targets. However, the spatial smoothing
technique requires a large number of subarrays proportionately to the number of targets needed to
decorrelate. Thus, effective array aperture length becomes smaller as the subarray number increases,
and this characteristic leads to the inferiority in performance as well as the number of targets identifiable.
In order to overcome this inferiority, electromagnetic vector sensors (EVSs) [9] are employed as sensing
elements in passive radar.

The BCD tensor modeling for estimating the joint angle of arrival and polarization in an L-shaped
EVSs array is investigated [10]. In [11], a CRB-based transmitting polarization design algorithm is
proposed for estimating the 2D angles in a MIMO-EVSs array. Spatial smoothing algorithm in [12, 13]
and unitary ESPRIT with inherent smoothing in [14] are used to localize the coherent targets in MIMO
radar with EVSs. In [15–17], a polarization smoothing (PS) preprocessing technique is developed to deal
with coherent targets by using EVSs in different structures of radar. In [15], PS technique is discussed
for a passive linear array with EVSs. In [16], PS is extended for a MIMO radar with scalar sensors at
transmitter and EVSs at receiver, and further [17] presents the PS in a bistatic MIMO radar with EVSs
at both transmitter and receiver. Compared with the spatial smoothing technique, PS processing is
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applied to arbitrary array geometry, and it does not reduce the effective array aperture. In both spatial
smoothing and polarization smoothing algorithms, rank of the signal covariance matrix can be restored,
but they retain noise covariance matrix. Hence the subspace-based techniques with spatial/polarization
smoothing are only applicable to spatially uniform white noise.

In [18], considering a planar array with EVSs, a propagator-based method is developed for 2D-DOA
estimation of coherent signals in the presence of spatially correlated noise. In [19], spatial difference
smoothing in bistatic MIMO radar is used to localize the coherent signals in unknown correlated
noise. In [20–22], a method is proposed for angle estimation of targets in bistatic MIMO radar under
the presence of spatially correlated noise. In [23], considering a passive uniform rectangular array,
a polarization difference smoothing (PDS) method is proposed for simultaneously handling coherent
signals and spatially correlated noise. In this paper, we incorporate the PDS approach into a bistatic
MIMO radar with EVSs as sensing elements at both transmitter and receiver. The proposed PDS
approach with ESPRIT for angle estimation is given in Section 3, and the simulation results to justify
the proposed approach are presented in Section 4.

Notation: Vectors and matrices are denoted with lowercase and uppercase bold characters,
respectively. (.)T denotes the transpose, and (.)H indicates the conjugate-transpose. Symbol ⊗ denotes
the Kronecker product. IN is an N × N identity matrix; 0M×N is an M × N zero matrix; and diag{.}
represents the diagonal matrix.

2. SIGNAL MODEL

Bistatic MIMO radar is considered with M transmitting and N receiving EVSs (six-component EVSs).
The EVSs are positioned uniformly along the z-axis and separated by a distance dt at the transmitter
and dr at the receiver. K far-field targets are present in the same range cell. Then, manifold vectors
of the transmit array atk

∈ C
6M×1 and receive array ark

∈ C
6N×1 towards the kth target direction are

expressed by

atk
= btk

(θtk
) ⊗ ctk

(θtk
, φtk

, γtk
, ηtk

)

ark
= brk

(θrk
) ⊗ crk

(θrk
, φrk

, γrk
, ηrk

) (1)

where btk
= [1, αk, · · · , αM−1

k ]T in which αk = e−j2πdt sin θtk
/λ with λ being the wavelength, brk

=
[1, βk, · · · , βN−1

k ]T in which βk = e−j2πdr sin θrk
/λ, and ctk

/ crk
is the spatial response of the transmitting/

receiving EVS. The spatial response ci, i = tk, rk, in vector notation is expressed by

ci =

⎡
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(2)

where 0 ≤ θi < π is the elevation angle, 0 ≤ φi < 2π the azimuth angle, 0 ≤ γi < π/2 the auxiliary
polarization angle, and −π ≤ ηi < π the polarization phase difference. Note that these angles are
concerned with i = tk, rk.

Let sm,p be the P × 1 transmitting coded vector signal by the pth element of the mth EVS, which
satisfies the orthogonality condition,

sH
m,psn,q =

{
P, m = n & p = q

0, otherwise
; m,n = 1, · · · ,M ; p, q = 1, · · · , 6.

Thus, the total transmission signal by all six elements of all M EVSs is expressed by 6M × P matrix
S = [ST

1 , · · · ,ST
M ]T , in which Sm = [sm,1, · · · , sm,6]T . The transmitted signals steer to K far-field

targets are {aT
t1S, · · · ,aT

tK
S}. Considering that {ζ1, · · · , ζK} are the reflection coefficients of targets,
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echoes can be represented by {ζ1aT
t1S, · · · , ζKaT

tK
S}. These echoes are impinging on the receive EVSs.

Then, the received signal X(l) ∈ C
6N×P at the lth snapshot is given by

X(l) =
K∑

k=1

ark
ζk(l)aT

tk
S + V(l) (3)

where V(l) ∈ C
6N×P is the noise matrix at lth snapshot. The signal matrix X(l) in compact form is

given by

X(l) = ArΛ(l)AT
t S + V(l) (4)

where At = [at1, · · · ,atK
] ∈ C

6M×K is the manifold matrix of transmit array; Ar = [ar1 , · · · ,arK
] ∈

C
6N×K is manifold matrix of receive array; and Λ(l) = diag{ζ1(l), · · · , ζK(l)} ∈ C

K×K is the diagonal
matrix containing reflection coefficients.

3. PROPOSED APPROACH

3.1. Polarization Difference Smoothing

In polarization difference smoothing, the 6N × K receive array manifold Ar is divided into six N × K
subarray manifolds Ar,i (i = 1, · · · , 6), where the ith subarray manifold Ar,i is corresponds to the ith
component of all receive EVSs. Thus, the subarray block Ar,1 corresponds to Ex,r = [ex,r1 , · · · , ex,rK

],
Ar,2 corresponds to Ey,r = [ey,r1 , · · · , ey,rK

], Ar,3 corresponds to Ez,r = [ez,r1 , · · · , ez,rK
], Ar,4

corresponds to Hx,r = [hx,r1, · · · ,hx,rK
], Ar,5 corresponds to Hy,r = [hy,r1 , · · · ,hy,rK

], and Ar,6

corresponds to Hz,r = [hz,r1, · · · ,hz,rK
]. The subarray manifolds Ar,i, i = 1, · · · , 6, can be obtained

from the receive array manifold Ar as

Ar,i =

⎡
⎢⎢⎣

ri

ri+6
...

ri+6(N−1)

⎤
⎥⎥⎦ , i = 1, · · · , 6 (5)

where ri is the ith row of Ar. The subarray block Ar,i can also be expressed as

Ar,i = [br1(θr1)ci,r1 , · · · ,brK
(θrK

)ci,rK
] = BrCi,r, i = 1, · · · , 6 (6)

where Br = [br1(θr1), · · · ,brK
(θrK

)] and Ci,r = diag{ci,r1 , · · · , ci,rK
}.

Then the received signal Xi(l) ∈ C
N×P corresponds to ith component of the receive EVSs at the

lth snapshot which can be expressed from Eq. (3) as

Xi(l) = Ar,iΛ(l)AT
t S + Vi(l), i = 1, · · · , 6 (7)

where Vi(l) denotes the noise at the ith component of the receive EVSs. The signal Xi(l), after matched
filtering with SH/

√
P , is given by

Xouti(l) =
√

PAr,iΛ(l)AT
t +

1√
P

Vi(l)SH ∈ C
N×6M , i = 1, · · · , 6 (8)

In order to include inherent smoothing associated with the components of transmitting EVSs, we
rearrange the above signal Xouti(l) as given below

Yi(l) = [x1,1
outi

(l), · · · ,x1,N
outi

(l),x2,1
outi

(l), · · · ,x2,N
outi

(l), · · · ,xM,1
outi

(l), · · · ,xM,N
outi

(l)]T ∈ C
MN×6, (9)

i = 1, · · · , 6

where xm,n
outi

(l) ∈ C
6×1 represents the signal associated with the ith component of the nth EVS of the

receive array corresponding to the mth EVS of the transmit array. The (m,n)th partition xm,n
outi

at each
snapshot can be obtained from the signal Xouti in Eq. (8) as xm,n

outi
= [Xouti(n, 6m − 5 : 6m)]T . The

rearranged signal Yi(l) can be expressed in a compact form as

Yi(l) = BΛout(l)CT
i + Wi(l) = BDi(l) + Wi(l), i = 1, · · · , 6 (10)
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where B = [bt1 ⊗ br1 , · · · ,btK
⊗ brK

] ∈ C
MN×K ,Ci � CtCi,r ∈ C

6×K in which Ct = [ct1 , · · · , ctk
] and

Ci,r = diag{ci,r1 , · · · , ci,rK
},Di(l) = Λout(l)CT

i ,Λout(l) = diag{√Pζ1(l), · · · ,
√

PζK(l)}, and Wi(l) is
the corresponding noise matrix.

Therefore, the covariance matrix of the signal Yi(l) corresponding to the ith component of the
receive EVSs can be expressed as

RY,i = E
[
Yi(l)YH

i (l)
] ∈ C

MN×MN , i = 1, · · · , 6 (11)

In order to include the smoothing concerning with the components of receive EVSs and to suppress
the spatially correlated noise, polarization difference smoothing covariance matrix Rpds

Y is defined as

Rpds
Y =

3∑
p=1

[
RY,ip − RY,jp

]
(12)

where indices (i1, i2, i3) are the combination of three different digits formed out of the six digits 1, 2, 3,
4, 5, 6, and indices (j1, j2, j3) are the combination of the remaining three digits. Under the assumption
that noise at each component of a receive EVS must be same, difference of covariance matrices RY,i

will suppress the spatially correlated noise, and their sum will remove the coherence between targets
and can resolve up to 36 coherent targets. However, the resolvable target number can be increased two
times by incorporating the forward-backward averaging to the polarization difference smoothing matrix
Rpds

Y .

3.2. Joint DOD and DOA Estimation Using ESPRIT

The manifold vectors btk
and brk

in matrix B of Eq. (10) satisfy the rotational invariance property, that
is bt2k

= αkbt1k
and br2k

= βkbr1k
, where bt1k

(br1k
) and bt2k

(br2k
) denote the first M − 1 (N − 1)

and last M −1 (N −1) elements of btk
(brk

), respectively. Thus, DOD and DOA can be obtained using
ESPRIT. The algorithmic steps for estimating the joint DODs and DOAs are summarized below.

(i) Compute the snapshot covariance matrix of Yi(l) using L snapshots as R̂Y,i = 1
6L

∑L
l=1 Yi(l)YH

i (l),
where factor 6 is used due to the inherent smoothing.

(ii) Compute the polarization difference smoothing covariance matrix Rpds
Y using Eq. (12).

(iii) Perform the eigendecomposition of Rpds
Y to construct the signal-subspace Es ∈ C

MN×K and noise-
subspace En ∈ C

MN×(MN−K), where columns of Es and En are the eigenvectors corresponding to
K largest eigenvalues and the remaining MN − K eigenvalues of Rpds

Y , respectively.

(iv) For DOD estimation, compute eigenvalues {λt1, λt2 , · · · , λtK
} of Ψt = (EH

t1Et1)−1EH
t1Et2,

where Et1 = J1Es and Et2 = J2Es in which J1 =
[
I(M−1)N | 0(M−1)N×N

]
and J2 =[

0(M−1)N×N | I(M−1)N

]
. Then, the DOD estimates are

θ̂tk
= sin−1

(
arg(λtk

)
−2πdt/λ

)
, k = 1, · · · ,K. (13)

(v) For DOA estimation, compute eigenvalues {λr1 , λr2 , · · · , λrK
} of Ψr = (EH

r1Er1)−1EH
r1Er2, where

Er1 = J3Es and Er2 = J4Es in which J3 = IM ⊗ [
I(N−1) | 0(N−1)×1

]
and J4 = IM ⊗[

0(N−1)×1 | I(N−1)

]
. Then, the DOA estimates are

θ̂rk
= sin−1

(
arg(λrk

)
−2πdr/λ

)
, k = 1, · · · ,K. (14)

(vi) For pairing the DODs and DOAs, we utilize the principle that columns of B are orthogonal to
columns of En. Thus, pairing between θ̂tk

and θ̂rk
of a particular target can be obtained by finding

f(θ̂tk , θ̂rp) � bH(θ̂tk
, θ̂rp)EnEH

n b(θ̂tk
, θ̂rp), k, p = 1, · · · ,K, and selecting the angle indexed by the

minimum value concerning θ̂rp for each θ̂tk
, where b(θ̂tk

, θ̂rp) = btk
(θ̂tk

) ⊗ brk
(θ̂rk

).
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4. SIMULATION RESULTS

Monte-Carlo simulations are presented here to evaluate the accuracy and precision performance of
the proposed polarization difference smoothing (TrRr-PDS) under the presence of coherent targets
and spatially correlated noise. The performance is compared with the existing receiver polarization
smoothing (Rr-PS) [16] and transmitter-receiver polarisation smoothing (TrRr-PS) [17]. Accuracy is
described by the averaged root mean squared error (RMSE) of direction estimates, defined by

RMSE �

√√√√ 1
2KMc

Mc∑
i=1

K∑
k=1

[(
θ̂tk,i

− θtk

)2
+

(
θ̂rk,i

− θrk

)2
]

(15)

where θ̂tk,i
/θ̂rk,i

is the estimate of θtk
/θrk

at ith Monte-Carlo trial, and Mc is the total number of
executed trials.

In all simulations, we consider M = N = 10 EVSs with spacing dt = dr = λ/2 at both transmitter
and receiver, Hadamard matrix of order P = 64 for generation of the transmission signal S, L = 100
snapshots (except for Fig. 2 in which L varies from 10 to 200), and Mc = 500 Monte-Carlo trials are
executed. The spatially correlated noise is generated such that its covariance matrix Rv is given by

Rv [k,l] =
{

σ2, k = l

σ2ρ|k−l|ejπ(k−l)/N , otherwise
; k, l = {1, · · · , N}; (16)

where ρ|k−l| is the correlation coefficient between the kth and lth EVSs, and σ2 is the noise power. The
noise power σ2 is chosen in accordance with the provided signal to noise ratio (SNR) and signal power
σ2

ζ � 1
K

∑K
k=1 E[ζk(l)ζH

k (l)]. Note that ρ = 0 for spatially white noise.
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Figure 1. RMSE versus SNR. (a) Spatially white noise. (b) Spatially correlated noise.

Figures 1, 2, and 3 illustrate the RMSE of direction estimates versus SNR, snapshot number L,
and correlation coefficient ρ, respectively. In these evaluations, we set K = 3 coherent targets with θt =
{10◦, 16◦, 23◦}, θr = {26◦, 13◦, 20◦}, φt = {120◦, 30◦, 40◦}, φr = {25◦, 35◦, 145◦}, γt = {15◦, 20◦, 45◦},
γr = {45◦, 30◦, 60◦}, ηt = {1.5708,−0.7854, 0.7854}, and ηr = {−1.5708, 1.0472, 0.5236}. Reflection
coefficients of coherent targets are generated by ζk(l) = εkζ0(l), where (ε1, ε2, ε3) = (1, 1 + 1.2j, 1 − j)
and {ζ0(1), · · · , ζ0(L)} are the complex normalized Gaussian samples. SNR ranges from −10 dB to
20 dB with interval of 5 dB in Fig. 1, and constant at 0 dB in both Fig. 2 and Fig. 3. In Fig. 1 and
Fig. 2, correlation factor ρ of correlated noise is taken as 0.98 whereas in Fig. 3 ρ varies from 0 to 1 with
0.1 step size. Fig. 1(a) evaluates RMSE versus SNR under the presence of spatially white noise, and
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Figure 2. RMSE versus snapshot number under
the presence of spatially correlated noise.
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Figure 3. RMSE versus correlation factor ρ of
correlated noise.

(a) (b)

Figure 4. Scatters of (θ̂t, θ̂r) using the method in [16]. (a) Uncorrelated noise. (b) Correlated noise.

Fig. 1(b) evaluates that in spatially correlated noise. The RMSE in Fig. 1, Fig. 2, and Fig. 3 signify
that the accuracy performance of the proposed PDS approach is superior significantly at low SNR as
compared with the approaches in [16] and [17]. This superior performance is due to the smoothing
factor as well as the removal of noise. Note that the smoothing factors of the proposed method and the
method in [17] are the same which is 36, whereas the smoothing factor of the method in [16] is 6.

Figures 4, 5, and 6 show both accuracy and precision performances through the scatters of DOD
and DOA estimates executed over 500 independent trials. Figs. 4–6 also describe the pairing between
DOD and DOA estimates. In this analysis, we consider SNR = 0dB, ρ = 0.85 for correlated noise,
and K = 4 coherent targets with (ε1, ε2, ε3, ε4) = (1, 1 + 1.2j, 2 − j, 4− j), θt = {25◦, 30◦, 35◦, 40◦}, θr =
{37◦, 47◦, 32◦, 42◦}, φt = {32◦, 55◦, 46◦, 64◦}, φr = {26◦, 42◦, 35◦, 56◦}, γt = {45◦, 45◦, 45◦, 45◦}, γr =
{31◦, 60◦, 40◦, 70◦}, ηt = {−1.5708, 1.0472, 0.7854, 0.5236}, and ηr = {0.7854, 0.5236,−1.0472, 0.6283}.
With the pairing approach described in step-vi of section 3.2, the estimates of DODs and DOAs are
paired accurately. The scatters of DOD and DOA estimated in Fig. 4, Fig. 5, and Fig. 6 show that the
accuracy performance of the proposed method (Fig. 6) is significantly relative to the methods in [16]
(Fig. 4) and [17] (Fig. 5).
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(a) (b)

Figure 5. Scatters of (θ̂t, θ̂r) using the method in [17]. (a) Uncorrelated noise. (b) Correlated noise.

(a) (b)

Figure 6. Scatters of (θ̂t, θ̂r) using the proposed method. (a) Uncorrelated noise. (b) Correlated noise.

5. CONCLUSION

A polarization difference smoothing preprocessing approach is proposed for a bistatic MIMO radar to
deal with coherent targets and spatially correlated noise. Simulation results show that the proposed
approach outperforms the existing polarization smoothing based methods, particularly at low signal to
noise ratio region. Further, the DOD and DOA estimates are paired accurately with a simple procedure
developed using the orthogonality between noise subspace and manifold vector of estimated angles.
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