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Abstract—In order to obtain the carrier frequency (CF) and direction-of-arrival (DOA) estimation, a
uniform linear array (ULA)-based modulated wideband converter (MWC) discrete compressed sampling
(CS) digital receiver system is proposed. It can achieve sub-Nyquist sampling, save the storage space,
and obtain the CF and DOA estimation by processing the CS data directly. However, the existing
method for this system needs more branches to get better performance. In this paper, a compressed
ULA (CULA)-based MWC discrete CS digital receiver system is proposed. First, a compression matrix
is used to reduce the number of branches behind the antennas. Then, the MWC discrete CS structure
is used to reduce the data volume. Finally, the multiple signal classification (MUSIC) algorithm is
used to jointly estimate the CF and DOA by processing the CS data directly. The simulation results
validate the effectiveness of the proposed system and the proposed method for the joint CF and DOA
estimation.

1. INTRODUCTION

Traditional wideband digital receivers for electronic reconnaissance are commonly utilized to sample and
process radar signals at the Nyquist sampling rate or the band-pass sampling rate [1–3]. However, with
the increasing complexity of the electronic environment, bottleneck problems have been encountered
with traditional digital receiver systems, such as complex hardware structure and large-volume data
processing. Therefore, it is necessary to consider a new receiver system.

The compressed sensing theory is a new concept to acquire data at a low sampling rate [4–6]. In
2010, the MWC structure was proposed by Mishali and Eldar to achieve sub-Nyquist sampling [7].
However, most research on MWC structures has focused on signal reconstruction, and few studies have
considered the direct processing of the CS data [8–10]. In [11], we extended the MWC to the discrete-
time domain and proposed a new CS-based wideband digital receiver, where the CS data were processed
directly to reduce the complexity. This digital receiver can effectively reduce the sampling rate of each
channel, save the storage space, and increase the sensitivity of the receiver [11]. In particular, this digital
receiver can solve the cross-channel signal problem flexibly [12]. However, because of the phase loss of
the CS data, it is difficult to obtain the true CF. In addition, it is difficult to obtain the DOA of the
signal, which is another important feature. In [13], Ioushua et al. proposed a ULA-based MWC system
and used a signal reconstruction method to obtain the CF. This system exhibited better reconstruction
performance than the MWC. In addition, the authors extended the ULA configuration and proposed
the CompreSsed CArrier and DOA Estimation (CaSCADE) system which achieved good estimation
performance of the CF and DOA. However, the CaSCADE system is more difficult to implement than
the ULA configuration. In [14], the authors suggested to use the first sensor of the ULA-based MWC
structure as the reference element and used multiple MWC channels to reconstruct the signal. This
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method increased the complexity of the system. In [15], we proposed a ULA-based MWC discrete CS
structure and achieved the joint estimation of the CF and angle-of-arrival (AOA) by processing the CS
data directly. The cyclic-shifted pseudo random sequence (PRS) was used to mix the signal in each
branch of the MWC, causing a special phase difference in the CS data. Subsequently, we corrected the
phase and used the MUSIC algorithm to estimate the CF and AOA. In [16], we extended the structure
proposed in [15] and obtained the better estimation. However, in order to improve the performance,
more branches are needed.

The compression matrix method was proposed to reduce the numbers of branches behind the
antennas in [17]. This method uses a complex compression matrix Ψ ∈ C

M×L at the antenna output,
where L is the number of antennas, and M is the number of branches behind the antennas with M < L.
The dimension of received signal is reduced from L to M by multiplying the received signal with the
compression matrix. It is known that there is an information loss (L −M)/L when a ULA is used as
the receiver antenna array [18]. Considering the characteristics of compression matrix and the complete
study about the linear array [19], in this paper, we propose a CULA-based MWC receiver system. In
this system, the compression consists of two steps. The first step is the compression of the branches.
A compression matrix is used to compress the number of MWC branches so that the number of MWC
branches is much lower than the number of antennas. The second step is data compression. The data are
compressed by using the MWC structure. After the compression, the dimension of both the structure
and data have been reduced. In order to obtain the CF and DOA estimation, we propose to use the
MUSIC algorithm [20, 21] to conduct a two-dimensional (2D) search for the peak in the spatial and
frequency domains to joint the CF and DOA estimation.

The rest of this paper is organized as follows. Section 2 presents the scheme of the CULA-based
MWC discrete CS receiver. In Section 3, we describe the joint estimation method to determine CF and
DOA. The simulation results and discussions are presented in Section 4. Finally, we conclude the paper
in Section 5.

Notations: we use lower-case letters (e.g., a), lower-case bold letters (e.g., a), and upper-case bold
letters (e.g., A) to represent scalars, vectors, and matrices, respectively. Superscripts T and H denote
the transpose and complex conjugate transpose, respectively. In addition, E{·} is used to represent the
expectation operation, and {·}↓Mp denotes the down-sampling operation. I denotes the identity matrix
with a suitable dimension.

2. PRINCIPLE OF THE CULA-BASED SYSTEM

In this section, we describe the scheme of the proposed CULA-based MWC discrete CS receiver. As
shown in Fig. 1, the number of array elements is L, and the number of branches is M with M < L.
We design to detect and acquire the signal pulse in a very short time by using the proposed receiver.
There would be only one signal detected and acquired in the short time [15]. Suppose that there is only
one far-field narrowband signal s(t) impinging on the proposed CULA-based system with a Nyquist
sampling rate fNY Q = 1/TNY Q; the signal vector x(t) received by L antennas is

x (t) = As (t) + η (t) (1)

where η(t) = [η1(t), η2(t), . . . , ηL(t)]
T is the independent and identically additive white Gaussian noise

vector with mean zero and variance σ2I, and A = [a(θ)] is the array manifold matrix, in which

a(θ) = [1, e−j 2πd
λ

sinθ, . . . , e−j
2π(L−1)d

λ
sin θ]T is the steering vector corresponding to the signal whose DOA

is θ.
As demonstrated in [17], the essence of a compressed array is to reduce the dimensionality of the

received signal. This can be achieved by multiplying the received signal with a complex compression
matrix Ψ ∈ C

M×L, and elements of the complex compression matrix are generated by independent and
identically distributed random entries. Hence, the output signal vector ẋ(t) after the CULA is sampled
by the analog to digital converter (ADC) expressed as:

ẋ[n] = Ψx [n] = Gs[n] + ν[n] n = 1, 2, . . . (2)

where ν[n] = Ψη[n] is the total noise, and G = ΨA is a compressed array manifold matrix. For
convenience, we express G as G = [g1, g2, . . . , gm, . . . , gM]T , where gm is the mth element of the vector
that contains the DOA θ of the original signal.
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Figure 1. The CULA-based MWC discrete CS system.

Subsequently, the signal is processed by the MWC discrete CS structure [11]. The period of the
PRS is Tp, and there are Mp = TpfNYQ elements per period. The periodic PRS p̃m[n] in the mth branch
can be described as

p̃m[n] =
1

Mp

Mp−1∑
l=0

Pm(l)e
j 2π
Mp

nl
(3)

where l is the index of the sub-band and 0 ≤ l ≤ Mp − 1; the digital Fourier transform coefficients of
the principal value sequence pm[n] can be expressed as:

Pm (l) =

Mp−1∑
n=0

pm [n]e
−j 2π

Mp
ln

(4)

The low-pass filter h[n] is designed as an ideal filter with the cut-off frequency fs/2. We denote the
mixing rate fs as fs = fp = 1/Tp = fNYQ/Mp, and fp ≥ B is designed to avoid edge effects [15].
According to spectrum segmentation characteristics of the MWC discrete CS system analysed in [15],
the incident signal will only exist in an unknown sub-band l′, and the spectrum information in other sub-
bands can be approximately ignored. Thus, the output of the mth branch of the proposed CULA-based
system can be expressed as

ym [k] = {(ẋm [n] · p̃m [n]) ∗ h [n]}↓Mp

=

{
1

Mp
Pm

(
l′
)
e
j 2π
Mp

nl′
gms [n]

}
↓Mp

+

{
1

Mp
Pm

(
l′
)
e
j 2π
Mp

nl′
νm [n]

}
↓Mp

=
1

Mp
Pm

(
l′
)
gms̄ [k] + vm [k] (5)

where ẋm[n] denotes the sampled signal in the mth branch; s̄[k] = {ej
2π
Mp

nl′
s[n]}↓Mp denotes the CS

signal data of the mth branch; and v̄m[k] is the CS noise data of the original noise νm[n] in the mth
branch. To avoid noise distortion, the compression matrix is chosen to be a row orthogonal matrix,
namely ΨΨH = I. According to the analysis of noise about MWC discrete CS structure in [11], it
is known that the proposed system does not change the signal-to-noise ratio (SNR). Compared with
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the output of basic receiver proposed in [15] and [16], it is known that the new receiver has the same
capabilities using less branches.

Then, considering the output of all branches, we obtain the output of the proposed CULA-based
system as ⎡

⎢⎢⎣
ẏ1 [k]
ẏ2 [k]
...

ẏM [k]

⎤
⎥⎥⎦ =

1

Mp

⎡
⎢⎢⎣

P1 (l
′) g1

P2 (l
′) g2
...

PM (l′) gM

⎤
⎥⎥⎦ s̄ [k] +

⎡
⎢⎢⎣

v̄1[k]
v̄2[k]
...

v̄M [k]

⎤
⎥⎥⎦ (6)

According to Eq. (6), we can learn that the CF of the CS data is lost due to the mixing operation,
and the phase difference between the mth branch and the (m − 1)th branch is converted to
Pm(l′)gm/Pm−1(l

′)gm−1.

3. JOINT CF AND DOA ESTIMATION METHOD

In this part, we describe the use of the high-resolution MUSIC method to conduct a 2D search in the
spatial and frequency domains to jointly estimate the CF and DOA. We rewrite Eq. (6) as

ẏ [k] = ACULAs̄ [k] + v̄ [k] (7)

where ẏ[k] = [ẏ1[k], . . . , ẏM [k]]T is the output of the system; s̄[k] is the CS data vector of the original
signal vector; and v̄[k] = [v̄1[k], . . . , v̄M [k]]T is the CS data vector of the noise vector. We define the
array manifold matrix ACULA of the CULA-based system as

ACULA =
[
acs

(
θ, l′

)]T
=

1

Mp

⎡
⎢⎢⎣

P1 (l
′) g1

P2 (l
′) g2
...

PM (l′) gM

⎤
⎥⎥⎦ (8)

Then, the covariance matrix is calculated as

Rẏ = E
{
ẏẏH

}
= ACULARs̄A

H
CULA +Rv̄ (9)

where Rs̄ = E{s̄s̄H} is the covariance matrix of the CULA-based CS data, and Rv̄ = E{v̄v̄H} is the
covariance matrix of the CS data vector of the original additive Gaussian white noise. Because the data
are finite in one branch, the practical sampling covariance matrix is expressed as

Rẏ =
1

K

K−1∑
k=0

ẏ[k]ẏH [k] (10)

where K denotes the CS data volume.
The MUSIC spectrum can be obtained by eigenvalue decomposition for Rẏ, which is expressed as

PMUSIC(θ, l
′) =

1

aHcs(θ, l
′)UNUH

Nacs(θ, l′)
(11)

where UN denotes the noise sub-space.
The wavelength of the signal can be expressed as λ = c/fc, where c denotes the light speed, and

fc denotes the true frequency of the original signal. The CF and DOA estimation is performed by
traversing the frequency and the DOA using an intentional range and l′ from (0,Mp − 1).

According to Eq. (28) in [15], it can be learned that the true CF fc of the signal can be expressed
as

fc = l′ × fp + fb (12)

where fb is the CF estimate of the baseband signal, which can be obtained by the fast Fourier transform
(FFT) method [22]. The index l′ of the sub-band can be determined instead of the frequency to reduce
the search time. Thus, the 2D MUSIC spectrum is defined as

PMUSIC(θ, fc) =
1

aHcs(θ, fc)UNUH
Nacs(θ, fc)

(13)
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Finally, the joint CF and DOA estimation is performed by searching the peak of the MUSIC spectrum
PMUSIC(θ, fc) in the frequency and spatial domain sequentially. The estimated CF and DOA values
are defined as

(θ, fc) = arg(f,θ)min aHcs(θ, fc)UNUH
Nacs(θ, fc) (14)

4. SIMULATION RESULTS

In this section, a CULA-based MWC discrete CS system is created to estimate the CF and DOA. The
root mean square error (RMSE) is used to access the joint CF and DOA estimation performance. The
RMSE of the estimation performance is defined as

RMSE =

√√√√ 1

N

N∑
n=1

(an − ân)
2 (15)

where N represents the number of independent Monte Carlo simulations; αn is the value of the CF or
DOA estimate, and the true CF or DOA value is expressed as α̂n for the nth trial.

The CULA-based system is uniformly spaced with d = λ/2. The periodic PRS based on the
Bernoulli random binary ±1 sequence is designed with the period length Mp = 100. An ideal low-pass
filter with a cutoff frequency fp/2 = 10MHz is used, and the down-sampling rate fs = fp = 20MHz is
created. A narrow band far-field radar signal with a Nyquist sampling rate fNYQ = 2GHz impinges on
the CULA-based system.

First, we determine the 2D MUSIC spectrum of the array CS data with SNR = 20dB to illustrate
the effectiveness of the method. Fig. 2 shows the 2D MUSIC spectrum when the signal with a fixed
CF fc = 782MHz and fixed DOA θ = 4◦ is received by the system. A 20-element ULA (L= 20) is
compressed to 10 branches (M= 10). It can be seen that the maximum peak occurs at the location
where the CF and DOA have the highest accuracy. The CF and DOA estimates are obtained by
searching the MUSIC spectrum peak in the frequency and spatial domains.

Subsequently, the performance of the CF estimation of the proposed method using the CULA-
based system is evaluated. The CF is randomly chosen from fc ∈ (600MHz, 1200MHz) to determine
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Figure 2. The MUSIC spectrum of the array CS data.
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the RMSE of the signal CF. The SNR ranges from −10 dB to 20 dB in 5 dB steps. 1000 Monte Carlo
simulations are conducted for each SNR step. A 20-element ULA (L= 20) is compressed to 10 branches
(M= 10) and 15 branches (M= 15), respectively. We also conduct experiments using the ULA-based
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Figure 3. RMSEs of the CF estimation versus the SNR.
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system proposed in [15] with the antennas numbers L= 10 and L= 20. Fig. 3 shows the RMSEs of the
CF estimation for the three experiments. The RMSE decreases with the increase in the SNR, and the
RMSE is close to 0MHz while SNR ≥ 10 dB.

The performance of the DOA estimation of the proposed system is evaluated. The DOA is randomly
selected from θ ∈ (−15◦, 15◦) to determine the RMSE of the signal DOA. The SNR varies from −10 dB
to 20 dB in 5 dB steps. Similar to Fig. 4, 1000 Monte Carlo experiments are performed for each SNR
step, and RMSEs of the ULA-based systems with L= 20 and L= 10 are determined. Fig. 4 shows the
RMSEs of the DOA estimation for the three experiments. The RMSEs decrease with increasing SNR.
The RMSE of the DOA estimation is close to zero while SNR ≥ 10 dB.

It can also be learned from Fig. 3 and Fig. 4 that the RMSE of the proposed system is worse than
that of the ULA-based system with L= 20 but better than that of the ULA-based system with L= 10
in the low SNR. When the antennas number is fixed, more signal processing branches can obtain better
estimations. However, when the SNR is high enough (SNR ≥ 15 dB), the proposed system can achieve
the same performance with the ULA-MWC system. It means that the CULA-based systems proposed
in this paper can get the same estimation using less branches.

5. CONCLUSION

In this paper, we propose a CULA-based MWC discrete CS system to reduce branches of the system
for joint CF and DOA estimation. This system can be used in electronic reconnaissance equipment and
passive radar systems. The proposed system allows for sub-Nyquist sampling, the number of sampling
data can be reduced, and the hardware complexity is significantly lower. An arbitrary periodic PRS
is used to mix the received signals into basebands and other sub-bands, which makes the system more
universal. In order to verify the effectiveness of the system, we use the MUSIC algorithm to conduct
a 2D search in spatial and frequency domains by processing the CS data directly for the joint CF and
DOA estimation. The simulation results validate the effectiveness of the proposed CULA-based system
and demonstrate the good performance of the joint CF and DOA estimation and anti-noise performance
for low SNRs. We plan to use the proposed CULA-based system and joint CF and DOA estimation
method for practical applications in the future.
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