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Abstract—This paper aims at developing an approach allowing to detect, locate, and characterize soft
faults (i.e., isolation damage) in branched network composed of shielded twisted pair (STP) cables.
To do so, a distributed reflectometry diagnosis where several sensors (reflectometers) are placed at
different ends of the network is used to maximize the diagnosis coverage. The soft fault identification is
achieved by using Multi-Carrier Time Domain Reflectometry (MCTDR) combined with a Multi-Layer
Perceptron Neural Network (MLP-NN). The main novelty here lies in the fact that the MLP-NN method
is used for data fusion from several distributed reflectometers, which eliminates ambiguities related to
the fault location. The required datasets for training and testing of the NN are generated by simulation.
Simulation and experimental results are conducted to verify the effectiveness of the proposed approach
for locating and characterizing the soft faults in branched networks.

1. INTRODUCTION

With the growing number of embedded electronic systems in today’s means of transport and
communication networks, the lengths of cables and the number of electrical interconnections are
increasing. Whatever their application areas are, cables are always prone to faults and failures due
to several internal and external conditions (mechanical vibration, thermal stress, moisture penetration
etc.). These conditions cause the appearance of two types of faults, hard faults (open or short circuits),
or soft faults (insulation damage, frays, cracks, etc.) [1]. The need for diagnosis methods and systems
able to quickly detect and locate faults in early stage can greatly help in improving performances and
avoiding dramatic accidents [2].

Several techniques have been suggested [3–5] in order to detect and locate faults before problem
appearance. Reflectometry is considered as the best method for wire diagnosis [6]. However, despite its
effectiveness in detecting and locating faults in a simple wired network, it remains limited in the case of
branched networks. Indeed, using a single sensor cannot ensure the coverage of the entire network. This
may be explained by the attenuation phenomenon [7] due to the traveled distance and multiple junctions
encountered. In addition, the multitude of branches in the network causes a fault location ambiguity.
Distributed diagnosis where several reflectometers are placed at different ends of the network under test
(NUT) seems a good solution for these problems [8]. However, as several sensors are injecting their
diagnostic signals simultaneously, specific signal processing methods are required to avoid interferences
between them [9].

Recently, approaches based on time reversal (TR) principle [10, 11] have also been adopted to wiring
fault detection and localization. The DORT (decomposition of the time reversal operator) method is
certainly a more efficient one. The standard version of DORT (SDORT) as presented in [12] and the
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enhanced version (EDORT) in [13] have shown promising results for locating single as well as multiple
faults in different NUTs complexity. This is done by using several distributed vector network analyses
(VNA). However, several factors might affect the practical implementation of the DORT technique in
real-life applications such as noise, post-processing complexity, and the synchronization between different
distributed VNAs which is a critical step. As a solution, the MCTDR [14, 15] has a huge advantage;
it can precisely control the spectrum of the injected signals which allows a good performance (faults
detection and localization) on distributed diagnosis. It enables real time monitoring of the wires without
interfering with useful signals.

In this paper, we propose an adaptive multi-sensor data fusion method based on the MCTDR
signal, which is combined with the MLP-NN for soft fault location and characterization in a complex
wired network. In order to locate the defect and identify its type, each sensor performs a diagnosis and
builds its own reflectogram by correlation between the incident signal and the reflected one. After that,
the MLP-NN ensures the data fusion between different sensors. This proposed approach achieves more
accurate and reliable results than approaches with a single sensor as in [16, 17].

Authors in [18] have proposed artificial neural networks (ANN) for the diagnosis of wired networks,
where the whole Time Domain Reflectometry (TDR) response is processed, therefore the size of the
required data is huge. In our work, the datasets are reduced since only the reflectogram most significant
peaks are exploited, which reduces the number of neurons and prevents the over-fitting in NN.

This work is a follow-up to our recent awarded conference paper [19]. This article aims at validating
the performance of the proposed approach by experimental results based on practical industrial elements.
The results demonstrate that the new approach can merge the data from different sensors for locating
and characterizing the soft faults in a complex wired network.

The rest of the paper is organized as follows. In Section 2 we explain the MCTDR reflectometry
principle and the numerical model that describes the propagation of the wave along the lines of a
network. Section 3 illustrates the procedures of the proposed method, the design and the training of
the NN. Section 4 presents experimental results in order to evaluate the performance of the proposed
method. Finally, the conclusions are drawn in Section 5.

2. PROPAGATION MODEL AND TEST SIGNAL

2.1. Theory of Transmission Line

A cable under test with high frequency signal can be treated as a transmission line, whose equivalent
model with distributed RLGC (resistance, inductance, conductance, and capacitance per unit length)
parameters [20] is illustrated in Figure 1, from which the well-known telegrapher’s equations [21] are
derived.

Figure 1. An RLGC model of a short cable portion of length dx.

In this work, the numerical simulations are performed thanks to an in-house code solving
telegrapher’s equations in the frequency domain. RLGC parameters take the following form in the
simulation code [22]:

R = R0

√
f and G = G0f

L = L0 + R0/
(
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√
f
)

and C = C0

(1)
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The parameters R0 = 8 · 10−4 (Ω/m), L0 = 596 (nH/m), C0 = 97 (pF/m), and G0 = 2.4 · 10−11 (S/m)
are different for every cable’s type, and their values are affected by the geometry of the transmission
line and by the electrical properties of the dielectrics and conductors. The signal propagation along the
NUT is modeled as in [23], to provide its corresponding reflectometry response.

2.2. MCTDR Reflectometr

Similar to Radar, reflectometry injects a test signal into the NUT. This signal propagates along the
network, and each impedance discontinuity met (connector, junction or fault [23]) reflects a part of its
energy back to the injection point (Figure 2). The analysis of the reflected signal permits to detect,
locate, and determine the type of these discontinuities.

S 

Probe signal 

R 

Reflected signal 

Defect Injection point 

Transmitted signal 

Figure 2. Reflectometry principle.

The position of an impedance discontinuity can be located by using the following equation:

d = τ · vp/2 (2)

where τ represents the measuring round trip time between the injection point and an impedance
discontinuity, and Vp is the propagation speed in the cable.

Each discontinuity encountered by the test signal during its propagation is associated with
a reflection coefficient. When the signal injected into a transmission line (with a characteristic
impedance Zc) encounters an impedance discontinuity Zn during propagation, the corresponding
reflection coefficient is given as follows:

Γn = (Zn − Zc)/(Zn + Zc) (3)

For safety critical systems, more applications may require embedded diagnosis for real time monitoring
and decision. Online diagnosis is then used while the target system is operating. Specific methods have
been designed for this, such as MCTDR where a sum of a finite number of sinusoids at a given set of
frequencies is injected into the cable under test.

sk =
2√
N

N/2∑
n=0

cn cos
(

2πn

N
k + θn

)
(4)

Indeed, test signals must not interfere with the useful signals. To do so, the frequencies of subcarriers
of the signal MCTDR are chosen outside the frequency bands used by the target system under test.
Moreover, MCTDR has good autocorrelation properties (Figure 3) allowing a good accuracy of fault
location.

3. PROPOSED APPROACH

The proposed work consists in automating the detection and location of soft faults in the branched
network monitored by several reflectometers Ri i ∈ {1, 2, . . . , N}, and N is the number of
reflectometers. The considered wired network topology illustrated in Figure 4 was implemented using
Twisted Pair cables with characteristic impedance Zc = 69Ω. The network is affected by two soft
faults d1 and d2. The soft fault d1 is located on the branch B3 at 0.77 m from the junction J1 and
d2 on the branch B4 at 1.13 m from the junction J2. We notice that the soft fault is represented
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Figure 3. MCTDR signals: (a) Signal in the time domain and (b) autocorrelation function.
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Figure 4. Complex wired network affected by two soft faults.
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Figure 5. Block diagram of the fault location procedure.

by a localized change of characteristic impedance, with a length of ΔL = 3 cm and an impedance
Zd = Zc(1 + ΔZc)(20% < ΔZc < 30%).

Figure 5 illustrates a block diagram of the fault location procedure. At first, to facilitate the
reflectogram analysis, each sensor must calculate the difference between the response of a faulty network
and that of a healthy one. This processing avoids the different peaks (variations) caused by the nodes in
the network. Then, only the main peaks are detected, and for each peak, its magnitude and its position
are stored. These peaks are then put into the MLP-NN; its output gives information about the location
and the impedance of the soft faults.

In order to select the main peaks in the differential reflectogram, the detection thresholds
represented by an exponential decay according to the cable’s attenuation coefficient are used as follows:

Th1 = Amine
−2αX/(1 − Γ2

0)

Th2 = −Amine
−2αX/(1 − Γ2

0)
(5)

where X ∈ [0L]; L is the maximum wire length from the sensor; Amin = 4 ·10−3 is the sensor minimum
detection threshold; (1 − Γ2

0) is the coupling compensation term between the sensor and the network.
The reflection coefficient Γ0 is calculated as follows:

Γ0 = (Zc − Zs)/(Zc + Zs) (6)
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where Zs represents the source impedance, and Zc is the characteristic impedance of the transmission
line.

3.1. Design of Neural Network

The neural networks concept was inspired by biological neural networks. It is fast and flexible potentially
able to model complicated functions and represent complex input/output relationships [24, 25]. Its
training can be performed offline with a database including information about the state of the wired
network. A fully connected three-layers (input, hidden and output) feed-forward neural network is used
with a hyperbolic tangent activation function in the hidden layer and a linear activation function in the
output one.

Figure 6 depicts the MLP-NN architecture, and the output layer of the network is composed of
five neurons which correspond to the number of branches in the network. It is composed of two neural
networks NN1 and NN2: NN1 is used to locate the soft faults, and NN2 is used to characterize their
impedances. If a soft fault is detected, the corresponding NN1 output gives the location (in m) of the
soft fault on the faulty branch; otherwise, it is “zero”. The corresponding NN2 output gives the soft
fault impedance (in Ω).
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Figure 6. Soft fault location and characterization using MLP-NN.

The architecture type, number of neurons, and training dataset size play a key role in determining
the best NN architecture [26]. The design of the NN has been achieved carefully with the appropriate
number of hidden neurons. As a matter of fact, an NN having an insufficient number of neurons will
not be able to learn the training database correctly. On the other hand, using too many neurons can
lead to an overfitting phenomenon.

3.2. Training NN

The neural network was trained in MATLAB using NN-Toolbox with Levenber-Marquard [27] back-
propagation training algorithm. The required datasets for training and testing the NN were created
based on the MCTDR method. They are obtained from the simulation of soft faults randomly inserted
in various scenarios (fault locations and fault resistances) in the wired network (Figure 7). The datasets
are constituted from examples of reflectograms obtained by the reflectometers R1 and R2.

Nevertheless, in order to have a good learning process and test the effectiveness of the NN, the
“split sample” method is used. It consists of dividing the datasets into three different subsets: training,
validation, and test sets. Then, the NN is trained for different sizes (up to 100 hidden neurons in this
study).
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During the learning phase, an input-output set of data is fed into the network. For each of the
inputs, the NN calculates the corresponding output and compares it with the correct one (target)
which has been attributed to it. The connection weights between neurons are modified by an error
measurement between produced and expected result. The error obtained at the output is reduced by
the Levenber-Marquardt algorithm which is used to adapt the weights of the N. Finally, the generalization

Figure 7. Simulated reflectograms obtained by the reflectometer R1 show some examples of training
data.

Figure 8. Regression fit of the output vs. targets during training, validation and test of the neural
network.
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capability of the NN is assessed by calculating the Mean Square Error (MSE) obtained in the test set
which evaluates the quality of the estimation of the NN. The NN training time, with a data set about
40000 examples, is about 2h10 using a PC equipped with Intel core i5-4460 and 8 Gb of RAM.

After training the NN, its performance is checked by plotting the linear regression that relates the
targets (soft fault positions) to the outputs as shown in Figure 8 which shows a satisfactory correlation
between them.

It should be noted that the creation of the needed database may require a relatively long time,
depending on the NUT topology and the number of parameters used (hidden layer, neurons, etc.).
However, it can be performed “offline”, the diagnosis of the wired network using the trained NN is very
fast and can be achieved “online”.

4. EXPERIMENTAL VALIDATION

To illustrate the performance of the proposed method, the following section presents an experimental
setup. We opted to experimentally test the network presented in Figure 4 which is composed of 5
branches connected via two junctions.

4.1. Measurement Setup

The considered NUT of Figure 4 was implemented using an aeronautical cable MLB24 (shield twisted
pair (STP) cable of type EN 2714-013). The extremities of the network are matched to the characteristic
impedance of the lines. The MCTDR responses of the NUT is measured by two specific reflectometers
R1 and R2 (output signal < 1 V, output impedance 50 Ω and bandwidth ranging from 300 kHz to
200 MHz). The MCTDR reflectometry is integrated in a Field-Programmable Gate Array (FPGA)
developed by WIN-MS (Wire Network Monitoring Solutions) company. Each sensor features wireless
communication capability to send information to a tablet PC. A graphical user interface (GUI) (running
under Android/Windows platform) controls the injection/acquisition procedure of the diagnosis signal
and displays the received reflectograms. In the case of distributed diagnosis, each sensor performs a
diagnosis and constructs its own reflectogram. The data are then sent to the tablet PC which is used
for running the trained neural network. The whole experimental setup is illustrated in Figure 9.

 

Soft faults (3 cm) 

R1
R2

Figure 9. Implementation of the NUT in Figure 4 using STP EN 2714-013 MLB24 cables and connected
to the reflectometers R1 and R2 for performing the MCTDR measurement.

4.2. Results and Discussions

To validate the propagation model, we rely on the wired network of Figure 4. Figure 10 shows the
reflectometry response of the healthy network by the reflectometers R1 and R2, respectively. They
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Figure 10. Comparison between simulation results and measures for the MCTDR response of healthy
network obtained by the reflectometers (a) R1 and (b) R2.
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Figure 11. The measured MCTDR response of
a healthy and a faulty network obtained by the
reflectometer R1.
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Figure 12. Difference between the response of
a faulty and a healthy network obtained by the
reflectometer R1.

illustrate a good agreement between measurement and simulation results, both for positions and
amplitudes of the main peaks. The difference between the simulated and measured values may be due
to the imperfect numerical modeling of the network (RLCG geometrical and electrical uncertainties),
and also to the impedance of the connection (nodes, the coupling between the sensor and the network).

By observing Figure 11 and Figure 12, the reflectometer R1 locates the soft fault d1 at a distance of
2.2 m, and it can be located on either branch B2 or B3. In this case, we have a fault location ambiguity.
The soft fault d2 is not detected by R1 because of the attenuation phenomenon. The reflectometer R2

on its side locates the soft fault d1 at 1.53 m and d2 at 1.85 m (Figure 13 and Figure 14), and they can
also be located on either branch B3 or B4.

Accordingly, to remove any soft fault location ambiguity on the network, the data fusion between
R1 and R2 using MLP-NN is necessary. The measured data are post-processed using the proposed
approach in Section 3. Table 1 shows the estimated data obtained at the output of the both NNs. Each
one contains 48 neurons in the hidden layer and is trained by 40000 examples. We can clearly see in
Table 1 that the estimated soft fault positions and impedances by the trained NNs are close to the
injected ones with relative error less than 3%.

The results presented in Table 1 confirm the efficiency of our proposed approach to merge data
between the reflectometers in order to locate and characterize the soft faults in the branched network. It
is shown that MLP-NN yields some errors in the location and the characterization of the soft faults. The
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accuracy can be enhanced by increasing the reflectogram point’s number and the number of examples
in the database as well as optimizing the number of neurons in the hidden layer.

Briefly, the proposed approach has many advantages over the existing approaches such as:

• The proposed method combining the MCTDR reflectometry with the MLP-NN enables data fusion
from several distributed reflectometers for better locating faults in branched networks without
ambiguities.

• Working with the most significant peaks of differential reflectogram rather than the whole
reflectometry response (as in [13]), which reduces the size of the required data, consequently reduces
the number of neurons in hidden layer, the time of processing, and prevents the over-fitting in NN.

• The distribution of the sensors at different extremities provides a complete coverage of the network
and cancels the fault location ambiguity.

• Optimizing computational time diagnosis. The diagnosis can be achieved online, and the time to
obtain the state of the wired network using trained NN remains less than 1 s.

Table 1. Estimated results at the output of the neural networks.

Position and

impedance of the

actual soft fault

Estimated

soft fault

positions by

NN1 (m)

Estimated

soft fault

impedances

by NN2 (Ω)

Relative

position

error (%)

B1 No soft fault 0.03 69 -

B2 No soft fault 0.03 70 -

B3 0.77 m from J1 with Zd = 90Ω 0.78 89 1.29

B4 1.13 m from J2 with Zd = 90Ω 1.1 86 2.65

B5 No soft fault 0.03 69 -
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5. CONCLUSION

In this paper, we have presented a new approach for the diagnosis of wired networks. This approach
combines the MCTDR test signal with the MLP-NN in order to solve ambiguity problems for soft
fault location and characterization in branched networks. The NN ensures data fusion from several
sensors placed at different ends of the network. The NN is trained using only significant peaks of the
reflectogram of each sensor. This leads to a reduction of the size of the dataset and consequently reduces
the number of neurons and the processing time.

In the case of an embedded diagnostic system, the training of NN can be performed offline, while
the healthy state of the wired network can be obtained in real-time. Simulated and experimental results
have proved the efficiency of the proposed technique in precisely detecting, locating, and characterizing
multiple soft faults in the branched networks.

Future work will focus on integrating the communication between sensors using the phase
modulation of the diagnosis signal. This communication improves the diagnosis quality and ensures
data fusion from several reflectometers for an optimized distributed diagnosis without any ambiguities.
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