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The Diffraction by the Half-Plane with the Fractional Boundary

Condition
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Abstract—The electromagnetic plane wave diffraction by the half-plane with fractional boundary
conditions is considered in this article. The theoretical part is given based on that the near field, pointing
vector, and energy density distribution are calculated for different values of the fractional order. The
results are compared with classical cases for marginal values of the fractional order. Interesting results
are obtained for fractional orders between marginal values. Results are analyzed.

1. INTRODUCTION

The problem investigated in the study is a new approach to the diffraction problem including a half-
plane surface and the plane wave as an incidence wave. The new method is called as fractional derivative
method (FDM). The method explains the continuous intermediate stages of the two canonical states of
the electromagnetic field.

In general, the fractionalization of the operators such as derivative, integral, or curl allows extending
the usage of the operators. The intermediate stages obtained by the tools of fractional calculus give
important results in many branches of science such as diffusion problems, system modelling with friction,
and data modelling [1–3]. The first studies related to the fractional approach for the electromagnetic
theory and its applications are investigated by Engheta [4–6]. Then, Veliyev et al. developed the idea
for the boundary condition which is called the fractional boundary condition (FBC) [7]. The fractional
boundary condition used in previous works [8–11] explains a new material property (Perfect Electric
Conducting (PEC), Perfect Magnetic Conducting (PMC) or in between). Therefore, by the proposed
method, not only the PEC and PMC cases are investigated, but also the cases between two states are
studied, and the comparison between the previously studied method and the proposed method is done.

The diffraction by half-plane can be assumed to be simplest canonical but intensively investigated
structure with the edge [12]. Although the problem for the conducting sheet was solved more than
50 years ago, the problem keeps its importance and is still studied for the non-stationary scenario
investigating the effect of the motion on the scattering [13, 14]. Previously, for diffraction by a half-plane
with impedance, the perfect electric and magnetic conducting cases were studied not only analytically
but also numerically [15–17]. The fundamentally analytical methods for the problem are the Wiener-
Hopf and Maliuzhinetz methods. Even though both methods are based on a solid and well-established
process, the main disadvantages of these methods are to have lasting and complex mathematical
procedures. In [18], a new and practical analytical approach for the plane wave diffraction by a perfectly
conducting half-plane is developed for the E and H polarized plane waves. The method uses Laguerre
polynomials to expand the induced current on the plane as Method of Moments.

In the following section, the formulation of the problem and the theoretical background are
presented. In Section 3, the numerical results are given, and also the comparisons between different
methods are done. Then, the conclusion is drawn.
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2. THE FORMULATION OF THE PROBLEM

In the formulation of the problem section, the main theoretical background is highlighted. In Figure 1,
the geometry of the problem is given.

Figure 1. Geometry of the problem.

The incidence E-polarized electromagnetic wave can be denoted as �Ei
z = e−ik(x cos θ+y sin θ)êz. Note

that the time dependency is e−iωt; θ is the angle of incidence; and êz is the unit vector in the z
direction. The incidence wave is scattered by a half-plane located at y = 0, xε[0,∞). The total electric
field �Ez = �Ei

z + �Es
z must satisfy the fractional boundary condition given as follows.

Dν
kyEz (x, y) = 0, y → ±0, x > 0 (1)

Here, Dν
ky denotes the operator of the fractional derivative. The derivative is taken with respect to ky

in the order of fractional order ν, and y is the normal direction to the half-plane. Note that k is the
wavenumber (k = 2π/λ); λ is the wavelength of the wave in free space; and ky is the dimensionless
parameter. Keep in mind that the derivative is taken by the integral of Riemann-Liouville which has
the next form [2]:

−∞Dν
x (x) =

1
Γ(1 − ν)

d

dx

∫ x

−∞

f(t)dt

(x − t)ν
, 0 < ν < 1 (2)

Scattered field can be represented by using the fractional Green’s function [7, 8]

Es
z (x, y) ≡

∫ ∞

0
f1−ν

(
x′)Gν(x − x′, y)dx′ (3)

Here, f1−ν(x′) is the unknown fractional current density, and Gν is the fractional Green’s function as
follows.

Gν
(
x − x′, y

)
= − i

4
Dν

kyH
(1)
0 (k

√
(x − x′)2 + y2) (4)

where H
(1)
0 is the Hankel’s function of zero order and first kind.

After substituting Eq. (2) into fractional boundary conditions in Eq. (1), the following equation is
achieved.

−i

4
D2ν

ky

∫ ∞

0
f1−ν

(
x′) H

(1)
0

(
k

√
(x − x′)2 + y2

)
dx′ = −Dν

kyE
i
z (x, y) , x > 0. (5)

In order to solve Eq. (4), the spectral representation of the Hankel function and the Fourier transform
of f1−ν are used. The Fourier transform of f1−ν is given as follows:

F 1−ν (q) =
∫ ∞

−∞
f̃1−ν (ξ) e−ikqξdξ =

∫ ∞

0
f1−ν (x) e−ikqxdx,

where f̃1−ν(ξ) ≡ f1−ν(ξ) for ξ > 0 and f̃1−ν(ξ) ≡ 0 for ξ < 0.
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Then, the scattered electric field is expressed via the Fourier transform F 1−ν(q) as given in Eq. (5).

Es
z (x, y) = −i

e±iπ ν
2

4π

∫ ∞

−∞
F 1−ν (q) e

ik
(
xq+|y|

√
1−q2

)
(1 − q2)

ν−1
2 dq (6)

Using the Fourier transform and the spectral representation of the Hankel function, Eq. (4) is reduced
to the dual integral equation (DIE) with respect to F 1−ν(q):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞∫
−∞

F 1−ν (q) eikξq(1 − q2)ν− 1
2 dq = −4πei π

2
(1−3ν) sin

ν
θe

−ikξ cos θ
, ξ > 0

∞∫
−∞

F 1−ν (q) eikξq = 0, ξ < 0

(7)

For the limit cases of the fractional order ν = 0 and ν = 1, these equations are reduced to well-known
integral equations used for the PEC and PMC half-planes [20], respectively. The main purpose of the
paper is to generalize the solution of the integral equations for any arbitrary fractional order (FO)
ν ∈ [0, 1].

Note that for the case ν = 0.5, the left part of the first integral equation in Eq. (6) gives the inverse
Fourier transform. Then, the fractional current density can be found analytically as follows

f0.5 (x) = Ae−ikx cos θ (8)

where A = −2ke−i π
4

√
sin(θ).

The Fourier transform of Eq. (7) gives F 0.5(q) = π
k A(δ(q + cos(θ)) − 1

π(q+cos(θ))). The Fourier
transform of the fractional current density can be inserted into Eq. (5), then the scattered electric field
becomes as Eq. (8).

Es
z (x, y) = GA

π

k
(I1 + I2) (9)

where G = − i
4πe±i π

4 and,

I1 = eik(−x cos(θ)+|y| sin(θ))sin−0.5(θ)

I2 = − i

π

∫ ∞

−∞

e
ik

(
qx+|y|

√
1−q2

)

q + cos (θ)
(
1 − q2

)− 1
4 dq

The second integral (I2) in Eq. (8) is evaluated numerically for the results presented in Section 3,
Numerical Results.

For the general case of ν ∈ [0, 1], the normalized fractional current density f̃1−ν is expanded as
orthogonal series by Laguerre polynomials with unknown coefficients fν

n .

f̃1−ν
( ς

k

)
= e−ς ςν− 1

2

∞∑
n=0

f ν
nL

ν− 1
2

n (2ς) , ς = kx (10)

Throughout the study, Meixner’s edge conditions need to be taken into account for x → 0 as including
the weighting ςν− 1

2 in Eq. (9) [7]. This representation guarantees that f̃1−ν satisfies the edge conditions.
Fourier transform of Eq. (9) can be found as given in Eq. (10).

F 1−ν (q) =
1
k

∞∑
n=0

f ν
nγν

n

(iq − 1)n

(iq + 1)ν+n+ 1
2

(11)

where γν
n = Γ(n+ν+ 1

2
)

Γ(n+1) . Here, the following property is utilized [19].
∫ ∞

0
e−ς(1+iq)ςν− 1

2 L
ν− 1

2
n (2ς) dς =γν

n

(iq − 1)n

(iq + 1)ν+n+ 1
2
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In order to get the system of linear algebraic equations (SLAE) given in Eq. (11), first, Eq. (10) is
inserted into the first equation of Eq. (7), then both sides of the integral Equation (7) is multiplied by

e−ςςν− 1
2 L

ν− 1
2

n (2ς). After that, an integral is taken from 0 to ∞ with respect to ς for Eq. (7) by using
the same property mentioned above.

∞∑
n=0

f ν
nCν

nm = Bν
m (12)

Figure 2. Near Ez field Distribution calculated
with our method Fractional at ν = 0.01, θ = π

2 .
Figure 3. Near Ez field distribution Result
obtained with analytical solution at ν = 0.01,
θ = π

2 .

Figure 4. Poynting vector distribution at ν =
0.01, θ = π

2 .
Figure 5. Energy density distribution at ν =
0.01, θ = π

2 .
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where,

Cν
nm =

1
k
γν

n (−1)n+m
∫ ∞

−∞

(1 − iq)n−m−ν− 1
2

(1 + iq)n−m+ν+ 1
2

(1 − q2)ν−
1
2 dq

Bν
m = −4πei π

2
(1−3ν)sinν(θ)

(i cos (θ) − 1)m

(i cos (θ) + 1)ν+m+ 1
2

After solving this SLAE, unknown coefficients fν
n are determined. This gives the ability to find the

fractional current density f̃1−ν with formula (9) and its Fourier transform with formula (10). Then, the
near scattered electric field distribution can be found with Eq. (5).

Before ending the theoretical part, it is needed to mention that there exists a relation between the
fractional order and impedance value (η) which is η = − i

sin θ tan(π
2 ν) [9]. Here we mean the impedance

of the strip normalized by the impedance of the free space.

Figure 6. Ez Phase distribution obtained with
our method at ν = 0.01, θ = π

2 .
Figure 7. Ez Phase distribution obtained with
analytical method at ν = 0.01, θ = π

2 .

Figure 8. Near Ez field Distribution calculated
with our method Fractional at ν = 1, θ = π

2 .
Figure 9. Near Ez field distribution Result
obtained with analytical solution at ν = 1, θ = π

2 .
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3. NUMERICAL RESULTS

Based on the above mentioned mathematical algorithm, the program package was created in MatLab
which gives ability to calculate near field distribution, Poynting vector distribution, and energy density
distribution. The obtained results and their analysis are given below. For all results obtained with our
approach presented below, 70 terms were used in the sum in Eq. (11).

First we considered the case of fractional order ν = 0.01 which is close to the PEC. For this case,
there exist the analytical solution given in the book [20].

Figure 2 shows the near field distribution for this case obtained by our approach. Under the
half-plane, we see the shadow which is expected. Fig. 3 shows the same scenario calculated with the
analytical formula. Deviation from the analytical result is less than 4% as seen on the rulers.

Figure 4 shows the pointing vectors distribution for the same fractional order. As we see, the higher
energy flow is on the left to the half-plane. Above the half-plane, the vortices of the electromagnetic
energy are observed. Fig. 5 shows the energy density distribution for the same case. If we compare

Figure 10. Poynting vector distribution at ν = 1,
θ = π

2 .
Figure 11. Energy density distribution at ν = 1,
θ = π

2 .

Figure 12. Ez Phase distribution obtained with
our method at ν = 1, θ = π

2 .
Figure 13. Ez Phase distribution obtained with
analytical method at ν = 1, θ = π

2 .
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this picture to Fig. 4, we see that maximum of the energy density corresponds to the upper side of the
half-plane, which means that we have a standing wave. In the left part to the half-plane, we again see
energy density but not as intensive as energy flux given in Fig. 4.

Figure 6 shows the phase distribution for this scenario, and energy flows perpendicularly to the
phase iso-lines. This result is calculated with our method. Fig. 7 shows the same phase distribution
calculated with the analytical formula, and they coincide.

After that we considered case when fractional order is ν = 1. Again we make comparison with
analytical results. Fig. 8 gives the near field distribution obtained with our method and Fig. 9 the same
distribution obtained with analytical formula. The pictures are very similar.

Again below the half-plane is the shadow, but the structure of the field on the upper part to the
half-plane is different from the case of ν = 0.01.

Figure 10 shows the Poynting vector distribution. Again, we have main flux on the left part to the

Figure 14. Near Ez field Distribution calculated
with our method Fractional at ν = 1, θ = 3π

4 .
Figure 15. Near Ez field distribution Result
obtained with analytical solution at ν = 1, θ = 3π

4 .

Figure 16. Near Ez field Distribution calculated
with our method Fractional at ν = 0.5, θ = π

2 .
Figure 17. Near Ez field distribution Result
obtained with analytical solution at ν = 0.5,
θ = π

2 .
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half-plane. Fig. 11 shows the energy density distribution, and as in the previous case the energy density
maximum is above the half-plane.

Figure 12 shows the phase distribution for this scenario obtained with our method, and it is
compared to Fig. 13 which is obtained analytically. Deviation from the analytical result is less than 1%
as seen on the rulers.

All the cases considered above are for normal incidence. Fig. 14 shows the scenario when the
fractional order is again ν = 1, and the incidence angle is θ = 3π

4 . The result is obtained with our
method and is compared to Fig. 15 which is obtained analytically. Deviation from the analytical result
is less than 10% as seen on the rulers.

The cases of fractional order ν = 0.01 and ν = 1 correspond to the classical cases which are well
known. However, we represent the results here to validate our method. Our method gives ability to
consider the case when the classical solution does not exist. If we put ν = 0.5 it gives the material for

Figure 18. Poynting vector distribution at ν =
0.5, θ = π

2 .
Figure 19. Energy density distribution at ν =
0.5, θ = π

2 .

Figure 20. Near Ez field Distribution calculated
with our method Fractional at ν = 0.75, θ = π

2 .
Figure 21. Near Ez field Distribution calculated
with our method Fractional at ν = 0.25, θ = π

2 .
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which the corresponding impedance is η = −i. Such a material does not exist in nature, but it has very
interesting properties. If such a material can be made artificially, it will have lot of useful applications.

Figure 16 shows the near field distribution when ν = 0.5 as we see that under the half-plane the
high field values are observed instead of shadow. This is not an ordinary behavior of the material. It
seems that such a material works like a capacitor but for electromagnetic wave. It accumulates the
energy and then radiates it below (this is also clearly seen in Figs. 18–19). Such a behavior is known
for resonators, but usual resonators need more complex structure. Also antennas have such a behavior
when they direct energy in a certain direction. Fig. 17 shows the same result obtained with Equation (8)
given in the theoretical part. Deviation from the analytical result is less than 1% as seen on the rulers.

Figure 18 shows the Poyntng vector distribution. Here, we see that in reality the energy flow is in
the lower part of the half-plane. This proves the idea given in the description of Fig. 16. Fig. 19 shows
the energy density distribution, and here also most part of the energy is given in the lower part of the
half-plane which is very different from the cases of Figures 4–5 and 10–11.

Figure 20 shows the near field distribution for the fractional order ν = 0.75, and again we have
unusual behavior of the material. This is partly similar to the case ν = 1 and partly ν = 0.5 case.

Figure 21 shows the case ν = 0.25 which is partly similar to the case ν = 0.01 and partly ν = 0.5.

4. CONCLUSION

In this article, the plane wave diffraction by the half-plane with fractional boundary conditions is
considered. The results for the marginal values of the fractional order are in good agreement with the
results obtained by the classical methods. For the values of the fractional order between the marginal
values, interesting results are obtained which describe a new type of material with interesting properties.
Such a material if it can be created artificially may have wide application in the resonators or antenna
devices.
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