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Transient Response of Microstrip Patch Antenna Loaded on a
Vehicle Platform Illuminated by Electromagnetic Pulse

Xiao Hu*, Yang Qiu, Qinglin Xu, and Jin Tian

Abstract—This paper presents an efficient hybrid method consisting of nonuniform mesh finite-
difference-time-domain (FDTD) method, thin wire model, and transmission line (TL) equations method,
which is utilized to analyze transient responses of the microstrip patch antenna loaded on a vehicle
platform illuminated by a high-power electromagnetic pulse (EMP). This hybrid method avoids over-
fine mesh generation, thereby improving the computational efficiency and saving the computational
memory. The accuracy and efficiency of this method are verified by comparing with the simulation
results of traditional FDTD and computer simulation technology microwave studio (CST MWS). Then,
considering the influence of the incident conditions of EMP and the support structure of antenna on the
coupling effects of the antenna, the coupling responses of the 1.575 GHz microstrip antenna are discussed
in terms of incident angles of EMP, heights of the support structure, top areas of the support structure,
and different positions of the support structure on the platform. The obtained changing regularity
of the transient responses is useful for further designing the installation structure of the antenna and
electromagnetic protection against the external EMP.

1. INTRODUCTION

In recent years, with the rapid development of high-power electromagnetic pulse (EMP) source,
electronic devices are confronted with new and rigorous challenges. The pulse interference signal has
the characteristics of short rising time and large pulse amplitude, which may cause electromagnetic
interference or even damage to electronic equipment. Therefore, the coupling effect of high-power
EMP to electronic equipment has become a research hotspot [1–4]. Microstrip patch antennas are
widely used in communication and navigation equipment of vehicle, aircraft, missile and other system
platforms because of their advantages of light weight, small size, thin profile, etc. However, due to its
fragile protective performance, the microstrip patch antenna in navigation equipment are susceptible
to electromagnetic interference, especially when it is illuminated by EMP. Hence, it is necessary to
investigate the coupling effects of EMP to microstrip patch antenna.

The coupling path of EMP to electronic system can be divided into front-door coupling and back-
door coupling. Front-door coupling mainly refers to the effect that the EMP enters into the receiver
through the antenna of the system. Back-door coupling is relatively complex, including some slots,
apertures, windows, and interconnected cables in the metallic enclosure. In the published papers, many
researches focus on the back-door coupling effect of EMP on electronic systems, and the preferred
method used to simulate the coupling problem is the full-wave algorithm. For example, Lertsirimit et
al. [5] used a combination of transmission-line analysis and full-wave solver to calculate the coupling to
a printed circuit board inside a cavity by a wire penetrating an aperture. Xie et al. [6–8] established
the SPICE (Simulation program with integrated circuit emphasis) models of different transmission lines
to calculate the transient response of EMP on the cable based on the finite-difference time domain
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(FDTD)-SPICE hybrid method. Ye et al. [9–11] proposed FDTD-TL (transmission line) method to
analyze the electromagnetic interference (EMI) coupling of EMP to transmission lines termination in
different scenarios.

It should be noted that in the actual electromagnetic environment, the electromagnetic energy
entering the target through the back-door coupling is very limited, and most of the energy is mainly
coupled into the target through the antenna. However, there are not many research works concerning
the coupling between EMP and antenna. In [12–15], the transient response in the time domain (TD)
of monopole or dipole antenna illuminated by EMP is captured with different methods. Taking the
influence of other factors in the system into account, the system TD response of a metallic enclosure
with thin-wire antenna and transmission line is predicted based on hybrid FDTD method in [16–19].
However, these studies are only aimed at simple thin wire antennas. The behavior of a microstrip patch
antenna fed with a wire (coaxial probe) and illuminated by an electromagnetic pulse is analyzed by
using a total finite difference algorithm [20], in which the numerical Huygen’s source scheme is used
to illuminate the antenna, and the Thevenin equivalent circuits are established. However, the method
needed complicated formula derivation and the analysis did not consider the scene when the antenna is
installed on the platform.

In this paper, we present a time-domain hybrid method for investigating the coupling effects of high
power EMP to the microstrip patch antenna. In order to rapidly capture the time domain response
of the microstrip patch antenna, the hybrid method combines the non-uniform mesh FDTD, thin-wire
model and the transmission line equations method effectively. Especially, considering the influence of an
installing platform on the coupling effects of the microstrip patch antenna, the coupling characteristics
of the antenna installed on a simplified vehicle platform are discussed in detail in terms of the incident
angles of EMP, the heights of the support structure, the top areas of support structure, and different
positions of support structure on the platform.

2. THEORY OF THE HYBRID METHOD

The model of a typical square microstrip antenna is shown in Fig. 1, which is comprised of a radiation
patch, an FR4 (epoxy glass fiberboard) dielectric substrate, and a perfect conducting ground plane.
The relative dielectric constant of the substrate is εr. The antenna fed by a coaxial cable is mounted on
a cylindrical support structure on a vehicle platform of dimensions L1 × L2 × L3, which is illuminated
by an external EMP, as shown in Fig. 2.

In order to analyze the time domain response of the microstrip patch antenna on the vehicle
platform, in ordinary circumstances, the whole problem space would be meshed uniformly. However,
since the size of microstrip antenna containing coaxial feed probe is much smaller than that of vehicle
platform, and the electromagnetic field around the discontinuous structure of antenna vary dramatically,
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Figure 2. Geometry of the microstrip patch
antenna installed on a simplified vehicle platform.
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it needs finer mesh size for modeling the antenna to achieve the expected simulation accuracy. Thus, the
non-uniform mesh [21] FDTD scheme is utilized to solve the simulation domain rather than using smaller
mesh alone uniformly throughout the space domain, thereby increasing the computation efficiency.
Then, we incorporate the modified thin-wire model and transmission-line feeding model into the FDTD
scheme, so as to avoid extremely fine meshing when modeling the coaxial feeding port. The detailed
formulation of this hybrid method will be given in the following sections.

2.1. Nonuniform Mesh FDTD Method

The time-dependent Maxwell’s curl equations for linear, isotropic, non-dispersive and lossless media are
written as

∇× H = ε
∂E
∂t

(1)

∇× E = −μ
∂H
∂t

(2)

where E and H are the electric and magnetic vector fields, respectively. ε is the permittivity, and μ
is the permeability of the medium. According to the conventional FDTD method based on Yee’s grid,
Equations (1) and (2) can be solved, then the updating equations of the Ez and Hz components can be
given by
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Here, i, j, k and n are the space and time indexes. Δt is the time step, and Δxi, Δyj, Δzk, are the
space increments along the x-, y-, and z-directions, respectively. The other field components Ex, Ey,
Hx and Hy have the similar expressions. In the classic formulation of the FDTD method, since the
computational domain and the time axis are uniformly discretized, it requires a lot of computational
cost when the mesh size is very small. Therefore, in our hybrid method, the problem space is divided
into fine mesh domain and coarse mesh domain.

As shown in Fig. 3, the fine mesh is applied to divide the antenna and its near region, and the
coarse one is applied to divide the other space between antenna and the absorbing boundary. Δxf ,
Δyf , Δzf are the space increments of fine mesh domain along the x-, y-, and z-directions, respectively.
Δxc, Δyc, Δzc are the space increments of coarse domain, respectively. By using the non-uniform mesh
FDTD, the field values in the coarse mesh region, fine mesh region as well as on the boundaries can be
updated simultaneously, where the difference is that in a fine mesh region, the space increments Δxi,
Δyj, Δzk of Equations (3) and (4) are equal to Δxf , Δyf , Δzf respectively; and in the coarse region,
the space increments are equal to Δxc, Δyc, Δzc respectively.

It should be noted that, when solving the electric fields at the junction of coarse and fine mesh, in
order to reduce the reflection error from fine-coarse boundary because of the discontinuity, the linear
interpolation [22] on the coarse-fine boundary in space is applied in our method. Based on linear
interpolation from Hy(i − 1, j, k) and Hy(i, j, k) components, an assumed magnetic field component
H ′

y(i, j, k) at a distance of half fine mesh interval from coarse-fine boundary is given by

H ′
y(i, j, k) =

p − 1
p + 1

Hy(i − 1, j, k) +
2

p + 1
Hy(i, j, k) (5)

where p = Δcoarse/Δfine is the ratio of two kinds of mesh sizes. The other directions have the similar
expressions.
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Figure 3. The model of non-uniform mesh generation.

The space increments at the coarse-fine boundary need to take the average value of two different
mesh sizes, as shown in Fig. 4(a), where the space increments of electric fields updating equation along
three directions are given by

Δxi = (Δxf + Δxc)/2
Δyi = (Δyf + Δyc)/2
Δzi = (Δzf + Δzc)/2

(6)

For the magnetic field at the junction, since the magnetic field is at the center of the mesh, as
shown in Fig. 4(b), the space increments of magnetic fields updating equation do not require special
treatment.
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Figure 4. The fields at the junction of coarse and fine mesh. (a) The magnetic fields around the Ez;
(b) The electric fields around the Hz.

2.2. Coaxial Feed Model

Since the size of coaxial line is usually less than one mesh size, as shown in Fig. 5, there are some coaxial
feeding models available in FDTD. In these models, the feed probe connected to the coaxial feed line
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Feeding Probe

Figure 5. The configuration of coaxial feeding model.

is simulated by a simple wire model, and the propagation of electromagnetic field inside a coaxial feed
line is simulated by a 1-D transmission line model. The thin wire representation of coaxial feed probe
has great influence on the simulation accuracy. Therefore, for the improved thin wire representation of
feed probe, we have several choices to simulate in FDTD domain. Umashankar et al. [27], Noda and
Yokoyama [28], MäKinen et al. [29], and Railton et al. [30, 31] have proposed thin wire representations
for FDTD computations in the three-dimensional (3D) Cartesian coordinate system.

However, for a conductor system having a radius, a, smaller than 0.15Δr or larger than 0.65Δr
(Δr is the lateral side length of mesh used), when being modeled using the thin wire representations
of Noda and Yokoyama, and Railton et al., with a time increment determined from the upper limit of
Courant stability condition (about 0.99Δr/c/

√
3, where c is the speed of light), it will result in numerical

instability. Therefore, based on the previous research, Taniguchi et al. [32] have proposed an improved
representation of an arbitrary-radius wire which enables FDTD computations to be carried out stably
and accurately. Thus, we extend Taniguchi’s model to be applicable for our hybrid method to get a high
efficiency as well as a low computational cost. Note that, since this paper mainly analyzes the coupling
response of antenna, the thin wire probe and coaxial line are assumed to be lossless. Based on the
Noda’s model [28], the relative permeability used for calculating the magnetic field components closest
to the wire, and the relative permittivity used for getting the closest radial electric field components
can be given by

μ′
r =

μr

m
, ε′r = mε

m =
ln

(
Δr

a0

)

ln
(

Δr

a

) , a0 = 0.23Δr
(7)

where Δr = Δxf = Δyf = Δzf is the space increments of fine mesh region; μr and εr are the relative
permeability and permittivity of the original medium surrounding the wire; a0 is the equivalent radius;
and a is the actual radius of thin wire.

In order to avoid the numerical instability, when the radius of a z-directed thin wire, a, is smaller
than the equivalent radius, a0, in addition to the closest circulating magnetic field components, Hx and
Hy, the modified relative permeability, μ′

r, given by Eq. (7), should be employed in calculating the axial
magnetic field components closest to the wire, Hz, as shown in Fig. 6(a). Similarly, when the radius of a
z-directed thin wire, a, is larger than the equivalent radius, a0, in addition to the closest radial electric
field components, Ex and Ey, the modified relative permeability, ε′r, should be employed in calculating
the axial electric field components closest to the wire, Ez, as shown in Fig. 6(b).

For the coaxial feed model of antenna, the behavior of the internal electromagnetic field of the
coaxial line is solved by applying transmission line theory, as shown in Fig. 7. The transmission-line
equations can be discretized by one-dimensional (1-D) FDTD scheme, which are given by

In+1/2(k′) = In−1/2(k′) − cΔt

ZaΔz

[
Un(k′ + 1) − Un(k′)

]
(8)
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Un+1(k′) = Un(k′) − Za
cΔt

Δz

[
In+1/2(k′ + 1) − In+1/2(k′)

]
(9)

where U and I represent the voltage and current vector of the coaxial cable, respectively. k′ is the
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special index of the cable in the z-direction. Za is the characteristic impedance of coaxial cable. When
the antenna is illuminated by an EMP, according to the Ampere’s law, the current at the feeding point
between coaxial cable and antenna can be calculated by

In+1/2(k′
top) = Δyf

[
Hn+1/2

y (ia, ja, ka) − Hn+1/2
y (ia − 1, ja, ka)

]
−Δxf

[
Hn+1/2

x (ia, ja, ka) − Hn+1/2
x (ia, ja − 1, ka)

]
(10)

where ia, ja, and ka are the location indexes of the feeding mesh in the x-, y-, and z-directions,
respectively. k′

top represents the feeding point of the cable.
Substituting Eq. (10) into Eqs. (8) and (9), the transient response of external electromagnetic

interference coupled to cable through antenna can be obtained. Further, taking the effect of coaxial
cable on the external field at the aperture into account, the equations for the magnetic field components
surrounding the feeding point can be given by
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where Un(k′
top) is the voltage at the aperture, and it can be obtained by Equation (9). The updating

equations of H
n+1/2
y (ia − 1, ja, ka) and H

n+1/2
x (ia, ja − 1, ka) can be modified in the same way.

3. NUMERICAL SIMULATION AND ANALYSIS

In this section, firstly, this hybrid method, traditional FDTD and the CST MWS [based on a finite
integration technique (FIT)] are used to simulate a case, and the simulation results are compared
to verify the accuracy and efficiency of the proposed method. Then, the coupling responses of the
microstrip patch antenna mounted on the vehicle platform are discussed in detail in terms of the pitch
angle of incident EMP, the azimuth angle of incident EMP, the heights of the support structure, the
top areas of support structure, and different positions of support structure on the vehicle.

3.1. Verification of the Hybrid Method

The simulation case adopted is shown in Fig. 8, where the vehicle platform is simplified as a PEC
enclosure with the dimension of L1 × L2 × L3 = 0.5m × 0.5m × 0.2m to save simulation time and
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Figure 8. The model of antenna on a simplified PEC enclosure.
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computational cost. We model a square microstrip antenna of patch length L = 30 mm over an infinite
ground of length Lg = 48 mm, with the substrate of thickness h = 2mm and constant εr = 9.5 to satisfy
the resonant frequency f = 1.575 GHz. The antenna is placed at the center of the vehicle, which is fed
by the coaxial cable, and its inner radius a and outer radius b are 0.25 mm and 0.58 mm, respectively,
with its characteristic impedance set to 50Ω, and the terminal load R of the cable is 50Ω. The feed
point deviates from antenna center w = 3mm on Y axis.

The coarse mesh size and fine mesh size of nonuniform FDTD are chosen to be Δxf = Δyf = Δzf =
0.5 mm, Δxc = Δyc = Δzc = 5 mm, respectively, and the time step is chosen to be Δt = 0.9Δxf/

√
3c

to satisfy the CFL (Courant Friedrichs Lewy) condition. The fine mesh area is set as a cuboid area
d = 20 mm away from each side of the antenna in x, y, and z directions, as shown in Fig. 3. In our
FDTD simulation, convolutional perfectly matched layer (CPML) [33] is used as the boundary condition
in the solving domain. The incident directions of the EMP can be described by pitch angle θ, azimuth
angle ϕ, and wave vector kinc, as shown in Fig. 8. The polarization of Einc is set to be parallel to the
XOY plane and along y-direction, and the incident EMP wave is set in the directions of θ = 45◦ and
ϕ = 0◦, respectively. The excitation signal of the Einc used in this example is described by a cosine
modulated Gaussian pulse function as follows

Einc(t) = E0 cos [2πf0(t − t0)] e
−

(
t−t0

τ

)2

(13)

where E0 = 30000 V/m, f0 = 1.575 GHz, τ = 2 ns, and t0 = 2.5τ . The time domain waveform is
shown in Fig. 9. Then, the terminal responses of the microstrip antenna calculated by traditional
FDTD (uniform mesh), CST MWS, and proposed method are compared, which is shown in Fig. 10.
The detailed variations of time domain and frequency domain are in good agreement, and the main
difference is time delay between the FDTD and CST MWS. That is because CST MWS is based on
FIT, while our method is based on FDTD; their simulation calculation will lead to differences due to
different types of the mesh generation of simulation. Therefore, the agreement between the results of
proposed method and CST software is satisfactory.
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Figure 9. The time domain waveform of the incident EMP wave.

Table 1 shows the parameters of the mesh size, memory, simulation time, and CPU utilization in
this case by three methods. All simulations and calculations are performed on the same workstation,
which has 2 CPU with 16 cores (2.2 GHz) and 128 GB RAM. As the CST adopts parallel computing and
memory optimization and consumes a lot of CPU (99%), its simulation speed is the fastest. However,
compared with traditional FDTD, it is obvious that the time and memory needed by the hybrid method
are much less than that for using the traditional FDTD method with uniform mesh only. Moreover,
under the condition of low CPU utilization (38%), the simulation cost of our method is also satisfactory
compared with CST.



Progress In Electromagnetics Research C, Vol. 104, 2020 77

0 5 10 15 20 25
-150

-100

-50

0

50

100

150

T
er

m
in

al
 V

ol
ta

ge
 (

V
)

CST
Traditional FDTD
Proposed Method

0 0.5 1 1.5 2 2.5 3
Frequency (GHz)

0

1

2

3

4

5

6

7

8

9

T
er

m
in

al
 V

ol
ta

ge
 (

V
)

10-7

CST
Traditional FDTD
Proposed Method

(a) (b)
Time (ns)

Figure 10. Comparison of the terminal voltage simulated by CST, traditional FDTD and proposed
method (a) in time domain; and (b) in frequency domain.

Table 1. Simulation resource cost by three methods.

Method Mesh Size Memory Simulation Time CPU Utilization

CST MWS
Adaptive Mesh

(minimum 0.5 mm)
1.69 GB 35 min 99%

Traditional FDTD 0.5 mm 89.87 GB 110 h 40 min 37%

Proposed Method
fine 0.5 mm

and coarse 5 mm
3.64 GB 1 h 46 min 38%

Figure 11. Terminal voltages at different vehicle heights L3.

It should be noted that because we mainly consider the influence of vehicle top environment on
the response of microstrip antenna, and the different height has little effect on the simulation results
of microstrip antenna, as shown in Fig. 11, we set the height L3 = 0.2 m in the subsequent simulation
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analysis so as to save simulation time and computational cost. Furthermore, because the microstrip
antenna is horizontally polarized, when the polarization of the Einc of incident EMP is also horizontal,
the polarizations of them are matched so that the electromagnetic signal received by the antenna will
reach its maximum value. Therefore, the Einc of the incident EMP is set to be parallel to the xoy plane
in the subsequent sections.

3.2. Coupling Responses Considering Different Pitch Angle of Incident EMP

Next, the proposed method is firstly used to analyze the coupling response of antenna mounted on
a support structure at different pitch angles θ. As shown in Fig. 12, the antenna is supported by a
cylinder structure with the height of Hs = 0.1 m and the radius of Rs = 20 mm installed on the vehicle
platform of dimensions L1 × L2 × L3 = 3m × 2m × 0.2m. It is placed at the center of the top of
the vehicle. The incident EMP wave is set in the direction of ϕ = 0◦, and θ varies from 0◦ to 180◦
by 15◦ increments. When the EMP is incident at different pitch angles θ, the induced voltages in the
time domain at the termination resistance of antenna is shown in Fig. 13. The induced voltages firstly
increase, then decrease with the increment of the pitch angle θ. When the θ = 45◦, 60◦, 120◦, and 135◦,
the induced voltages reach higher values, and the peak voltage is 238 V.

Figure 12. Considering different pitch angle θ of incident EMP.

In order to obtain the maximum value and further analyze the variation regularity of coupling
response, we carried on more detailed simulations at intervals of 5◦ between 40◦ and 140◦ of the angles
θ. Then a variation curve of peak voltage of different pitch angles could be obtained according to the
simulation results shown in Fig. 13, as shown in Fig. 14. From Fig. 14, we can get that because the
antenna structure is symmetrical with respect to the yoz plane, the coupling responses from 0◦ to 90◦
are completely symmetrical with those from 180◦ to 90◦. When the angle θ = 50◦, the induced voltages
reach the maximum values, and the peak voltage is about 254.3 V. The coupling induced voltages of
pitch angles of 40◦ to 70◦ and its symmetrical angles are greater than 200 V and larger than that of
other angles, which is obviously due to the fact that the angles of 40◦ to 70◦ correspond to the main lobe
range of the antenna pattern. Therefore, it is relatively dangerous for the terminal electronic equipment
of antenna when the antenna is illuminated by an EMP from this range of the pitch angles.

3.3. Coupling Responses Considering Different Azimuth Angle of Incident EMP

In this section, the incident EMP wave is set in the direction of θ = 45◦, and azimuth angle ϕ varies
from 0◦ to 180◦ by 15◦ increments. Then, the induced peak voltages of the antenna at different azimuth
angles are calculated, and the variation curve of peak voltage is shown in Fig. 15. From Fig. 15, we can
see that the induced voltages firstly decrease, then increase with the increment of the azimuth angles
ϕ. Obviously, the peak voltages are also symmetrical about the yoz plane.

When ϕ = 90◦, the induced peak voltage of the antenna is approximately 0 V. This is because the
electric field direction Einc of EMP wave is perpendicular to the polarization direction of the antenna,
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Figure 13. Induced voltage waveforms of the antenna at the thirteen pitch angles. (a) 0◦, (b) 45◦, (c)
90◦, (d) 135◦, (e) 180◦.
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Figure 14. The variation curve of peak voltage at different pitch angles θ.

i.e., the polarization direction of EMP and antenna do not match each other. According to Figs. 14
and 15, we can get that when the EMP wave is incident in the directions of ϕ = 0◦ and θ = 40◦–
70◦ and the symmetrical angles about the yoz plane, the coupling induced voltage would reach higher
values, which may cause disturbance or even damage to the radio frequency (RF) receiving circuit of
the antenna. Therefore, in the subsequent analysis, we would only discuss the case when the angle ϕ is
0◦.

3.4. Coupling Responses Considering Different Heights of the Support Structure

The influence of different heights of the support structure on the antenna coupling responses is discussed
in this section. Considering the practical variable range of the support structure of the antenna, the
heights Hs of the support structure are set to 0.1, 0.2, 0.3, 0.4, and 0.5 m, respectively, and then the
induced peak voltages of the antenna at different pitch angles θ are calculated and shown in Fig. 16.
Since the peak voltages are symmetrical about the yoz plane, we would only discuss the simulation
results from 0◦ to 90◦ in the subsequent analysis. From Fig. 16, we can see that when the height of the
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Figure 15. The variation curve of peak voltage at different azimuth angles ϕ.
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Figure 16. The variation curve of peak voltage at different pitch angles θ of different support heights.

support of the antenna changes, the induced voltage curve fluctuates with the pitch angles θ greatly.
Obviously, with the increase of the height of the support structure, the characteristics of the antenna
pattern become more and more complex.

According to Figs. 16, we can get that when the support is 0.1, 0.2, 0.3, 0.4, and 0.5 m high, the
maximum induced voltages of the antenna are 254.3, 281.2, 291, 279.4, and 269.3 V, respectively, and
the corresponding pitch angles are 50◦, 55◦, 60◦, 65◦, and 65◦, respectively. When the height of the
support structure is 0.3 m, the induced voltage reaches its maximum value 291 V. The difference between
the maximum and minimum peak voltage is only 12%, which indicates that the support height has little
effect on the maximum peak voltage. Through further analysis, we find that there are 8, 5, 4, 4, and 4
points whose peak voltages are greater than 200 V on each curve. It can be seen that the angle range of
high peak voltage are gradually decreased with the increase of heights Hs. Therefore, we can get that
as the heights of the support structure increase, the widths of the main lobe of the antenna pattern
decrease gradually. When the heights Hs vary from 0.1 m to 0.5 m, the maximum values of induced
voltage on each curve would appear near the pitch angle 60◦. It can be known that no matter how high
the support structure is (within the range of 0.1 m to 0.5 m), the EMP wave illuminated at θ = 60◦ will
cause more serious coupling effects to the antenna.

3.5. Coupling Responses Considering Different Top Areas of Support Structure

After that, the influence of different top areas of the support structure on the antenna coupling responses
is analyzed. The top area is determined by the radius Rs of the support structure. Similarly, according
to the practical variable range of the support structure of the antenna, the radii Rs are set to 20, 40, 60,
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Figure 17. The variation curves of peak voltage at different pitch angles of different support radii with
different heights Hs. (a) Peak voltages when the height of the support structure is 0.1 m. (b) Peak
voltages when the height of the support structure is 0.3 m.

80, and 100 mm, respectively, and the heights Hs is 0.1 m and 0.3 m, respectively. Then the coupling
responses of the antenna at different pitch angles are calculated. Combining the calculated results of
the previous section (when the height Hs = 0.3 m and the radius Rs = 20 mm), the comparison of the
variation curves of different radii Rs is shown in Fig. 17. From Figs. 17(a) and (b), we can get that
as the radii Rs increase, the curves become smoother and nearly monotonically increasing at the pitch
angles. When the radius Rs is greater than 80 mm, the maximum peak voltages would appear at 90◦
rather than 50◦ or 60◦. According to Fig. 17, it can be found that the top areas of the support structure
would change the angles at which the maximum voltages occur. Obviously, the heights of the support
structure change the width of the main lobe of the antenna pattern, while the top areas would have a
greater impact on the orientation of the main lobe of the antenna pattern.

3.6. Coupling Responses Considering Different Positions of Support Structure

In the above analysis, the support structure is placed at the center of the vehicle. In this section, the
support structure is translated from the center of the vehicle to position 2 and 3 along the x axis and
y axis, respectively, both of which are 0.1 m away from the vehicle boundary, as shown in Fig. 18. The
Rs and Hs are 20 mm and 0.1 m, respectively. Then the coupling responses at different pitch angles are
calculated, and the comparison of different positions is shown in Fig. 19.
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Figure 18. Considering different positions of support structure.
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Figure 19. Comparison of the peak voltage of different support positions.

According to the simulation results, we can see that the peak voltage curve of position 1 basically
coincides with the curve of position 2, while the peak voltage curve of position 3 has great difference
from other two positions. When the antenna is placed at position 2, the variation curve of peak voltage
is not symmetrical with respect to yoz plane, due to the different reflective areas of the antenna along
the x-axis direction. The peak voltages of position 1 and position 2 in the range of 0◦–90◦ are almost
the same, while there are slight differences in the range of 90◦–180◦. Especially when θ is 130◦, and the
peak voltage of position 2 is 234.1 V, which is about 20 V lower than that of position 1. However, the
peak voltages of position 3 is about 30 V larger than that of other two positions at each angle in the
range of 60◦–120◦. Obviously, it can be concluded that the change of the position along the polarization
direction of antenna has greater effects on the coupled induced voltages than that perpendicular to the
polarization direction of antenna.

4. CONCLUSION

In this paper, we have proposed a hybrid FDTD method for investigating the coupling responses of
the microstrip patch antenna mounted on the vehicle platform. By integrating the non-uniform mesh
FDTD, thin wire model, and transmission line equation effectively, the proposed method can rapidly
capture the terminal response of the antenna. Based on our hybrid method, we have analyzed the
influence of different incident EMPs, different heights of the support structure, and different top areas
of support structure on the coupling effects of the antenna.

From the results of calculation and analysis, it can be seen that in general, the induced voltages
caused by the incident EMP with the pitch angles θ of 40◦–70◦ and the azimuth angles ϕ of 0◦ are larger
than that from other angles. When ϕ = 90◦, the induced peak voltage of the antenna is approximately
0V because the polarization directions of EMP and antenna do not match each other. When the
height Hs of the support structure is 0.3 m, the induced voltage reaches its maximum value 291 V.
No matter how high the support structure is (within the range of 0.1 m to 0.5 m), the EMP wave
illuminated at θ = 60◦ will still cause more serious coupling effects to the antenna. When the radius Rs

is greater than 80 mm, the maximum peak voltages would appear at 90◦ rather than 60◦. Comparing
the simulation results of different antenna positions, it can be concluded that the change of the position
along the polarization direction of antenna has greater effects on the coupled induced voltages than
that perpendicular to the polarization direction of antenna. The above simulation analysis can provide
sufficient information for the design of installation structure of antenna and further electromagnetic
protection of the radio frequency (RF) receiving circuit of the antenna.
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25. MäKinen, R. M., V. Kangas, J. Lahtinen, and M. Kivikoski, “A coaxial probe feed model for
FDTD,” Microw. Opt. Techn. Lett., Vol. 34, No. 3, 193–198, 2002.

26. Tatematsu, A., “A technique for representing coaxial cables for FDTD based surge simulations,”
IEEE Trans. Electromagn. Compat., Vol. 57, No. 3, 488–495, 2015.

27. Umashankar, K. R., A. Taflov, and B. Beker, “Calculation and experimental validation of induced
currents on coupled wires in an arbitrary shaped cavity,” IEEE Trans. Antennas Propag., Vol. 35,
No. 11, 1248–1257, 1987.

28. Noda, T., and S. Yokoyama, “Thin wire representation in finite difference time domain surge
simulation,” IEEE Trans. Power Del., Vol. 17, No. 3, 840–847, 2002.

29. MäKinen, R. M., J. S. Juntunen, and M. A. Kivikoski, “An improved thin-wire model for FDTD,”
IEEE Trans. Microw. Theory Tech., Vol. 50, No. 5, 1245–1255, 2002.

30. Railton, C. J., D. F. Paul, I. J. Craddock, and G. S. Hilton, “The treatment of geometrically small
structures in FDTD by the modification of assigned material parameters,” IEEE Trans. Antennas
Propag., Vol. 53, No. 12, 4129–4136, 2005.

31. Railton, C. J., D. L. Paul, and S. Dumanli, “The treatment of thin wire and coaxial structures
in lossless and lossy media in FDTD by the modification of assigned material parameters,” IEEE
Trans. Electromagn. Compat., Vol. 48, No. 4, 654–660, 2006.

32. Taniguchi, Y., Y. Baba, N. Nagaoka, and A. Ametani, “An improved thin wire representation for
FDTD computations,” IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3248–3252, 2008.

33. Roden, J. A. and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation
of the CFS-PML for arbitrary media,” Microw. Opt. Techn. Lett., Vol. 27, No. 5, 334–339, 2000.


