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Synthesis of Chained-Elliptic Function Waveguide Bandpass Filter
with High Rejection

Guan Shen Ng, Sovuthy Cheab, Peng Wen Wong, and Socheatra Soeung*

Abstract—This paper describes the synthesis of a bandpass filter to achieve high selectivity and
rejection properties using a new class of filter functions called chained-elliptic function filters. Chained-
elliptic filters have higher selectivity than Chebyshev function filters and have the property of sensitivity
to manufacturing tolerance reduction in chained-function filters. The proposed design has high
selectivity and reduced sensitivity, enabling easier and faster filter fabrication. The characteristic
polynomials of chained-elliptic function filters are derived (through chaining elliptic filtering function)
and extracted to form a coupling matrix of the bandpass filter. The novel transfer polynomials are given
in detail, and a thorough investigation of the filter characteristics is performed. A theoretical comparison
with Chebyshev and elliptic filters of the same order is performed to ascertain the demonstrated
advantages of this proposed filter class. A high frequency narrow-band fourth-order chained-elliptic
function waveguide filter centred at 28 GHz with a fractional bandwidth of 1.61% is fabricated to
validate the proposed design concept. A good match among the measured, simulated, and ideal filter
responses is shown where the overall responses between measurement and simulation have a difference
of approximately 2% which is within the acceptable limit. The chained-elliptic function concept will be
useful in designing low-cost high-performance microwave filters with various fabrication technologies for
millimetre-wave applications.

1. INTRODUCTION

With the impending 5G technology, the development of high-frequency microwave filters to support the
millimetre-wave spectrum has grown drastically. As the existing cellular spectra are becoming more
congested, there is an urgent need of filters with sharp transition from passband to stopband for minimal
spectrum wastage. For 5G implementation, the specifications for channel filters have become much
more extreme and severe to accommodate more devices and users. Very high close-to-band rejections
are necessary to avoid spectrum interference and at the same time optimize utilization of the allocated
5G spectrum. Theoretically, the smaller the frequency separation of return-loss (RL)/reflection zeros
is, the higher the sensitivity of the filter is to any physical parameter variation [1]. Current cellular
networks operate at millimeter-wave frequency range, and thus, the filter will be small in size and highly
sensitive to physical parameter variation, thereby making fabrication and tuning much more difficult.
In addition, narrow-band filters must be used for the 5G spectrum due to stringent channel bandwidth
specifications, e.g., 50 MHz to 400 MHz channel bandwidths for frequency ranges of 24 GHz and above,
where the fractional bandwidth (FBW) is less than 2%. Narrow-band filters will result in their RL
zeros being scattered over an extremely narrow frequency band [1], which will further increase the
sensitivity of filters to manufacturing errors, and thus, increase the fabrication time and cost. For 5G
applications, the filter size will be very small (in the range of a few mm), and thus, an extremely precise
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fabrication process needs to be employed. Therefore, it is crucial to reduce the sensitivity of the filter
to manufacturing errors to ease the fabrication and tuning processes.

Both conventional Chebyshev and elliptic filters are highly sensitive to the manufacturing tolerance,
which has always been a critical issue that impedes the fabrication process, especially in waveguides,
and precise computer numerical control (CNC) machining is necessary, which incurs high fabrication
costs. In addition, a high sensitivity filter results in wide fluctuations of the filter response during the
tuning process, and thus, a substantial amount of time will be consumed to obtain an accurate filter
response. The chained-function filters introduced in [1–6] have reduced sensitivity to the manufacturing
tolerance. However, the chaining process will reduce the selectivity and close-to-band rejection of the
filter [1], resulting in the need for higher order filters to compensate for the reduction in selectivity and
rejection properties. The reduction in selectivity and rejection properties will greatly compromise the
performance of the filter, especially in narrow-band applications that require high selectivity due to the
stringent spectrum utilization. Recent studies on modifying chained-function polynomials have been
introduced in [7, 8], but the resulting transfer functions are all-pole functions, which limit the selectivity
and close-to-band rejection improvement.

It is well established that, of all the filtering functions, the elliptic filtering function provides the
best selectivity with the steepest cut-off [9–11], but this function is difficult to fabricate due to large
element variations and a high sensitivity to the manufacturing tolerance. In addition, elliptic filters are
canonical by nature, and thus, it is impossible to apply the group delay equalization technique in [10]
to create a linear phase filter. It is possible to reduce the sensitivity to component variations in elliptic
filters by reducing the Q-factor in the transfer function, resulting in a minimum Q-factor elliptic filter.
However, this will deprive elliptic filters the ability to independently specify the passband and stopband
ripples. Another downside of elliptic filters is that the wide out-of-band rejection is compromised.
Moreover, elliptic filters have very large element value ratios [11], and thus, elliptic filters are difficult
to implement using microwave technologies that have a limited range of characteristic impedances such
as microstrip and coplanar waveguide filters. Therefore, most miniaturization techniques cannot be
implemented using elliptic filtering functions. Elliptic filters are well-established, but unfortunately, the
sensitivity of the filters to the manufacturing tolerance has not been addressed in recent studies [12–18].
In the upcoming years, the need for a filter with a low sensitivity to the manufacturing tolerance will
grow drastically due to the rapid deployment of 5G communication.

In this paper, a chained-elliptic function waveguide bandpass filter is proposed to solve these
problems. Sections 2 and 3 describe the formulation of chained-elliptic functions and the resulting
filtering functions are tabulated. Section 4 presents a detailed theoretical exposition of chained-elliptic
function characteristics, i.e., passband ripple, sensitivity to manufacturing tolerance, rejection and
group delay properties. Section 5 presents the realisation procedures of the chained-elliptic function
waveguide bandpass filter, reconfiguration of the filter topology and sensitivity analysis of the filter.
Chained-elliptic function filters can have quasi-elliptic properties (i.e., high selectivity and close-to-band
rejections) and chained-function properties (i.e., a reduced sensitivity to the manufacturing tolerance
and low element values). Therefore, chained-elliptic filters are suitable for use in low-cost high frequency
narrow-band applications. The filter obtained by the proposed design method is fabricated using
rectangular waveguide technology, centred at 5G frequency (28 GHz) with a fractional bandwidth (FBW)
of approximately 1.61% (450 MHz) to validate the proposed filter. Moreover, for the first time, a detailed
theoretical exposition of chained-elliptic function properties is provided, and a comparison is made with
conventional Chebyshev and elliptic approximations of the same order to verify the advantages of
chained-elliptic functions.

2. CHAINED-ELLIPTIC FUNCTIONS

For the derivation of characteristic polynomials of a Butterworth approximation, the n-th order
characteristic function, Kn(ω) must concentrate all its zero derivatives at the origin to produce a
response that is maximally flat at the origin [10]. As a Butterworth approximation is considered an all-
pole filter, all the transmission zeros are located at infinity, i.e., P (s) = 1, which results in poor insertion
losses around cutoff, and thus, the spectrum utilization efficiency is greatly compromised. Generally,
the preferred solution for elliptic approximation is when the responses of both the passband and the
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stopband are equirippled, as this response gives the sharpest cutoff using Jacobian elliptic functions.
Because elliptic approximation provides the steepest out-of-band rejection, the RL zeros are distributed
close to each other in the passband, making the elliptic filter highly sensitive to component variations.

Butterworth polynomials are the least sensitive to component variations, as all the reflection zeros
are concentrated at the origin, while elliptic polynomials have the steepest rejection and highly sensitive
to component variations. Chained-elliptic functions, on the other hand, combine the advantages of the
Butterworth and elliptic approximations to solve the problems of high sensitivity, high loss, and low
rejection properties. In chained-elliptic functions, a compromise can be made between low sensitivity,
low resonator unloaded-Q, and the low loss filter properties of Butterworth filters with the high close-
to-band rejection of elliptic filters. With the chained-elliptic function, a new polynomial generating
function can be defined by the product of μ functions, called seed-functions, each with a different
prescribed multiplicity m(s(k)) [2], resulting in the possibility of different combinations of seed-function
orders to produce different transfer functions of the same order.

The number of possible seed-function combinations SFC(nT ) is in the following form [1, 4, 20]:
SFC(nT ) ≡ P (nT ), (1)

where P (nT ) is the partition function, which provides a number of unrestricted decompositions of an
integer number (nT ) as a sum of smaller integers, without regards to the order. For instance, if nT = 4,
there are five possible combinations because P (4) = 5 as:

4
1 + 3
2 + 2

1 + 1 + 2
1 + 1 + 1 + 1

Therefore, a fourth-order chained-elliptic function filter can be formulated by a second-order seed
function with a multiplicity of two (i.e., a squared second-order seed function) or by chaining a third-
order chained-elliptic function with a first-order seed function, both having a multiplicity of one. The
resulting seed functions will always have an elliptic and Butterworth polynomial of order nT . Because
a symmetrical odd-order elliptic function will always have at least one pole at the origin, chaining a
symmetrical odd-order elliptic polynomial with only a Butterworth polynomial of any multiplicity will
not result in an increment of the RL zeros frequency separation, as the number of poles will always be
the same. This concept also applies to powered seed functions (e.g., a squared third order or a cubed
third order). Furthermore, chained-elliptic functions can result in quasi-elliptic responses.

3. POLYNOMIAL GENERATION

The formulation of chained-elliptic functions follows the same transfer function approximation for
classical filters [5–7]. The general representation of the squared magnitude response is in the following
form:

|S21(jω)|2 =
1

1 + ε2KnT
(ω)2

, (2)

where ε = the ripple factor, which controls passband ripple, and Kn(ω) is the filtering function of degree
nT . The filtering function can be defined as Kn(ω) ≡ Gμ(ω), where Gμ(ω) is the product of μ seed
functions S(n(s(k)))(ω) as [1, 20]

Gμ(ω) =
μ∏

k=1

(Sns(k)
(ω))ms(k) , (3)

where n(s(k)) is the kth seed function order with multiplicity m(s(k)). The degree nT is formed by the
summation of constituent functions as [1, 20]

nT =
μ∑

k=1

ns(k)ms(k). (4)
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Elliptic functions can be used as the seed function, and thus, seed functions can be defined as [19]

Sns(k)
(ω) =

ns(k)
2∏

i=1

ω2
i − ω2

1 − ω2
i ω

2
, for ns(k) = even (5a)

and

Sns(k)
(ω) =

ns(k)
2∏

i=1

ω2
i − ω2

1 − ω2
i ω

2
, for ns(k) = odd (5b)

where ωi is the position of the i-th transmission zero. Once nT is defined, the formulation of all possible
seed functions follows the steps in [1]. Once all the seed functions are evaluated, the chained-elliptic
characteristic functions Gμ(ω) can be finalized. Tables 1–3 show the chained-elliptic characteristic
functions for nT = 4, 5, and 6, respectively, formed by elliptic seed functions. The first row in each
table corresponds to a Butterworth polynomial, while the last row in each table corresponds to an
elliptic polynomial of order nT . The equations used to formulate the elliptic polynomials can be found
in the literature [19].

Table 1. Chained-elliptic filtering functions for nT = 4.

No. of Seed Functions Orders of the Seed Functions Chained-Elliptic Filtering Functions

4 1, 1, 1, 1 ω4

3 1, 1, 2 −32.671(ω4−0.101ω2)
ω2−9.899

2 2, 2 1067.390(ω2−0.101)2

(ω2−9.899)2

2 1, 3 8.747j(ω4−0.388ω2)
ω2−2.577

1 4 118.511(ω4−0.619ω2+0.053)
ω4−11.680ω2+18.855

Table 2. Chained-elliptic filtering functions for nT = 5.

No. of Seed Functions Orders of the Seed Functions Chained-Elliptic Filtering Functions

5 1, 1, 1, 1, 1 ω5

4 1, 1, 1, 2 −32.671(ω5−0.101ω3)
ω2−9.899

3 1, 2, 2 1067.390(ω3−0.101ω)2

(ω2−9.899)2

3 1, 1, 3 8.747j(ω5−0.388ω3)
ω2−2.577

2 1, 4 118.511(ω5−0.620ω3+0.053ω)
ω4−11.680ω2+18.855

2 2, 3 −285.764j(ω3−0.388ω)(ω2−0.101)
(ω2−2.577)(ω2−9.899)

1 5 40.005j(ω5−0.972ω3+0.204ω)
ω4−4.767ω2+4.905

For the elliptic formulations of different orders, the passband frequency, ωp, and the maximum
passband loss, Ap, are kept constant. Therefore, the resulting elliptic functions will have the same
RL level (RL = −10 dB) and passband frequency (ωp = 1) regardless of the order, N . The stopband
frequency, ωs, and the minimum stopband loss, As, are changed accordingly to result in different orders,
N , ranging from two to six. By predefining the elliptic functions of order two to six, chaining can be
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Table 3. Chained-elliptic filtering functions for nT = 6.

No. of Seed Functions Orders of the Seed Functions Chained-Elliptic Filtering Functions

6 1, 1, 1, 1, 1, 1 ω6

5 1, 1, 1, 1, 2 −32.671(ω6−0.101ω4)
ω2−9.899

4 1, 1, 2, 2 1067.390(ω4−0.101ω2)2

(ω2−9.899)2

4 1, 1, 1, 3 8.747j(ω6−0.388ω4)
ω2−2.577

3 1, 2, 3 −285.764jω(ω3−0.388ω)(ω2−0.101)
(ω2−2.577)(ω2−9.899)

3 1, 1, 4 118.511(ω6−0.620ω4+0.053ω2)
ω4−11.680ω2+18.855

3 2, 2, 2 −34872.517(ω2−0.101)3

(ω2−9.899)3

2 3, 3 −76.505(ω3−0.388ω)2

(ω2−2.577)2

2 2, 4 3871.870(ω4−0.620ω2+0.053)(ω2−0.101)
(ω4−11.680ω2+18.855)(ω2−9.899)

2 1, 5 40.005j(ω6−0.972ω4+0.204ω2)
ω4−4.767ω2−4.905

1 6 209.293(ω6−1.432ω4+0.555ω2−0.04)
ω6−13.903ω4+35.882ω2−25.057

performed accordingly to form the chained-elliptic filtering functions, as shown in Tables 1–3. In the next
section, an in-depth analysis is carried out to explore the characteristics of the resulting polynomials.

4. CHARACTERISTICS OF CHAINED-ELLIPTIC FUNCTION FILTERS

In microwave filters, there are several key characteristics that must be carefully defined to produce
a high-performance filter. The most crucial characteristics to define the performance of a filter are
insertion and return losses and group-delay responses. Generally, emphasis should be placed on analysing
the steady-state frequency-domain responses and transient time-domain responses to ensure the overall
performance of the filter. These responses are identified from the characteristic polynomials in a
normalised low-pass prototype and can be transformed easily to desired high-pass, bandpass, or bandstop
designs using suitable transformation methods. For simplicity, a normalised low-pass prototype is used
for the exposition of chained-elliptic function filters.

Figure 1. Passband attenuation of fifth-order elliptic and chained-elliptic functions.
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4.1. Chained-Elliptic Function Filters Passband Ripple

A chained-elliptic approximation has better close-to-band rejection than Butterworth and Chebyshev
approximations, but its rejection is slightly inferior compared to an elliptic approximation, as the
chaining procedure will disrupt the optimum properties of the elliptic function. Therefore, both the
stopband rejection and passband equiripple properties will be affected. Fig. 1 shows the passband ripple
for a fifth-order chained-elliptic filter with elliptic approximation (RL = −10 dB). From Fig. 1, chained-
elliptic functions will result in a lower ripple level compared to elliptic functions while distorting the
equiripple properties of the elliptic. A quasi-equiripple response is possible by selecting a powered seed
function [1]. In addition, chaining odd-order elliptic function with a Butterworth approximation will
also result in a quasi-elliptic response, as shown in Fig. 2 (i.e., chained-elliptic function (5 + 1)).

Figure 2. Return loss of sixth-order elliptic, chained-elliptic and Chebyshev functions.

4.2. Placement of Reflection Zeros in Chained-Elliptic Function Filters

Figure 2 shows the placement of reflection zeros of elliptic and conventional Chebyshev filters (RL =
−10 dB) with chained-elliptic function filters. The RL level of the chained-elliptic function filter will
not exceed the predefined level for all seed-function combinations, as shown in Fig. 2. It must be noted
that the chained-elliptic (4 + 2) has six reflection zeros with two pairs (ω ∼ 0.4) closely positioned to
each other. Theoretically, the relative frequency separation of reflection zeros will affect the sensitivity
of the filter to physical variations, which is a crucial factor in achieving tuning-less implementation. The
reflection zeros are not equally spaced in the passband, and the zeros with the nearest proximity to the
cutoff frequency will have the smallest gap in frequency separation. The relative frequency separation
between the nearest spaced zeros can be approximated as [1]

δωmin = 2 sin
(

π

ns(k)

)
sin

(
π

2ns(k)

)
(6)

As the filter order increases, the minimum frequency separation of reflection zeros decreases. From
Eq. (6), it is found that the maximum frequency separation of reflection zeros can be acquired from a
second-order seed function. However, using a second-order seed function will result in lower out-of-band
rejection. One of the key advantages of the chained-elliptic is that it allows designers to use powered seed
functions to achieve the desired rejection while at the same time maintaining the sensitivity obtained
from the predefined seed function. In addition, this concept also applies to chaining an odd-order seed
function with only a Butterworth function of any multiplicity or powered odd-order seed functions with
Butterworth functions. This odd-order chaining method is extremely useful to reduce the sensitivity
of odd-order chained-elliptic functions, as the sensitivity to manufacturing tolerance can be maintained
even when the order increases. These methods effectively place multiple reflection zeros at the same
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frequencies, and thus, both odd and even-order chained-elliptic functions can have a sensitivity reduction
using the above methods.

4.3. Rejection Characteristics of Chained-Elliptic Function Filters

As previously mentioned, the selectivity of chained-elliptic filters is better than that of conventional
Chebyshev filters but worse than that of elliptic filters of the same order. It is universally recognised
that elliptic filters have the sharpest cutoff among all known filter classes [10], which means that they
are unrivalled in producing the best close-to-band rejection. However, they are seldom employed in
real-life applications because elliptic filters are highly sensitive to component variations, and thus, high-
end (extremely precise) manufacturing processes must be employed. Further, elliptic filters have large
element value ratios, making them difficult to implement in other technologies that have a limited range
of characteristic impedances. Although elliptic filters have the best selectivity, all the disadvantages
make their fabrication very challenging. Therefore, conventional Chebyshev filters are used instead due
to their simplicity and passable rejection properties.

Figure 3(a) shows the transfer responses for fourth-order elliptic (RL = −10 dB), Chebyshev
(RL = −17.5 dB) and chained-elliptic functions. The RL level of the Chebyshev function is purposely
tuned to match the RL level in the chained-elliptic function with a third-order and first-order (3 + 1)
combination. It is evident that chained-elliptic functions have better close-to-band rejection than
Chebyshev approximations (with the same ripple level) but worse rejection than elliptic approximations.
Therefore, a chained-elliptic function of any seed-function combination will always have a high selectivity
and at least one pair of transmission zeros (TZ), which is very important in narrow-band applications
for which the spectrum utilization is extremely stringent. As mentioned previously, chained-elliptic
functions can have a reduced sensitivity, and thus, the fabrication hurdle (i.e., the sensitivity to
component variations) in producing a quasi-elliptic response can be solved easily. With chained-elliptic
function filters, users can meet the required close-to-band rejection with reduced sensitivity, making the
realisation of a high selectivity filter much simpler.

Figure 3(b) shows the transfer response of a sixth-order chained-elliptic with both sixth-order
elliptic and conventional Chebyshev (RL = −10 dB) approximations. The RL level of the Chebyshev
approximation is made to be the same as that of the elliptic, and it is evident that the chained-elliptic
rejections become much better at higher orders even though it can be improved further by predefining
a better selectivity during the elliptic formulation stage. The number of TZs in the chained-elliptic
is dependent on the resulting position of the TZs in the elliptic approximations. For example, if two

(a) (b)

Figure 3. Transfer responses: (a) fourth-order elliptic, chained-elliptic and Chebyshev functions and
(b) sixth-order elliptic, chained-elliptic and Chebyshev functions.
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third-order seed function has the same TZ position, the resulting TZ will be the same, resulting in better
stopband rejection, as shown in Fig. 3(b). Because powered seed functions will have multiple TZs at
the same frequencies, the stopband rejection level can be improved. From Fig. 3(b), it is apparent that
chained-elliptic functions have better stopband attenuation than elliptic functions.

Elliptic filters have an excellent close-to-band rejection. However, they have a poor wide out-of-
band rejection. This is because elliptic filters will have all TZs concentrated at finite frequencies to
produce a high selectivity, thus limiting the wide out-of-band rejection. Limiting the wide out-of-band
rejection will have a major impact on other signals, as elliptic filters might interfere with other signals
of different frequency bands. In the chained-elliptic function, this can be solved by chaining the elliptic
seed function with the Butterworth seed function, which will result in decaying out-of-band rejection,
as seen in Fig. 3. This is because the Butterworth function will always have a TZ at infinity, and thus,
the rejection slope will slowly decay to negative infinity (dB). The chained-elliptic can bridge between
the high close-to-band rejection of the elliptic without compromising the wide out-of-band rejection
properties of Butterworth approximations. Therefore, chained-elliptic filters reduce the possibility of
interfering with other signals of different spectrums.

4.4. Group Delay Properties of Chained-Elliptic Function Filters

Group delay is crucial in measuring signal distortion due to phase differences for different frequencies.
Therefore, group delay can be computed by finding the derivative of the phase with respect to angular
frequency. Group delay also can reveal a filter’s loss characteristics, and as the selectivity of the filter
increases, the group-delay distortion near the cutoff frequency becomes sharper, which will result in a
longer delay for signals with frequencies near the cutoff, and thus, result in more attenuation [1]. Fig. 4
shows the group delay responses of sixth-order elliptic and Chebyshev (RL = −10 dB) approximations
with various sixth-order chained-elliptic functions. From Fig. 4, the chained-elliptic (5 + 1) function
is more selective than the Chebyshev approximation, and as mentioned previously, chained-elliptic
functions usually have a higher selectivity than Chebyshev functions in the same ripple level (mostly for
quasi-equiripple functions). As seen in Fig. 4, chained-elliptic functions can have lower passband edge
deviations compared to Chebyshev approximations, but the selectivity will be compromised. However,
this will also result in a smaller implementation loss. By selecting chained-elliptic filters that have lower
group delays than conventional Chebyshev filters, the passband frequencies will suffer less attenuation
from losses, as they remain within the filter for a shorter time. Different seed-functions combinations
will result in different group delay properties.

Figure 4. Group-delay responses for sixth-order elliptic, Chebyshev and chained-elliptic functions.
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5. CHAINED-ELLIPTIC FUNCTION FILTER REALISATION

For the realisation of a prototype, a fourth-order chained-elliptic filter with a third- and first-order seed
function combination (i.e., 3+1) is selected. This combination is selected because it has the best overall
rejection properties among all the seed-function combinations in a fourth-order chained-elliptic function.
As mentioned in Section 4, chaining an odd-order seed function with a Butterworth function (TZ at
infinity) will result in a slowly decaying out-of-band rejection without affecting the sensitivity, and thus,
the filter will have TZs at both finite and infinite frequencies. Therefore, the filter will have high close-
to-band rejection without compromising the far out-of-band rejection. The transfer polynomial for this
filter is given in Table 1.

5.1. Topology of Chained-Elliptic Function Filters

Once the characteristic polynomials of the chained-elliptic function (3 + 1) are acquired from the
transfer polynomial in Table 1, a double-terminated coupling matrix (N + 2) can be derived as
in [10, 21, 22]. The initial form of the coupling matrix has many unwanted couplings in its entries
which are physically impossible to be realised and similarity transformations (rotations) are performed
to eliminate these couplings following the procedures in [10]. The final N + 2 coupling matrix after
similarity transformations is

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1.0533 0 0 0 0
1.0533 0 0.8654 0 −0.1118 0

0 0.8654 0 0.7506 0 0
0 0 0.7506 0 0.8654 0
0 −0.1118 0 0.8654 0 1.0533
0 0 0 0 1.0533 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

Based on Eq. (7), the topology of the prototype can be synthesised, as in Fig. 5 where the resonator
is represented by solid circles, and the source/load is represented by hollow circles. A cross coupling
between resonator 1 and resonator 4 is expected to allow the realization of TZ in chained-elliptic
function (3 + 1) for high close-to-band rejection. The frequency is shifted using method in [11] where ω
is substituted as:

ω → α
λg

λg0
sin

(
π

λg0

λg

)
, (8a)

and

λg =
c

f ×
√

1 − f2
c
f

, (8b)

λg0 =
λg1 + λg2

2
(8c)

Figure 5. Filter topology (the solid line represents main-line coupling, and the dotted line represents
cross-coupling).
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Figure 6. Theoretical transfer and reflection responses of chained-elliptic function (3 + 1) filter.

α =
(

λg1

λg0
sin

π × λg0

λg1

)−1

(8d)

where α is the attenuation constant, λg the guide wavelength, and λg0 the guide waveguide wavelength
when the guide is half-wavelength long; λg1 and λg2 are guide-wavelengths at band-edge frequencies; f
is frequency (Hz); fc is cutoff frequency (= 17.357 GHz); and c is speed of light (3 × 108 m/s).

Figure 6 shows the theoretical transfer and reflection responses after frequency shifting. The
subsequent step will be converting the coupling matrix in Eq. (7) into waveguide physical dimensions.
The resonator length can be estimated using [10], where:

θ1j =
nπ

2
+

1
2

(
cot−1 Bij

2
− sin−1(Bjl − Bjj)

)

θ2j =
nπ

2
+

1
2

(
cot−1 Bjk

2
− sin−1(Bjl − Bjj)

) (9)

where θ1j + θ2i ≡ the total electrical length in radian; n is the number of half-wavelengths; Bij and
Bjk are the end-wall susceptance; Bjl is the sidewall coupling; and Bij is the offset factor. The cutoff
frequency of the waveguide in TE-mode is [24]:

fmnp =
c

2π
√

μrεr

√(mπ

a

)2
+

(nπ

b

)2
+

(pπ

d

)2
(10)

where m, n, and p are numbers of half-wavelength variations in the standing wave pattern in x, y,
z directions, respectively; μr and εr are the permeability and permittivity of the material inside the
cavity. Using Eq. (10), the width, a, and height, b, can be computed to find the dimension of the
waveguide cavity. Since the dominant mode of rectangular waveguide is TE10, the height, b, will be half
of the width, a. Filters with cross-couplings should be implemented in folded topology, and the design
techniques to realize filters with folded topology (cross-couplings) can be found in [23–26].

5.2. Chained-Elliptic Function Filters Prototype Design

The filter topology is implemented in a fourth-order single bandpass WR-34 (8.636mm × 4.318mm)
waveguide filter with a cutoff of 17.357 GHz, as shown in Fig. 7, using the Ansys HFSS simulation
software. Since the design is in folded topology, waveguide flange cannot be attached, and thus, SMA
(Sub-Miniature version A) connectors are attached for measurement. The filter is designed to have
a return loss of 17.3 dB, with a centred frequency of 28 GHz for high-frequency applications, and a
fractional bandwidth of 1.61% (BW = 450 MHz) to depict a narrow-band filter. All physical dimensions
of the fourth-order chained-elliptic waveguide filter are shown in Table 4. Inductive irises are used for
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(a) (b)

Figure 7. Fourth-order chained-elliptic function waveguide filter: (a) top view and (b) side view.

Table 4. Fourth-order chained-elliptic function (3 + 1) bandpass waveguide filter dimensions.

Symbol Dimension (mm) Symbol Dimension (mm) Symbol Dimension (mm)
L1 5.9 TL 32.87 d12 2.45
L2 6.52 PL 22.4 d23 3.64
L3 6.52 HL 13.04 d34 2.45
L4 5.9 MT 1.7 d14 2.51
t 1 OL 7.6 b23 1.71

de1 3.88 TeD 3 c23 1.25
de2 3.88 TeL 10.6 cod 2.92
td 1.67 pd 0.3 pl 1.5

the inline resonator couplings while resonant irises are used for folded resonator couplings. There will be
a cross coupling between the first resonator and the last resonator due to the presence of a pair of TZs,
and a cylindrical iris is used to induce the cross coupling as shown in Fig. 7(b). The circular resonant
iris (cross coupling) between first and last resonators will affect the position of the TZs. Increasing
the dimension of the circular resonant iris opening (stronger capacitive coupling) will result in higher
selectivity while lowering the stopband rejection.

Figure 8 shows the fabricated filter with tuning screws and SMA connectors attached to it. The
SMA connectors have a diameter of 2.92 mm, and the walls of the waveguide are made from aluminium.
Measurement of the filter are done using Agilent E8363C PNA network analyzer and 85056d calibration
kit are used for calibration. Fig. 9 shows the transfer and reflection responses of the simulated and
measured results of a fourth-order chained-elliptic function waveguide filter.

For the simulated result, the insertion loss is less than −1 dB, and the return loss is −15.5 dB,
while the measured prototype has an insertion loss less than −1.6 dB and a return loss of −11.35 dB.
The resonant frequency of simulated response is 27.975 GHz while the resonant frequency of measured
response is 28.085 GHz which results in a shift of 0.39% in resonant frequency. In addition, the
bandwidth percentage difference between simulated (510 MHz) and measured (480 MHz) is 5.88%. The
TZs for simulated are at 27.38 GHz and 28.63 GHz while the measured TZs are at 27.6 GHz and 28.6 GHz.
For 30 dB rejection, the higher frequency is shifted by 0.07% while the lower frequency is shifted by
0.65%. The frequency shifting of the measured response is within the acceptable limit of ±1% tolerance
error in Fig. 11. Since lossless condition is not possible, i.e., the conductivity of aluminium cannot be
infinity, the fabricated filter have higher insertion loss and lower return loss as compared to the simulated
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Figure 8. Fabricated fourth-order chained-elliptic function waveguide filter.

Figure 9. Transfer and reflection responses of simulated and measured fourth-order chained-elliptic
function waveguide filter.

Figure 10. Chained-elliptic function waveguide filter group delay.

filter. The resonators and irises are not perfectly rectangle due to limitation of CNC machining process
which resulting in slight curving at the edges. This results in shrinkage of the bandwidth and the
responses shifted to the right. As the CNC machining have a ±0.05 mm manufacturing tolerance, the
fabricated responses slight deviation is acceptable. Minimal tuning is performed to achieve the required
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Figure 11. Simulated S21 and S11 responses with tolerance ±1%.

transfer and reflection responses. Fig. 10 shows the group delay of the fabricated chained-elliptic filter.
It is apparent that the filter is highly selective, as there is a sharp group delay distortion near the cutoff
frequencies.

Table 5 shows the properties of the chained-elliptic, Chebyshev, and elliptic filters. The element
value ratio, gmax

gmin
, of the chained-elliptic filter is much lower than that of the elliptic filter but slightly

higher than that of the Chebyshev filter. However, different seed-function combinations will offer
different gmax

gmin
ratios; some are larger, and some are smaller than those of the Chebyshev filter. Therefore,

the chained-elliptic (3+ 1) filter can be implemented using other technologies that have a limited range
of characteristic impedances. The element value ratio is a crucial parameter in filter design, as smaller
element value ratios allow more implementation technologies, especially in filter miniaturisation wherein
the range of characteristic impedances is greatly limited. In addition, the chained-elliptic (3 + 1) filter
will result in lower RL levels than the elliptic filter and have better selectivity than the Chebyshev
filter in the same ripple level. The chained-elliptic (3 + 1) filter also provides better wide out-of-band
rejection than the elliptic filter, which will slowly decay, as there is a TZ at infinity (the TZ from the
Butterworth function), but worse rejection than the Chebyshev filter. Chebyshev filters generally need
a higher order than chained-elliptic filters to have comparable performances.

Table 5. Properties of Chebyshev, elliptic and chained-elliptic function filters.

Filter Class Order (N) Return Loss (dB) gmax

gmin
Stopband at ω = 7 (dB)

Chebyshev 5 20 1.761 −88
Elliptic 4 10 52 −45

Chained-elliptic (3 + 1) 4 17.3 8.92 −50

5.3. Sensitivity of Chained-Elliptic Function Filters

As mentioned previously, the chained-elliptic filter can result in sensitivity reduction, which means that
the chained-elliptic filter is less affected by component variations. For a quick analysis of the sensitivity
of the proposed filter, the physical dimensions of the resonators and irises in Table 4 are altered by ±1%
to estimate the sensitivity of the filter and the transfer and reflection responses are shown in Fig. 11. It
is apparent that the chained-elliptic (3+1) filter is less sensitive to physical variations, as the responses
are not greatly affected even after a tolerance of ±1% is applied, as shown in Fig. 11. The number of
transfer zeros and poles remains the same after the tolerance is applied. The insertion loss and stopband
attenuation are not affected much after the tolerance. However, the transfer and reflection responses
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are slightly shifted to the left when a +1% tolerance is applied and slightly shifted to the right when a
−1% tolerance is applied. This is because the resonator lengths are varied, and larger resonator lengths
result in lower frequency shifts (i.e., responses shifted to the left), while smaller resonator lengths result
in higher frequency shifts (i.e., responses shifted to the right).

6. CONCLUSION

Chained-elliptic function filters offer a variety of transfer functions, and each transfer function provides
different filter and implementation characteristics. Chained-elliptic function filters with different
seed-function combinations will have different implementation characteristics and can be used to
extend state-of-the-art filters toward higher frequencies or narrower frequency bands or to lower the
accuracy, fabrication costs and tuning time for a given set of filter specifications. Chained-elliptic
filters can provide quasi-elliptic and quasi-equiripple responses without compromising the wide out-of-
band rejection. In addition, chained-elliptic filters can be implemented with different implementation
technologies, even those with a limited range of characteristic impedances. Chained-elliptic function
filters provide a compromise between the low sensitivity of the Butterworth filter and the high close-to-
band rejection properties of the elliptic filter. Sensitivity reduction can be achieved by selecting powered
seed-functions or by chaining odd-order seed functions with Butterworth filters of any multiplicity. With
the reduction in sensitivity to the manufacturing tolerance, chained-elliptic function filters allow low-
cost fabrication and a faster tuning process. This technique will be useful in designing high frequency
narrow-band filters. Therefore, chained-elliptic filters are an alluring alternative solution to low cost,
high-performance microwave and millimetre-wave bandpass filters.
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8. Stojanović, N., N. Stamenković, and I. Krstić, “Chained-function filter synthesis based on the
Legendre polynomials,” Circuits, Systems, and Signal Processing , Vol. 37, No. 5, 2001–2020,
Aug. 2017.



Progress In Electromagnetics Research C, Vol. 99, 2020 75

9. Zverev, A. I., Handbook of Filter Synthesis, Wiley, New York, 1967.
10. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems:

Fundamentals, Design, and Applications, 2nd Edition, Wiley, New York, Apr. 2018.
11. Hunter, I., Theory and Design of Microwave Filters, (IET Electromagnetic Waves Series), 370,

The Institution of Engineering and Technology, London, United Kingdom, 2006.
12. Xu, J., “Compact quasi-elliptic response wideband bandpass filter with four transmission zeros,”

IEEE Microwave and Wireless Components Letters, Vol. 25, No. 3, 169–171, 2015.
13. Chen, S., L.-F. Shi, G.-X. Liu, and J.-H. Xun, “An alternate circuit for narrow-bandpass elliptic

microstrip filter design,” IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 624–
626, 2017.

14. Chen, C.-J., “A coupled-line coupling structure for the design of quasi-elliptic bandpass filters,”
IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1921–1925, 2018.

15. Zhang, F., J. Li, P. Zhao, G. Huang, and J. Xu, “A wideband microstrip elliptic bandpass filter
with flexibly tunable bandwidth,” 2018 International Conference on Microwave and Millimeter
Wave Technology (ICMMT), 2018.

16. Dimopoulos, H. G., “Optimal use of some classical approximations in filter design,” IEEE
Transactions on Circuits and Systems II: Express Briefs, Vol. 54, No. 9, 780–784, 2007.

17. Wang, L. and L. Jin, “A quasi-elliptic microstrip bandpass filter using modified anti-parallel
coupled-line,” Progress In Electromagnetics Research, Vol. 138, 245–253, 2013.

18. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, “Quasi-elliptic function bandpass filter with upper stopband
extension and high rejection level using cross-coupled stepped-impedance resonators,” Progress In
Electromagnetics Research, Vol. 114, 395–405, 2011.

19. Poularikas, A., The Handbook of Formulas and Tables for Signal Processing , CRC Press, Boca
Raton, Fla., 1999.

20. Chisostomidis, C. E., “Chained function filters — Theory and applications,” Ph.D. dissertation,
Univ. Surrey, Surrey, U.K., 2003.

21. Cameron, R. J., “Advanced coupling matrix synthesis techniques for microwave filters,” IEEE
Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1–10, Jan. 2003.

22. Cameron, R., “General coupling matrix synthesis methods for Chebyshev filtering functions,” IEEE
Transactions on Microwave Theory and Techniques, Vol. 47, No. 4, 433–442, Apr. 1999.

23. Kocbach, J. and K. Folgero, “Design procedure for waveguide filters with cross-couplings,” IEEE
MTT-S Int Microwave Symp. Dig., Vol. 3, 1449–1452, Jun. 2002.

24. Huang, Q. and Z. Wu, “A compact six-order folded-waveguide resonator filter,” 2018 IEEE MTT-S
International Wireless Symposium (IWS), 2018.

25. Kojima, H., M. Nakahori, K. Matsutani, K. Kuroda, and K. Onaka, “A compact 28 GHz bandpass
filter using quartz folded waveguide,” 2018 IEEE MTT-S International Microwave Symposium
(IMS), 2018.

26. Matsutani, K., et al., “Miniaturized quartz waveguide filter using double-folded structure,” 2019
IEEE MTT-S International Microwave Symposium (IMS), 2019.


