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Solving Electric Current Volume Integral Equation with
Nonconformal Discretization and Sherman-Morrison-Woodbury

Formula-Based Algorithm

Fei Huang1, 2 and Yufa Sun1, *

Abstract—A fast direct solution of the electric current volume integral equation (JVIE) with the
Sherman-Morrison-Woodbury (SMW) formula-based algorithm is presented to analyze electromagnetic
scattering from inhomogeneous dielectric objects. The JVIE is discretized with the nonconformal face-
based Schaubert-Wilton-Glisson (SWG) basis functions. Compared with conformal discretization that is
advantageous to discrete homogeneous regions, the nonconformal discretization provides a more flexible
and efficient scheme to separately handle the inhomogeneous subdomains depending on local parameters.
Moreover, to take full use of both discretization methods, the mixture discretization is adopted. With
the increase of object size, the impedance matrix equation arising from the JVIE becomes too large
to solve and store for direct solution. In this paper, the SMW formula-based algorithm is adopted,
leading to remarkable reduction on the computational complexity and memory requirement in contrast
with conventional direct solution. This algorithm compresses the impedance matrix into a product of
block diagonal submatrices, which can be inversed rapidly in direct way. Numerical results are given to
demonstrate the efficiency and accuracy of the proposed method.

1. INTRODUCTION

Volume integral equation (VIE) method has been widely used to analyze electromagnetic scattering from
inhomogeneous dielectric objects [1]. Usually the conformal discretization is adopted to convert VIE
into a matrix equation for enforcing the normal continuity of electric currents across adjacent volume
elements [2]. For objects with multiscale structure or high-contrast relative permittivity, the conformal
discretization may result in barriers to analysis efficiency. It is mainly because the small geometric
structures or high-contrast subdomains which are discretized with same mesh size as the remaining
components may generate excessive elements [3]. Hence, it is essential to integrate the nonconformal
discretization into VIE. Depending on local physical parameters, the subdomains are permitted to
independently adopt individual mesh size or high-order basis function without restriction of continuity
condition [4], which reduces the number of elements for modeling complex objects. In addition, the
equivalent electric currents are used to expand the VIE in our study. Compared with the electric
flux-based [5] or electric field-based [6] VIE, the electric current volume integral equation (JVIE) is
independent on the material parameter in integral kernel, expediting the calculation of the impedance
matrix [7].

In consideration of unpredictable convergence of iterative solver, the direct solver is employed to
solve the matrix equation derived from the JVIE [8]. Furthermore, the direct solver exhibits significant
advantage over the iterative solver on dealing with the problems with multiple right-hand-side vectors.
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For each new vector, the iterative solver needs to resume, leading to more computational consumption
than the direct solver. However, scaled with O(N3) and O(N2), respectively, the computational
complexity and memory requirement of direct solver are too expensive for large objects, where N denotes
the number of the unknowns. Hence, the multiscale compressed block decomposition (MSCBD) [9]
and Sherman-Morrison-Woodbury (SMW) formula-based algorithm (SMWA) [10, 11] are proposed to
improve the efficiency. The two algorithms follow a similar key idea that decompose the impedance
matrix into a hierarchical structure composed of the sparse approximation of submatrices, which are
easy to inverse and store. Of the two algorithms, the SMWA is more suitable for parallelization.

Each of the conformal and nonconformal discretization has advantages and drawbacks. To make
full use of their advantages, the mixture of both discretization methods is adopted to discrete the
JVIE. Moreover, the SMWA is employed to solve the matrix equation. It decomposes the impedance
matrix into the product of low-dimension matrices, which are sparse and easy to inverse. Then it
approximates the inverse of the original matrix with the product of the inverse of the low-dimension
sparse matrices. Compared with the conventional LU algorithm which solves the high-dimension matrix
equation extremely slowly, the SMWA is more efficient, saving remarkable computational resources in
terms of both CPU time and memory.

2. FORMULATION

2.1. The JVIE and Nonconformal Discretization

An arbitrarily shaped inhomogeneous object with the complex permittivity ε(r) residing in the free
space with the permittivity ε0 and permeability μ0 is excited by the incident electric field Einc(r).
According to the volume equivalence principle, the JVIE can be formulated as

J(r)
jωε(r)κ(r)

+ jωA(r) + ∇Φ(r) = Einc(r) (1)

where ω is the working angular frequency; J(r) represents the equivalent volume currents; and
κ(r) = 1 − ε0/ε(r) denotes the contrast ratio. The vector potential A(r) and scalar potential Φ(r)
are related to J(r). The vector potential A(r) can be written as

A(r) = μ0

∫
V

J(r′)G
(
r, r′

)
dv′ (2)

where G(r, r′) = exp(−jk0|r − r′|)/(4π|r − r′|) is Green’s function with r being position vector of the
observation point and r′ being position vector of the source point, and k0 is the wave number of free
space. For JVIE, the equivalent volume currents J(r) are physically noncontinuous across the interface
separating different mediums. Hence, the equivalent surface charges ϕs(r) that only accumulate on
the mediums interface are introduced to enforce the current continuity. Correspondingly, the scalar
potential Φ(r) can be expressed in the form of the volume charges ϕv(r) and surface charges ϕs(r)

Φ(r) =
1
ε0

[ ∫
V

ϕv(r′)G
(
r, r′

)
dv′ +

∫
Sinter

ϕs(r′)G
(
r, r′

)
ds′

]
(3)

where Sinter represents a set of interfaces between different mediums in the object. ϕv(r′) and ϕs(r′)
accord with the following equations, respectively

ϕv(r′) = (j/ω)∇′ · J (
r′

)
(4)

ϕs(r′) = (j/ω)
M∑

m=1

nm
inter ·

[
Jp

(
r′

) − Jq

(
r′

)]
(5)

where nm
inter denotes the unit vector normal to the interface Sm

inter, of which the number is M . Jp(r′) and
Jq(r′) respectively indicate the induced volume currents in two tetrahedrons which share the common
face Sm

inter. For the reason that Jp(r′) and Jq(r′) are discontinuous, the conformal Schaubert–Wilton–
Glisson (SWG) basis functions [12] are incapable to directly expand Jp(r′) and Jq(r′). Herein, the
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Figure 1. Nonconformal discretization with mono-SWG basis functions. (a) Definition of mono-SWG
basis function. (b) Illumination of nonconformal discretization.

nonconformal SWG basis function fp(r), termed as mono-SWG basis function, is introduced to address
the problem.

As presented in Fig. 1(a), fp(r) associated with face Sp is defined within single tetrahedron Tp

fp (r)=

{ ap

3Vp
ρp, r ∈ Tp

0, otherwise
(6)

where ap and Vp are the area of face Sp and the volume of tetrahedron Tp, respectively, and ρp denotes
the vector with respect to the vertex opposite to face Sp. The electric current within each single
tetrahedron can be represented by the sum of four linearly independent mono-SWGs (one associated
with each face). The electric currents in Tp and Tq can be expressed respectively as

Jp(r) =
4∑

k=1

βpkfpk (r) (7)

Jq(r) =
4∑

k=1

βqkfqk (r) (8)

where βpk and βqk represent the expanded coefficients of the corresponding mono-SWG basis functions.
Substituting Eqs. (7) and (8) into Eq. (5), because only the basis function fpm(r) and fqm(r) whose
corresponding face is Sm

inter has component normal to Sm
inter, ϕs(r′) can be simplified as

ϕs(r′) = (j/ω)
M∑

m=1

(βpm − βqm) (9)

where βpm and βqm indicate the coefficients of two mono-SWG basis functions, which are associated
with the interface Sm

inter.
The integral kernel of the vector potential A(r) and the scalar potential Φ(r) for the electric flux-

based and electric field-based VIE depend on the material parameter κ(r). However, it can be seen from
aforementioned equations that both A(r) and Φ(r) for JVIE are unrelated with κ(r) or ε(r), which will
accelerate the calculation of impedance matrix elements.

The illumination of nonconformal discretization, which uses two mono-SWG basis functions
defined in adjacent tetrahedrons with different mesh sizes Tp and Tq, is presented in Fig. 1(b). The
surface charges accumulating on the shadow area Spq enforce the current continuity across adjacent
tetrahedrons. Integrating the nonconformal discretization into JVIE can impose current continuity
on the mediums interface and handle extremely multiscale targets with flexible discretization scheme,
significantly reducing the number of volume elements required for modeling.

2.2. The SMWA

In the following, the SMWA as a recursive algorithm is introduced to inverse the impedance matrix
derived from the JIVE. It firstly implements the multilevel binary tree division on the geometry of
the object to transform the impedance matrix into a hierarchical structure. At level 1, the object is
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divided into two blocks. As a result, the impedance matrix Z is partitioned into four submatrices, of
which the off-diagonal submatrices with low-rank property can be compressed by the adaptive cross
approximation (ACA) algorithm. Matrix M is the sparse approximation of Z

Z ≈ M =
[

M1
11 U1

12(V
1
12)

T

U1
21(V

1
21)

T M1
22

]
(10)

where M1
11 and M1

22 denote the self-impedance matrix of two blocks at level 1, respectively, U1
12, V1

12,
U1

21, and V1
21 indicate the ACA decomposition matrices. Then M is written as

M =
[

M1
11 0

0 M1
22

] [
I (M1

11)
−1U1

12(V
1
12)

T

(M1
22)

−1U1
21(V

1
21)

T I

]
= M1

RM1 (11)

where M1
R is a block diagonal matrix composed of the self-impedance submatrices at level 1, and M1

comprises identity matrix I and product of low-rank matrices. M1
R can be factorized by progressively

partitioning M1
11 and M1

22 and recursively calling the SMWA until the finest level. Fig. 2 presents the
illustration of 3-level factorization of the impedance matrix M.

Full Rank Matrix Low Rank Matrix Identity Matrix Zero  Matrix

Z M
3

R
M

3
M

2
M 1

M

≈ × × ×

Figure 2. The illustration of 3-level factorization of the impedance matrix Z.

At level L, M is decomposed into a product of L + 1 block diagonal matrices

M = ML
RMLML−1 . . .M1 (12)

Then the inverse of M can be calculated by

M−1 = (M1)−1 . . . (ML−1)−1(ML)−1(ML
R)−1 (13)

where ML
R consists of 2L diagonal submatrices with size of (N/2L) × (N/2L), which can be easily

inversed. N is the number of unknowns in Z. For Ml (1 ≤ l ≤ L), these matrices are similar
in form of identity matrices and product of low-rank matrices. With the aid of the SMW formula
(I + AB)−1 = I − A(I + BA)−1B, it is efficient to inverse Ml. Taking M1 for instance, M1 is firstly
adapted as

M1 =
[

I 0
0 I

]
+ AZBZ (14)

AZ =
[

0 (M1
11)

−1U1
12

(M1
22)

−1U1
21 0

]
(15)

BZ =
[

(V1
21)

T 0
0 (V1

12)
T

]
(16)

then (M1)−1 can be calculated by

(M1)−1 = I − AZ(I + BZAZ)−1BZ (17)

where matrix I + BZAZ is much smaller than M1. Following aforementioned rules, we can calculate
the inverse of Ml with greatly less computational and memory consumption, and Z−1 ≈ M−1 can be
rapidly obtained. To be clearer, the pseudo code of the SMWA is presented in Fig. 3.
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Function       = SMWA (M)

if    M is the impedance matrix of the finest sub-block

             inverse M by LU decomposition then return

else

  partition the M into       ,        ,        and 

Inverse                                          by SMW formula

Return 
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Figure 3. The pseudo code of the SMWA.

2.3. The Mixture of Conformal and Nonconformal Discretization

For piecewise homogeneous dielectric object, the normal component of J(r) is continuous in the
homogeneous part of the object, where using the conformal SWG basis functions to expand J(r) is
more efficient. It is for the reason that in homogeneous area the conformal discretization generates
less unknowns. To improve the efficiency of the algorithm, we mix the conformal and nonconformal
discretization to discrete the JVIE. As presented in Fig. 4, the mono-SWG basis functions are applied
to model the boundaries separating two mediums, meanwhile, the conformal SWG basis functions are
used to model the inner of homogenous parts.

1ε

2
ε

0
ε

Figure 4. Two discretization methods for dielectric object with two homogeneous subdomains.

3. NUMERICAL RESULTS

To validate the accuracy and efficiency of proposed hybrid of nonconformal discretization and SMWA on
solving JVIE, the monostatic radar cross section (RCS) of inhomogeneous dielectric object is calculated
for vertical polarization (VV) with incident plane waves at 300 MHz. The plane waves for calculating
the monostatic RCS are normally θ-polarized and set in the range from θ = 0◦ to θ = 180◦ (φ = 0◦).
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In order to estimate the error of the proposed method, the root mean square (RMS) error of the RCS
is introduced, which is defined as

RMS (dB sm) =

√√√√ 1
N2

Na∑
i=1

|σref,i − σpro,i|2 (18)

where σpro,i denotes the RCS calculated by the proposed method, and σref,i stands for the reference
result, Na is the number of the sampling angles.

The first example is a composite inhomogeneous object, which is composed of a cube with size of
0.5m × 0.5m × 0.2 m and a cylinder with radius of 0.1 m and height of 0.05 m. The cylinder is placed
on the center of the cube top surface, as shown in Fig. 5. The relative permittivities of the cube and
cylinder are εcu = 4.0 and εcy = 16.0, respectively. For modeling the composite object, the numbers
of tetrahedrons and unknowns produced by the conformal, nonconformal and mixture discretization
are compared in Table 1. It is shown that the mixture discretization produces the least unknowns,
gaining the most efficiency. The nonconformal electric flux-based VIE (NDVIE) that applies the LU
algorithm to solve the matrix equation is taken as reference method [13]. The monostatic RCSs of
composite object calculated by NDVIE and the proposed method that applies the SMWA to solve the
matrix equation are depicted in Fig. 5. It is shown that the two results fit well. The RMS between two
methods is 0.08 dBsm. The CPU time and memory of the NDVIE and proposed method for calculating
RCS are presented in Table 2. Compared with the NDVIE, the proposed method saves about 62.8%
and 52.2% in terms of total CPU time and memory requirement, respectively.

The pyramid-shaped object with base square length of 0.6 m and height of 0.9 m is evenly divided
into three layers along the z-axis as shown in Fig. 6. The relative permittivities of the top, middle,
and bottom layer are ε1 = 16.0, ε2 = 4.0, and ε3 = 9.0, respectively. For modeling the pyramid-
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Figure 5. Monostatic RCS of composite object for V V polarization.

Table 1. The number of tetrahedrons and unknowns for modeling by three discretization methods.

Discretization method
Composite object Pyramid-shaped object

Number of
tetrahedrons

Number of
unknowns

Number of
tetrahedrons

Number of
unknowns

Conformal 32363 66943 65765 128370
Nonconformal 4654 18616 25695 102780

Mixture 4654 9775 25695 53431
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Table 2. The CPU time and memory of the NDVIE and proposed method for calculating the RCS.

Object
NDVIE Proposed method

Time (s) Memory (MB) Time (s) Memory (MB)
Composite object 849 764 315 365

Pyramid-shaped object 37268 22838 5016 4926

shaped object, the numbers of tetrahedrons and unknowns produced by the conformal, nonconformal
and mixture discretization are compared in Table 1, where the mixture discretization generates the least
unknowns. The monostatic RCSs of pyramid-shaped object calculated by NDVIE and the proposed
method are depicted in Fig. 6, where two results agree well with each other. The RMS between two
methods is 0.11 dBsm. The computational consumptions of the NDVIE and proposed method are
presented in Table 2. In comparison to NDVIE, the proposed method saves about 86.5% and 78.4% in
terms of total CPU time and memory requirement, respectively.
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Figure 6. Monostatic RCS of pyramid-shaped object for V V polarization.

4. CONCLUSION

In this paper, the mixture of conformal and nonconformal discretization has been used to convert the
JVIE, greatly reducing the number of elements and unknowns for modeling. Furthermore, by means
of SMWA, the generated matrix equation is solved with remarkably less computational and memory
consumption. The accuracy and efficiency have been validated by two inhomogeneous objects.
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6. Markkanen, J., C.-C. Lu, X. Cao, and P. Ylä-oijala, “Analysis of volume integral equation
formulations for scattering by high-contrast penetrable objects,” IEEE Trans. Antennas Propag.,
Vol. 60, No. 5, 2367–2374, 2012.

7. Zhang, L.-M. and X.-Q. Sheng, “A discontinuous Galerkin volume integral equation method for
scattering from inhomogeneous objects,” IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5661–
5667, 2015.

8. Heldring, A., J. M. Rius, J. M. Tamayo, J. Parrón, and E. úbeda, “Fast direct solution of method
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