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Design of Adaptive Array with E-Shape Slot Radiator for Smart
Antenna System
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Abstract—This paper presents the design of an 8-element linear array for Adaptive Antenna
applications using the Least Mean Square (LMS) algorithm towards improving the directive gain, beam
steering capabilities, half-power beam-width, side-lobe level, and bandwidth of array. A conventional
patch antenna is optimized to operate at 3.6 GHz (5G applications) with two symmetrical slots and
Quarter Wave Transformer for feeding, and this design is extended up to 8 elements using CST
Microwave Studio parameterization. The Return Loss (S11), Directivity, HPBW, and VSWR of the
antenna array are observed for the 2, 4, and 8 elements adaptive arrays. The inter-element spacing for
resulting eight-element antenna array geometry is optimized to obtain maximum directive gain. This
geometry appears promising in improving the directive gain from 7.6 dBi to 15.1 dBi for a single element
to eight elements, respectively. Further, the LMS algorithm is used to compute the optimal complex
weights, considering different angles for the desired User (+45◦ and −45◦) and Interferer (+20◦ and
−20◦) during MATLAB simulation, and then these optimal weights are fed to antenna elements using
CST for beam steering in a different direction. Maxima in the direction of user and nulls in the direction
of interferer are obtained using CST software and found closely matching with MATLAB results.

1. INTRODUCTION

Wireless communication has been found as an integral part of human life where people can communicate
anywhere in the globe at a very high speed. An array of antennas may be used in a variety of ways to
improve the performance of a communication system [3]. Perhaps the most important is its capability
to cancel co-channel interference. An adaptive array works on the assumption that the desired signal
and unwanted co-channel interference arrive from different directions. The beam pattern of the array
is adjusted to suit the requirements by combining signals from different antennas with appropriate
weighting [1]. It also reduces multipath fading, system complexity, cost, BER, and outage probability.
It has been argued that adaptive antennas and the algorithms to control them are vital to a high-capacity
communication system development [3]. Smart antenna, as one kind of space-domain technique, has
attracted much attention since it can exploit additional system capacity in a mature noise-constrained
CDMA system, which has been widely applied in all 3G and 4G standards [3].

In a smart antenna system, complex weights are updated automatically in order to generate the
maxima in the desired direction and nulls in the direction of interferer as shown in Figure 1. These
arrays improve system capacity and find wide usability in many applications like commercial wireless
networks such as LTE, IEEE 802.16, Military Radar applications for scanning and beam-forming, mobile
communication, satellite communication, and MIMO systems [9]. The benefits of using smart antenna
array beam-forming include the improvement of the Mean Square Error (MSE), signal-to-interference-
plus-noise ratio (SINR), signal jamming, multipath fading, and directive gain [1]. The term smart
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Figure 1. Functional block diagram of adaptive antenna array.

antenna is used for a phased array when the weighting on each element is applied in a dynamic fashion [3].
The weights for each channel are not fixed at the time of the array design, rather those weights are
computed by the system dynamically while processing the signal to meet the required objectives [3].

The flexibility of array weighting to be adjusted which specifies the array pattern plays an important
role in the system. A blind area exists between adjacent beams where gain drops dramatically from the
peak region, thus, the users may suffer from signal fading or even call drops when moving across this
region [5]. Also, the variation in these blind areas increases the complexity in link budget estimation,
which is undesirable in system design [5].

In this paper, we propose a smart array with 8 elements using CST Microwave Studio. The
performance parameters, viz, Return Loss, VSWR (Voltage Standing Wave Ratio), and Directive Gain
are observed for single, two, four, and eight elements. Further complex weights computed by the LMS
algorithm in MATLAB are fed back into CST to check beam steering capabilities of the adaptive array.
This array is tested by assuming the direction of the user and interferer for a few cases. Results obtained
from MATLAB are found closely matching with CST simulation results.

This paper is outlined as follows. The design of a single element microstrip slot antenna with
improved parameters is presented in Section 2. Section 3 presents the design of the eight-element
smart array using CST. Section 4 explains analysis of the LMS algorithm and how to use it for the
estimation of complex weights. Section 5 presents how these complex weights, assuming different angles
for desired user and interferer can be fed back to antenna elements using CST for testing the beam
steering capabilities of the array. Finally, all results are concluded in the last section.

2. DESIGN OF E-SHAPE SLOT ANTENNA

For a beam-steering array, initially, a microstrip patch antenna with two symmetrical slots and a
quarter wave transformer for feeding is designed around 3.6 GHz to observe the reflection parameters and
radiation pattern. Desired reflection parameters and radiation patterns are obtained from this design,
and results satisfy all the objectives and aims of this project. CST Microwave Studio parameterization
gives enhanced dimensions as given in Table 1. These dimensions are calculated and optimized using
standard equations as given in Eqs. (1)–(5) and can be used for the array design with optimum inter-
element spacing to improve the overall directive gain of the array. All simulation results of this device
are presented in Figures 2–4, and result analysis is presented in Table 2.

Various performance parameters of the antenna, like Return Loss (S11), VSWR, Directive Gain,
Bandwidth, HPBW, and Side Lobe Level (SLL) are evaluated around 3.6 GHz. The substrate material
used is FR4 with dielectric constant of 4.3 and thickness (height) 1.6 mm. The first step towards this
antenna design is to calculate the length and width of the patch using the following equations [2, 6–8].



Progress In Electromagnetics Research M, Vol. 90, 2020 139

Table 1. Desired design specifications.

Sr. No. Parameter Value (mm)
1. L (Length of a patch) 19.4 mm
2. W (Width of a patch) 25.4 mm
3. t (Thickness of patch) 0.05 mm
4. Patch Impedance 243 Ω
5. h (Height of substrate) 1.6 mm
6. Wf (Width of QWT feed line) 0.534
7. Lf (Length of QWT feed line) 12.06
8. QWT Impedance 110.22 Ω
9. Length of Slot 8 mm
10. Width of Slot 3 mm
11. Ls (Length of substrate) 60
12. Ws (Width of substrate) 51

Table 2. Result analysis of compact E-shape antenna element.

Sr. No. Parameter Value
1. Resonant Frequency 3.6 GHz
2. Return Loss (S11) −26.32 dB
3. VSWR 1.08
4. Main Lobe Magnitude 7.6 dBi
5. Half Power Beam Width (HPBW), E-Plane 78.8◦

6. Side Lobe Level (SLL) −14.8 dB
7. Main Lobe Direction 0◦

8. Bandwidth 220 MHz

19.4 mm

25.4 mm

QWT 
λg/450 Ω 

Line

Figure 2. Structure of compact E-Shape single
element.
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Figure 4. Radiation pattern, E-plane magnitude 7.6 dBi at 3.6 GHz.

2.1. Antenna Patch Width Calculations

The width of microstrip patch can be calculated using

w =
c

2fr

√
2

εr + 1
(1)

where c — Speed of light (3×108 m/sec); fr — Resonant frequency (3.6 GHz); εr — Dielectric constant
of FR4 (4.3).

2.2. Antenna Patch Length Calculations

For estimation of length, the first step is to calculate effective dielectric constant [2, 6–8], extended
incremental and effective length. These calculations are carried out by using Equations (2), (3), and
(4) respectively.

Leff = L + 2ΔL = c/(2fr
√

εeff ) (2)
where length L and effective dielectric constant εeff are given by

L =
c

2fr
√

εr
− 2ΔL (3)

εeff =
εr + 1

2
+

εr − 1
2

∗ 1√
1 +

12h
w

(4)

Extended incremental length ΔL due to fringing effect can be found [2, 6–8] using the following equation

ΔL = 0.412 ∗ h
(εff + 0.3)

(w

h
+ 0.264

)

(εff + 0.258)
(w

h
+ 0.8

) (5)

where h = height of substrate (1.6 mm).
Return Loss (S11) obtained for this design is −26.32 dB at 3.6 GHz. The obtained value of VSWR is

1.08 at 3.6 GHz. Radiation Pattern in E-plane is observed, and the Directive Gain is 7.6 dBi at 3.6 GHz.
Half Power Beam Width (HPBW) is 78.8◦ in E-plane. Side Lobe Level (SLL) is −14.8 dB. Main Lobe
direction is at 0◦ which is required for beam steering array and is adjusted with optimization of ground
plane dimensions. For proper impedance matching, the feed line is designed using a Quarter Wave
Transformer (QWT). The numerical values of all performance parameters are presented in Table 2.
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3. SMART ARRAY DESIGN

An antenna array is a mechanism in which we can realize radiation patterns without significantly altering
the antenna impedance. Usually, the radiation pattern of a single element is relatively wide and provides
the low value of directive gain compared to the array. For many applications, high directive gain is
necessary [1].

For practical needs, this is accomplished by increasing the electrical size of the antenna that is by
increasing the number of array elements. In a linear beam-steering array, elements are equally spaced,
and maximum radiation is a function of phase and amplitude distribution of excitation signal applied
to elements. The phase shift applied to each element decides the direction of maxima, and amplitude
decides the shape of the radiation pattern. If array elements are placed in the x-axis, a radiation pattern
formed in xz-plane can be realized as a fully adjustable weighting factor vector multiplied by a space
distribution vector as given in Eq. (6).

P (θ) = Pe(θ)Pa(θ) = Pe(θ)

⎡
⎢⎢⎢⎣

A1e
jψ1

A2e
jψ2

...
Ane

jψn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ej2π(
d1
λ ) sin(θ)

ej2π(
d2
λ ) sin(θ)

...
ej2π(

dn
λ ) sin(θ)

⎤
⎥⎥⎥⎥⎦ (6)

In Equation (1), Pe(θ) and Pa(θ) are the element pattern and array factor, respectively, in angular
position θ at the xz -plane, and Ane

jΨn and dn represent the nth element complex weighting factor and
distance from central position respectively. The geometry of the eight-element smart array is presented
in Figure 5 in which all elements are identical with separate excitation ports. Return loss, radiation
patterns 3D and 2D are given in Figures 6–8. All performance parameters are obtained around 3.6 GHz.
The optimal value for return loss is −23.95 dB, and maximum directive gain obtained is 15.1 dBi as given
in Figures 6 and 7, respectively. When the progressive phase shift applied to array elements is zero, the
direction of maxima will be in 0◦ as shown in Figure 8. All optimized performance parameters of the
array are presented in Table 3.

Table 3. Result analysis of 8 element adaptive array.

Sr. No. Parameter Value
1. Resonant Frequency 3.6 GHz
2. Return Loss (S11) −23.95 dB
3. VSWR 1.39
4. Main Lobe Magnitude 15.1 dBi
5. Half Power Beam Width (HPBW), E-Plane 77.3◦

6. Side Lobe Level (SLL) −13.2 dB
7. Main Lobe Direction 0◦

8. Bandwidth 160 MHz

4. WEIGHT ESTIMATION FOR BEAM STEERING USING LMS ALGORITHM
AND RESULT

The optimal directive gain of adaptive array is determined by the optimality of the weights applied
to the individual elements excitation signals. Least Mean Square (LMS) algorithm is one of the most
popular algorithms to determine these optimal weights [10–13]. The LMS algorithm is a gradient-based
approach, and it incorporates an iterative procedure that makes successive corrections to the weight
vector in the direction of the negative of the gradient vector which eventually leads to the minimum
mean square error at the current time [10–13].
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Figure 5. Structure of 8 element adaptive array with separate excitation ports.

Figure 6. Return loss measurement (−23.95 dB).

Figure 7. Radiation pattern 3D, directivity
15.1 dBi.

Figure 8. Direction of maxima is at 0◦.

In LMS algorithm optimal weight after each iteration is computed using Eq. (7)

W (n + 1) = W (n)− μg(W (n)) (7)

where W (n + 1) denotes the new weights computed at the (n + 1)th iteration; μ is a positive scalar
(gradient step size) that controls the convergence characteristics of the algorithm; and g(w(n)) is an
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unbiased estimate of the MSE gradient. For a given w(n), the MSE is given by,

ξ(W (n)) = E[|r(n + 1)|2] + WH(n)RW (n) − WH(n)Z − ZHW (n) (8)

where r(n+1) is a reference signal sample, and R is an array correlation matrix. The MSE gradient at the
nth iteration is obtained by differentiating above Equation (8) with respect to w, yielding Equation (9).

∇W ξ(W )|W=W (n) = 2RW (n) − 2Z (9)

At the (n + 1)th iteration, the array operates with weights w(n) computed at the previous iteration;
however, the array signal vector is x(n+1); the reference signal sample is r(n+1); and the array output
is as given in Equation (10).

Y (W (n)) = WH(n) ∗ X(n + 1) (10)

LMS algorithm uses an estimate of the gradient by replacing R and z by their noisy estimates available
at the (n + 1)th iteration, leading to Equation (11).

g(W (n)) = 2X(n + 1)XH(n + 1)W (n) − 2X(n + 1)r∗(n + 1) (11)

Since the error ε(W (n)) between the array output and reference signal is given by Equation (12)

ε(W (n)) = r(n + 1) − WH(n)X(n + 1) (12)

It follows from Equation (11) that,

g(W (n)) = −2X(n + 1)ε∗(W (n)) (13)

Thus, the estimated gradient is a product of the error between the array output and the reference signal
and the array signals after the nth iteration as given in Eq. (13). Taking the conditional expectation
on both sides of Eq. (11), it can be easily established that the mean of the gradient estimate for a given
w(n) becomes as given in Equation (14).

g(W (n)) = 2RW (n) − 2Z (14)

where g(W (n)) denotes the mean of the gradient estimate for a given W (n). From Eqs. (9) and (14) it
follows that the gradient estimate is unbiased. Compared to other LMS algorithm is relatively simple.
It does not require correlation function calculation nor does it require matrix inversions [5].

LMS algorithm is simulated using MATLAB for eight elements with 3.6 GHz frequency, and the
complex weights created have been used for excitation of the array in the CST Microwave Studio. It
has been observed that simulation results for beam steering in CST are almost the same as per the
directions assumed in MATLAB. While simulating the LMS algorithm in MATLAB, initially it has
been assumed that the user is at +45◦ and that interferer is at +20◦. Figure 9 indicates a polar plot
using CST, in which the beam is generated in the direction of the user (+45◦), and null is introduced
in the direction of interferer (+20◦). Then weights are computed by considering user at −45◦ (+315◦)
and interferer at −20◦ (+340◦). Figure 10 indicates the polar plot using CST after feeding complex
weights computed by the LMS algorithm for desired user at −45◦ and interferer at −20◦.

In [13], frequency-tuning mechanism is implemented using varactor diodes for a two-element array
for single band, and bandwidth obtained is 180 MHz only. This design is optimized for a relative
frequency tuning range of 10% extending from 2.15 to 2.38 GHz, and return loss S11 is −34 dB. Radiation
pattern covers scanning angles from −23◦ to +23◦ across broadside with only 9 maxima directions.

Two groups of novel zero-index meta-materials and three metallic strips are introduced, and
therefore, a 0.7 1.2 dBi gain enhancement is shown in [14] using two element array. S11 and S22 are
below −10 dB from 45.5 to 49.5 GHz, and the measured gain is all greater than 5 dBi within this single
band. Maximum directive gain of the array is 7.2 dBi with 4 maxima only.

The two-element array with complex feed N/W is shown in [15]. In this paper, the core building
block is a dual-mode coupler, which operates in two bands around 1.5 GHz and 2.5 GHz. Compared
to the proposed array, only six maxima are generated at +10◦, +20◦, +30◦, −10◦, −20◦, and −30◦.
Scanning range of this array is only −30◦ to +30◦ with return loss −26 dB. Bandwidth is 130 MHz
which is also less than the proposed antenna and array. In [16], a 64-element array is designed using
Butler Matrix (8 × 8) based complex feed N/W. Gain for single element is only 3.6 dBi, and Return
Loss is −18 dB which is also less than the proposed array. Bandwidth obtained is 2.4 to 2.5 GHz, that
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Figure 9. Direction of user at +45◦ and interferer
at +20◦.

Figure 10. Direction of user at −45◦ (+315◦)
and interferer at −20◦ (+340◦).

is only 100 MHz. Inset feed technique is used. Scanning range is small that is −15◦ to +15◦ only. This
design is too much complicated compared to the proposed array design. Only six maxima in different
directions are possible.

Beam shaping using HDC and delay lines to realize a flat response in its two beams covering regions
with less than 0.55 dB fluctuation is presented in [5]. Directive gain obtained is only 11.2 dBi. Length
and width for single element is 15.9 mm with feed point at 5.1 mm. Scanning range is limited to −45◦
to +45◦. Prototype is built and tested for 5.3 to 5.5 GHz with bandwidth 200 MHz. Side lobe level
is also poor compared to the proposed array that is −8.23 dB only. Maxima are possible in only two
directions.

In [17], linear array for smart antenna applications at 1.85 GHz with 16 elements is designed using
LMS algorithm. Directive gain is only 5.68 dB for single element with bandwidth 120 MHz only. Inter
element spacing is 0.9λ, and directivity obtained is 15.2 dBi only. Weights are estimated for +45◦ and
+30◦ using LMS Algorithm. Side lobe level is also poor that is −9.12 dB. Directions of maxima using
CST are at +40◦ and at +32◦.

Compared to all above designs of array, the proposed design has improved performance parameters
as shown in Tables 2 and 3. Bandwidth of single element is 220 MHz with directive gain 7.6 dBi.
Proposed eight-element adaptive array is very efficient, and maxima and nulls are possible at any
direction with respective to the direction of user and interferer.

5. CONCLUSION AND FUTURE SCOPE

An adaptive antenna array with eight elements resonating at 3.6 GHz for 5G S-Band Adaptive Antenna
applications is proposed in this research work. The proposed antenna array gives a high gain in the
desired direction of the user and minima in the direction of the interferer. CST Simulation results are
analyzed for VSWR, Return Loss, and Directive Gain with one, two, four, and eight antenna elements.
It has been verified that when we increase the array elements, the directive gain also increases from
7.6 dBi to 15.1 dBi.

Optimal beam steering is also achieved by estimating complex weights using the LMS algorithm
in MATLAB, and then these weights are applied to array elements using CST. For these MATLAB
simulations, two different angles are considered for User (+45◦ and −45◦) and Interferer (+20◦ and
−20◦). Maxima are obtained at +45◦ and −45◦ whereas Nulls are obtained at +20◦ and −20◦ using
CST which closely matches MATLAB results.
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It has been observed that because of two symmetrical slots added in the original patch, QWT used
in feed-line, and proper optimization, Directive Gain of proposed array design is improved compared
to [4, 5, 15–17]. The bandwidth of proposed array design is also improved compared to [4, 16, 17].

The obtained results are encouraging and promise their usability for 5G S-Band Adaptive Antenna
applications. The future research direction would explore the time-varying user and interferer locations,
a number of simultaneous users and interferer, other novel weight estimation algorithms for beam
steering applications. In addition to this DSP processor, a complete transceiver chain with standard
beam steering algorithms can be used for real-time practical implementation.
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