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Singular Points Meshing Direct Method for Computing the Chaff
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Abstract—An applicable and convenient method is critical for calculating the RCS (Radar Cross
Sections) of chaff clouds. An improved method based on direct method is proposed in this paper to
promote efficiency, which is called SPMDM (Singular Points Meshing Direct Method). The tanh-sinh
method is applied in SPMDM to compute the complex singular function in which the integral domain
is meshed by singular points. The practicability and accuracy of the SPMDM are confirmed through
comparison with direct method. Results indicate that the SPMDM can significantly decrease calculation
time and increase computing efficiency, especially in large-scale case or small relative error region.

1. INTRODUCTION

Chaff cloud usually comprises thin wires. Targets, such as planes that require protection, will eject
numerous thin wires and form a mass that resembles a cloud. Dipole is a classic form of chaff. To
efficiently protect the target, dipoles are cut into a certain length which can resonate in the carrier
frequency of radar [1].

Chaff was firstly used for shielding radar detection during the Second World War. Nowadays, chaff
is still widely used in military applications, which is launched from an air vehicle to produce a RCS
that the radar can identify as a target rather than a real one [2]. Chaff cloud can also be used to study
atmospheric air flow in civilian applications [3–5]. In addition, chaff is used for wireless communication,
which was studied in [6, 7]. The working efficiency of chaff is determined by a number of parameters,
such as physical cross section, loss, flying velocity, sharpness of chaff, sharpness of chaff cloud, volume,
falling velocity, and RCS. This paper focuses on RCS, whereas the other parameters are studied in other
articles [8–12].

Three different methods were used to calculate the bistatic electromagnetic scattering cross section
of a single chaff. The first one is the integer equation method, which was first used in [13]; a new mode
based on induced electromotive force was developed in the article. This method was then applied to
calculate the backscattering cross section in [14], which was highly consistent with the measured data
in [13]. The second method was used to calculate the backscattering of infinitely conducting dipoles
in [15]. This method was then applied to finite dipole conductivity in [16]. De Bettencourt utilized
this method in a bistatic case [17]. The third method was proposed in [18, 19], which was called the
direct method; however, it only carried first-order terms into the calculation which was then improved
to two-order terms in [20, 21], and it was more complicated than the former one but provided a complete
description of the scattering cross section. Stokes parameters were then applied in the direct method to
demonstrate the necessity of four independent quantities in determining chaff cross section. The Monte
Carlo method was also used to evaluate averages over wire orientations. Unfortunately, Dedrick et
al. [22] in relation to polarizations was defined with respect to the scattering plane. Moreover, numerical
work that relied on the Monte Carlo method resulted in significant errors, which were identified and
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addressed in [1]. Based on the direct method, an improved model was applied in [1], wherein spherically
averaged bistatic cross sections were applied to a cloud of randomly positioned and randomly oriented
resonant dipoles. This study also identified and addressed the errors in [22] using the new results. The
resonance effects of chaff were considered in [23] combined with the work of the former. The influence
of chaff on RCS was studied, and the comprehensive three-dimensional graphs of the relevant bistatic
cross sections plotted against scattering angle and frequency were presented. However, these methods
assume that the contribution phase to the RCS from each fiber is random. This assumption is invalid
for the forward scatter direction. A completely different RCS for forward scattering was then realized
in [24]. Numerically intensive methods that require long computation times were proposed to compute
bistatic RCS for all directions [25]. A unified method was then proposed to determine the total average
RCS of a spherical chaff cloud [26]; this method was valid for all scattering directions, including forward
scatter. A novel chaff cloud Radar Cross Section (RCS) model was proposed to characterize battle ship
auto protection systems under operational configurations [27], in which the software, called SILEM, has
been developed to calculate decoy placement, chaff cloud evolution and dispersion, and radar scattering
by dipoles.

A complete high efficient solution to the bistatic scattering problem from chaff cloud has not yet
been developed. To solve the problem, SPMDM is proposed in this paper that combines the tanh-sinh
method [29] with the direct method. This paper is organized as follows. Section 2 presents the detailed
problem mentioned above. The tanh-sinh method is compared with the Gauss method [21] in Section 3.1
to verify the high accuracy of the former. Finally, the RCSs of dipole and chaff clouds are calculated
with SPMDM in Section 3.2. The results of SPMDM are compared with the direct method to prove
the accuracy and high efficiency of the proposed method.

2. PROBLEM DEFINITION

The overall geometry applicable to bistatic scattering is shown in Fig. 1. A transmitting antenna located
at point T radiates an arbitrarily polarized wave toward a cloud of randomly positioned and oriented
dipoles denoted as point D. The transmitting direction is defined by spherical coordinate angles (θ1, ϕ1),
defined in the common X, Y , and Z coordinate frame. The dipole cloud is sufficiently far, and the
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incident wave can be considered as a planar wave. The chaff is assumed sufficiently smaller than the
average distance r1. Thus, the strength of the incident field is approximately the same for all dipoles.
Moreover, the dipoles are assumed sufficiently sparse. Thus, the scattering between the dipoles and
mutual coupling can be neglected. A receiver located at point R is defined by spherical angles (θ2, ϕ2).
The receiving antenna is also assumed far enough away from the cloud. Thus, distance between the
chaff and receiver is approximately equal to average distance r2. The angle between TD and DR is
denoted by β. The electric field of the incident wave E1 can be resolved into two polarized directions,
namely, Eθ1 and Eϕ1 . The electric field vector is denoted by E2. The wave arriving at the receiver
similarly comprises two directions, namely, Eθ2 and Eϕ2 .

The relationship between the electric field of incident wave and received wave cannot be indicated
by the overall coordinate as the orientation of the dipoles is randomly distributed. The local coordinate
is set up in Fig. 2 to solve this problem. Plane TDR is the scattering plane. Local coordinate system
X ′, Y ′, Z ′ are defined as the X ′ and Y ′ axes that lie on the plane TDR. The X ′ axis bisects scattering
angle β. EϕT

lies on the scattering plane, which is defined as the incident electric field components.
Another incident electric field component is defined by EθT

. Received electric fields EθR
and EϕR

are
also defined in the figure.

The dipole is denoted by S, whose direction is (θd, ϕd). By using the polarization scattering matrix
approach to the scattering problem, the relationship between EϕR

, EθR
and EθT

, EϕT
can be presented

by [1] [
EθR

EϕR

]
=

[
d11 d12

d21 d22

] [
EθT

EϕT

]
. (1)

Field components EθT
and EϕT

are related to the transmitted field Eθ1 and Eϕ1 , respectively, which
are incidents on the dipole: [

EθT

EϕT

]
=

[
T11 T12

T21 T22

] [
Eθ1

Eϕ1

]
. (2)

Field components EϕR
and EθR

are related to Eθ2 , Eϕ2 , which can be expressed by[
Eθ2

Eϕ2

]
=

[
R11 R12

R21 R22

] [
EθR

EϕR

]
. (3)

Thus, the following equation is obtained by combining Eqs. (1) and (2) with Eq. (3):[
Eθ2

Eϕ2

]
= [R] [D] [T ] ·

[
Eθ1

Eϕ1

]
, (4)

where matricrs [R] and [T ] can be easily obtained in [1]. The critical problem is to solve matrix [D],
which represents scattering matrix of the dipole. In the local coordinate, current IT is in the center of
a dipole with a sinusoidal current distribution, and the effective lengths are in the interest direction of
(θ, ϕ). Thus,

[hθ, hϕ] = A(θ, ϕ)[− sin θ cos θd + cos θ sin θd cos(ϕ− ϕd) , sin θd sin(ϕd − ϕ)] (5)

where A(θ, ϕ) is denoted as

A(θ, ϕ) =
(λ/π)

sin(πL/λ)
cos[(πL/λ) cos ψ] − cos(πL/λ)

sin2 ψ
, (6)

where cosψ is
cosψ = cos θ cos θd + sin θ sin θd cos(ϕ− ϕd). (7)

As shown in Fig. 2, plugging point R located in the scattering direction with the spherical
coordinates (r2, π/2, β/2) into Eqs. (5)–(7) [28] allows the dipole to radiate toward point R; thus,
the following equation is obtained [19][

EθR

EϕR

]
=

−jηIT
2λr2

exp(−j2πr2/λ)
[
hθ(π/2, β/2)
hϕ(π/2, β/2)

]
, (8)
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where η = 120π is the intrinsic impedance of the free space, and IT is generated from the radiate of
incident wave

IT = V0c/Zrad = [EθT
hθ(π/2,−β/2),−EϕT

hϕ(π/2,−β/2)]/Zrad . (9)

In Eq. (9), Zrad is the impedance of the dipole. By combining Eqs. (2), (8), and (9) [1], matrix [D]
can be obtained by

[D] =
[
d11 d12

d21 d22

]
, (10)

where

d11 = BA0(β/2) cos2 θd, (11a)

d12 = BA0(β/2) cos θd sin θd sin(ϕd + β/2), (11b)

d21 = −BA0(β/2) cos θd sin θd sin(ϕd − β/2), (11c)

d22 = −BA0(β/2) sin2 θd sin(ϕd − β/2), (11d)

where

B = [−jη/(2λzradr2)] exp(−j2πr2/λ), (12)
A0(β/2) = A(π/2, β/2)A(π/2,−β/2). (13)

The RCS of the dipole is then given by Eqs. (14a)–(14c), in which σptop(p ∈ (⊥, //)) is the Radar
Cross Section of the dipole, assuming that angles θd and ϕd are uniformly distributed in (0, π) and (0,
2π).

σ⊥to⊥ = 4πr22 |B|2
2π∫
0

π∫
0

A2
0(θd, ϕd) cos4 θd sin θddθddϕd, (14a)

σ⊥to// = 4πr22 |B|2
2π∫
0

π∫
0

A2
0(θd, ϕd) cos2 θd sin3 θd sin2(ϕd + β/2)dθddϕd, (14b)

σ//to// = 4πr22 |B|2
2π∫
0

π∫
0

A2
0(θd, ϕd) sin5 θd sin2(ϕd − β/2) sin2(ϕd + β/2)dθddϕd, (14c)

where

A2
0(θd, ϕd) =

(λ/π)2

sin(πL/λ)2

(
cos[(πL/λ) sin θd cos(β/2 − ϕd)] − cos(πL/λ)

1 − sin2 θd cos2(β/2 − ϕd)

)2

(
cos[(πL/λ) sin θd cos(−β/2 − ϕd)] − cos(πL/λ)

1 − sin2 θd cos2(−β/2 − ϕd)

)2

(15)

The RCS of the dipole can then be obtained by combining Eqs. (14a)–(14c) and (15) [24]. The
computation and discussion are presented in the following section.

3. EXPERIMENTS AND ANALYSIS

The chaff cloud is assumed to be randomly distributed. Spherical average is implemented during
calculation to deal with chaff orientation. The accuracy and efficiency of the integration algorithm
directly determine the accuracy of the RCS. Thus, a practical and highly efficiency integration algorithm
is significant in calculating the RCS of the chaff.

The Monte Carlo method is widely used to solve this problem. However, the tremendous
computation requirements limit its application in complex scene. Therefore, SPMDM that combines
the tanh-sinh algorithm with the direct method is proposed in this paper to solve this problem.
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3.1. Comparison with Gauss Integration Method

In this section, the high accuracy of the tanh-sinh algorithm in a singular function is verified by
comparing Gauss integration method with the tanh-sinh method.

As a typical numerical integration method, Gauss integration is widely applied in non-singular
function. However, this method has a poor performance when the non-singular function is replaced by
a singular one. The relative errors of Gauss integration with the number of interpolation points are
shown in Fig. 3. In this figure, the singular function is 1/

√
x2 + y2, and the range of the integration

is x ∈ (0, 1), y ∈ (0, 1); x ∈ (0, 0.5), y ∈ (0, 0.5); and x ∈ (0, 2), y ∈ (0, 2). The tanh-sinh algorithm is
used to increase the accuracy of the results in this paper.

Tanh-sinh, which was mainly used to solve the one-dimensional problem in the early stage, was first
proposed in 1973 [29]. However, tanh-sinh is rarely discussed, and a few details are provided in [30, 31].
The key feature of tanh-sinh method is locating the interpolate point. The interpolate points are nearly
uniformly distributed on the integration range for Gauss integration method. To verify the reliability
of the case in which tanh-sinh is applied on the singular function with the singular point right on the
boundary, the singular function 1/

√
x2 + y2 is also integrated on the range of x ∈ (0, 1), y ∈ (0, 1) with

the tanh-sinh method. The results are shown in Fig. 4.
The relative errors of tanh-sinh method are significantly lower than those of the Gauss method.

The decline rate of the tanh-sinh method is also significantly faster than that of the latter method. The
results in Figs. 3 and 4 indicate that the tanh-sinh algorithm is an appropriate method for singular
function. The tanh-sinh algorithm is then combined with the direct method to calculate the RCS of
the dipole.
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Figure 3. Relative errors with the number
of interpolation points in the Gauss integration
method.
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3.2. Computing the RCS of the Dipole

The tanh-sinh method is used to compute the RCS of the dipole, and the spherically averaged bistatic
radar cross sections for linearly polarized transmission and reception are shown in Fig. 5 and Fig. 6.

The results indicate that the curves obtained by the tanh-sinh method are significantly different
from the Monte Carlo method. The reason is that in Equations (13)–(15), the four singularities of the
integrand are away from the boundary of the integration area; however, the singularity should be near
the boundary of the integration area when using tanh-sinh method.

To solve the problem, SPMDM is proposed in which the integration area is divided into fourteen
parts, and the four points are right on the vertex of each part, which is shown in Fig. 7. Then, the RCS
of the dipole is the sum of the fourteen parts.

Two different parameters of the dipole are calculated with SPMDM, and the results are shown
in Figs. 8 and 9. The results indicate that the curves obtained by the SPMDM are consistent with
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the direct method in which the Monte Carlo method was used to calculate the singular function [1].
Furthermore, it is also seen that the SPMDM can significantly increase the accuracy of the results
compared with the original tanh-sinh method.

In addition, the SPMDM is applicable for computing the averaged RCS of the chaff cloud. The
computing time of SPMDM is then compared with the direct method to verify the high efficiency of
the proposed method.

The relative errors of the RCS with the computing time are presented in Figs. 10 and 11. Three
different numbers of chaffs are also calculated as 20, 2000, and 200000. The results indicate that the
relative errors of both methods decrease with the increase of computing time, and the computing time
also increases with the number of chaffs increases. Moreover, the results also show that the SPMDM
takes significantly less time than the direct method for the same scale case

In order to indicate the relationship of the two method more clearly. The comparison of the two
method is presented in Fig. 12 and Fig. 13.

The computing time of the two methods with the relative errors are shown in Fig. 12. It is seen
that the computing times of both methods increase with the decrease of relative errors. In the range of
error above 1e-6, the blue line exhibits a slope nearly linear, a characteristic drastically different from
the green one, which takes a quadratic shape. Thus, the high efficiency of the SPMDM in small relative
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error region is verified by comparison with the direct method.
The computing times of the two methods with the number of chaffs are shown in Fig. 13. It is seen

that the computing time of both methods almost linearly increase with increasing number of chaffs,
and the computing time of SPMDM is significantly shorter than that of the direct method, especially
in large-scale case. Then, with the increase of the scale, the slope of the SPMDM is also much smaller
than that of the direct method in the same relative errors.

4. CONCLUSIONS

An improved method called SPMDM is proposed in this paper, in which the tanh-sinh method is used
to compute the complex singular function. The proposed method is applied to calculate the RCS of the
chaff clouds.

During the calculation of SPMDM, the integration area is divided into fourteen parts to improve the
accuracy of RCS of the chaff clouds. It is found that the curves obtained by the SPMDM are consistent
with the direct method in which the Monte Carlo method is used to calculate the singular function.
Moreover, the relative errors of the RCS with the computing time are studied in this paper. Results
indicate that the relative errors of both methods decrease with computing time. Computing time also
increases with the number of chaffs. Moreover, the computing time of the SPMDM is much less than
the original method in the same scale case. Then, relative errors of the RCS with the computing time
of different methods are studied by comparing different scales of chaff cloud. Results reveal that the
computing time of both methods almost linearly increase with the chaff number, and the computing
time of the SPMDM is significantly shorter than that of the direct method. With the increase of the
scale, the slope of the SPMDM is also much smaller than that of the direct method in the same relative
errors. Furthermore, the high efficiency of the SPMDM in small relative error region is verified by
comparison with the direct method. The SPMDM can significantly decrease the calculation time and
increase the computing efficiency.
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